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Abstract
This paper deals with split equilibrium problems in Banach spaces. The presented algo-
rithm is based on the hybrid algorithm and the proximal point algorithm and has been
used for finding the solution of split equilibrium problems. Under some standard assump-
tions on equilibrium bifunctions, it is proven that the generated sequences by the presented
scheme are strongly convergent. Finally, the efficiency of the proposed method is demon-
strated through some examples. Also, comparative results verify that the proposed method
is more effective than the other existing methods in the literature. Furthermore, an ap-
plication of the presented algorithm in Hilbert spaces and an application of our method
to solve the LASSO problem in the field of compressed sensing are given.
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1. Introduction
Assume that C and Q are nonempty, convex and closed subsets of real Banach spaces

X and Y , respectively. The split equilibrium problem, (SEP ), is defined as follows:
“ Find x∗ ∈ C such that f(x∗, x) ≥ 0, ∀x ∈ C, and

such that y∗ = Ax∗ ∈ Q solves g(y∗, y) ≥ 0, ∀y ∈ Q ”,
(1.1)

where A : X → Y is a bounded linear operator and f : C × C → R and g : Q × Q → R

are equilibrium bifunctions, i.e., f(x, x) = 0 for every x ∈ C and g(y, y) = 0 for every
y ∈ Q. In general, the equilibrium bifunctions f and g need not be convex. This problem
is introduced in 2011 by Moudafi [32] (see more [11,14,45]). It is well known that (SEP )
is a generalization of a multiple set split feasibility problem. So, it generalizes the split
variational inequality problem [5], which is the generalization of split zero problems and
split feasibility problems [5, 31,32].

In the case of g = 0 and Q = Y , the (SEP ) reduces to the following classical equilibrium
problem, (EP ):

“Find x∗ ∈ C such that f(x∗, y) ≥ 0, ∀y ∈ C, ” (1.2)
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and its solution set is denoted by EP (f, C).
Note that the solution set of such problems may be empty. In particular, if f(x, y) =

⟨Ax, y − x⟩, where A : C → X∗, (X∗ is the dual space of Banach space X), then the
problem (1.2) reduces to the following classical variational inequality problem (shortly,
V IP ) which is initially investigated by Kinderlehrer and Stampacchia [24,26]:

“Find x∗ ∈ C such that ⟨Ax∗, y − x∗⟩ ≥ 0 ∀y ∈ C”. (1.3)
The solution set of the problem (1.3) is denoted by V I(A, C).

Equilibrium problem (EP ) plays an important role in many fields of mathematics such
as nonlinear analysis and optimization, because many mathematical models such as fixed
point problems, optimization problems and variational inequality problems can be formu-
lated as an (EP ) [4, 33]. Thus, its theory and applications have been extensively studied
by many researchers. In particular, a great number of methods are introduced by math-
ematicians to solve the (SEP ) and (EP ); see for instance [9, 11, 12, 14–16, 19–21, 23, 39]
and references therein.

Moreover, the (SEP ) is composed of a pair of equilibrium problems, and aims at finding
a solution x∗ of an equilibrium problem such that its image y∗ = Ax∗ under a given
bounded linear operator A also solves another equilibrium problem. The solution set of
(SEP ) is denoted by

Ω = {z ∈ EP (f, C) : Az ∈ EP (g, Q)}.

Suppose that H is a Hilbert space and C is a nonempty, closed and convex subset of H.
In 2005, Combettes and Hirstoaga [9], assuming some conditions on bifunction g, showed
that for any r > 0 and x ∈ H, the mapping T g

r (x) : H → C defined by

T g
r (x) = {z ∈ C : g(z, y) + 1

r
⟨y − z, z − x⟩ ≥ 0, ∀y ∈ C},

is single valued. Using the mapping T g
r (x), mathematicians introduced some algorithms

in the framework of Hilbert and Banach spaces [1,9,43]. In particular, in one of the steps
of those algorithms, the sequence {xn} is generated as follows:{

x0 ∈ H chosen arbitrarily, & {rn} ⊂ (0, ∞) satisfies lim infn→∞ rn > 0,

xn+1 ∈ H such that f(xn+1, y) + 1
rn

⟨y − xn+1, xn+1 − xn⟩ ≥ 0, ∀ y ∈ C,

One of the most important tools for solving optimization problems is Proximal Point
Algorithms (PPA), which are introduced by Martinet [27]. Rockafellar [38] extended the
(PPA) to finding a zero of the maximal monotone operator and proved his algorithm is
weakly convergent. This extension made many mathematicians interested in the (PPA),
and many modifications of (PPA) are introduced in the framework of Hilbert and Banach
spaces; see for example [28,37].

In 1995, for a bifunction f(x, y) which is convex with respect to y ∈ H, for each fixed
x ∈ H, Antipin [3] introduced the following algorithm for equilibrium problems in finite-
dimensional vector spaces:

x0 ∈ C,

yn := argminy∈C{λf(xn, y) + 1
2∥y − xn∥2},

xn+1 := argminy∈C{λf(yn, y) + 1
2∥y − xn∥2}, n ≥ 0,

The above algorithm used the proximity operator which can be computed by the Matlab
Optimization Toolbox in practice. The advantage of Antipin’s algorithm is that two
strongly convex programming problems are solved at each iteration. His method is known
under the name of the extragradient method.

If the bifunction f satisfies the following pseudomonotoncity condition on C:
f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0 ∀ x, y ∈ C,
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then the equilibrium problem is called pseudomonotone equilibrium problem. In 2008,
Quoc et. al. [35] applied the Antipin’s algorithm for pseudomonotone equilibrium prob-
lems in Hilbert spaces and presented the following algorithm:
Step 0 Take x0 ∈ C, ρ > 0 and set k = 0.
Step 1 Solve the strongly convex program

min
y∈C

{ρf(xk, y) + G(y) − ⟨∇G(xk), y − xk⟩}

to obtain its unique optimal solution yk.
If yk = xk, then stop; xk is a solution to the equilibrium problem. Otherwise, go
to Step 2.

Step 2 Solve the strongly convex program

min
y∈C

{ρf(yk, y) + G(y) − ⟨∇G(xk), y − xk⟩}

to obtain its unique optimal solution xk+1.

Step 3 Set k := k + 1, and go back to Step 1.
where G : Rn → R is a strongly convex and continuously differentiable function. Under
mild conditions, they obtained the weak convergence of the sequences generated by this
algorithm. The Antipin’s algorithm attracted a lot of attention and its variants have been
extensively studied by researchers, see [18,20,34,42] and references therein.

Recently, Lyashko and Semenov [25] proposed an algorithm for pseudomonotone equi-
librium problems which is called the two-step proximal point algorithm. This algorithm
can be summarized as follows: choose x0 = y0 ∈ C, ϵ > 0 and 0 < λ < 1

2(2c1+c2) , where
c1, c2 are positive constants.
Step 1 For xn and yn, compute

xn+1 = argminy∈C

{
λf(yn, y) + 1

2
∥y − xn∥2

}
Step 2 If max{∥xn+1 − xn∥, ∥yn − xn∥ < ϵ then stop, else compute

yn+1 = argminy∈C

{
λf(yn, y) + 1

2
∥y − xn+1∥2

}
Step 3 Set n := n + 1, and go to Step 1.
Lyashko and Semenovs algorithm and most other algorithms must either solve two strongly
convex programming problems or solve one strongly convex programming problem and
compute one projection onto the feasible set. Therefore, their computations are expensive
if the bifunctions and the feasible sets have complicated structures.

The bifunction f : H × H → (−∞, +∞] is proper if domf = {(x, y) ∈ H | f(x, y) <
+∞} is nonempty. Suppose that f : H × H → (−∞, +∞] is a proper bifunction and
f(x, .) is a convex function, i.e., f(x, y) is convex respect to the second argument y ∈ H,
for each fixed x ∈ H, the subdifferential of f(x, .) at y0 as the subset of H is given by

∂2f(x, y0) =
{

x ∈ H : f(x, y) ≥ f(x, y0) + ⟨x, y − y0⟩, ∀y ∈ H
}

.

If ∂2f(x, y0) ̸= ∅, then f is called subdifferentiable respect to the second argument y0.
The normal cone of C at ν ∈ C is defined by NC(ν) :=

{
x ∈ H : ⟨x, ν − y⟩ ≥ 0, ∀ y ∈ C

}
.

In 2018, Kassay et.al. [22] introduced an algorithm for solving the equilibrium problems
in Hilbert spaces which only required solving the subprogram over a half-space instead of
over the feasible set as Lyashko and Semenovs algorithm. This algorithm is as follows:
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Step 1 For x0 and y0, compute

x1 = argminy∈C

{
λf(y0, y) + 1

2
∥y − x0∥2

}
y1 = argminy∈C

{
λf(y0, y) + 1

2
∥y − x1∥2

}
Step 2 given xn, yn and yn−1, let ωn ∈ ∂2f(yn−1, yn) such that there exists an element

qn ∈ NC(yn) (see Lemma 2.4 in subsection 2.5) satisfying

0 = λωn + yn − xn + qn,

and construct the half-space

Hn = {z ∈ H : ⟨xn − λωn − yn, z − yn⟩ ≤ 0}.

and compute

xn+1 = argminy∈Hn

{
λf(yn, y) + 1

2
∥y − xn∥2

}
yn+1 = argminy∈C

{
λf(yn, y) + 1

2
∥y − xn+1∥2

}
Step 3 If xn+1 = xn and yn = yn−1 then stop. Otherwise, set n := n + 1, and return to

step 2.
They proved weak and strong convergence theorems under some suitable assumptions.

It should be noted that usually only weak convergence is deduced for the proposed
iteration processes. One of the methods that researchers have used to obtain strong
convergence for the generated iterates is the hybrid projection method, see for instance
[1, 2].

In this paper, motivated by Kassay et.al. [22], combining the hybrid method and
the proximal point method, we propose a hybrid proximal algorithm for solving (SEP )
in Banach spaces. The advantage of our approach is that we only require to solve a
convex subprogram on a half-space instead of on the feasible set. The solution of a convex
optimization problem on a closed sets usually needs to be computed numerically by means
of an iterative algorithm. So, many powerful algorithms such as the proximal algorithm
have been introduced for finding the solution of a convex optimization problem. Recently,
many researchers have presented the various improvements of the proximal algorithm
in different ways. One of these ways is replacing the closed convex set in the second
projection with a half-space. This change simplifies the calculations and may increase the
performance of the algorithm.

This paper is organized as follows : In section 2, we recall some definitions and pre-
liminary results for the further use. Section 3 deals with proposing a new algorithm and
proving it’s convergence. In section 4, we present an application of the presented algorithm
in Hilbert spaces. Then, in section 5, we provide an example to show the efficiency of our
results. Also, we give some comparative results to verify that the proposed method is more
effective than the other existing methods in the literature. Furthermore, the efficiency of
our algorithm has been illustrated on the LASSO problem in the field of compressed
sensing.

2. Preliminaries
Suppose that X∗ is the dual of a Banach space X and S(X) is the unit sphere centered

at the origin of X. For x∗ ∈ X∗ and x ∈ X the notation ≺ x∗, x ≻ means x∗(x). Suppose
B is the closed unit ball of a Banach space X. The norm of X∗ define by

∥x∗∥X∗ = sup{≺ x∗, x ≻ |x ∈ B},
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for every x∗ ∈ X∗. This norm makes X∗ into a Banach space. Assume that {xn} be a
sequence in X, we denote strong convergence of {xn} to x ∈ X by xn → x and weak
convergence by xn ⇀ x.

2.1. Strict convexity
A Banach space X is strictly convex if ∥x+y

2 ∥ < 1, whenever x, y ∈ S(X) and x ̸= y.
The function δX(ϵ) : [0, 2] → [0, 1] defined by

δX(ϵ) = inf
{

1 − ∥x + y∥
2

: ∥x∥ = ∥y∥ = 1, ∥x − y∥ > ϵ
}

,

is called the modulus of convexity of X. Also, X is said to be uniformly convex if δX(0) = 0
and δX(ϵ) > 0 for all 0 < ϵ ≤ 2. If a Banach space X is uniformly convex, then X is
reflexive and strictly convex [8, 40]. Let p > 1, the Banach space X is called to be p-
uniformly convex [7] if there exists a constant c > 0 such that δX(ϵ) ≥ cϵp for all ϵ ∈ [0, 2].

For 0 < p < ∞, a µ-measurable function f : X → R is p-integrable if |f |p is an integrable
function. The set of all p-integrable functions is denoted by Lp(µ), or for convenience by
Lp. If f ∈ Lp, then the Lp-norm of f is defined by ∥f∥p = (

∫
X |f |pdµ)

1
p . It is well known

that for 1 < p ≤ 2, Lp is 2-uniformly convex and for p ≥ 2, Lp is p-uniformly convex.

2.2. Smoothness
A Banach space X is called smooth if

lim
t→0

∥x + ty∥ − ∥x∥
t

, (2.1)

exists for all x, y ∈ S(X). The modulus of smoothness of X is the function ρX(τ) :
[0, ∞) → [0, ∞) defined by

ρX(τ) = sup
{∥x + τy∥ + ∥x − τy∥

2
− 1 : ∥x∥ = ∥y∥ = 1

}
.

The Banach space X is said to be uniformly smooth if ρX(t)
t

→ 0 as t → 0. For instance,
for p > 1, Lp is uniformly smooth. It well known that every uniformly smooth Banach
space X is smooth.

Let q > 1. If there exists a fixed constant c > 0 such that ρX(t) ≤ ctq, then X is said
to be q-uniformly smooth. If X is q-uniformly smooth, then q ≤ 2 and X is uniformly
smooth.

2.3. Duality mappings
Let p > 1 be a real number, the generalized duality mapping JX

p : X → 2X∗ is defined
by

JX
p x = {x∗ ∈ X∗ :≺ x∗, x ≻= ∥x∥∥x∗∥X∗ , ∥x∗∥X∗ = ∥x∥p−1} ∀ x ∈ X. (2.2)

Let 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. If X is p-uniformly convex and uniformly smooth,
then JX

p is single valued, monotone, one-to-one, onto and (JX
p )−1 = JX∗

q where JX∗
q is the

generalized duality mapping on X∗ [8, 40].
If X is uniformly smooth, then JX

p is uniformly norm-to-norm continuous on bounded
sets of X [8] i.e., for every bounded set M of X and every ε > 0, there exists δ > 0 such
that

∥JX
p x − JX

p y∥X∗ < ε,

for all x, y ∈ M such that ∥x − y∥ < δ. If p = 2, then JX
2 is called the normalized duality

mapping.



Hybrid proximal point algorithm for solving (SEP ) 937

2.4. Bregman distance
Let 1 < q ≤ 2 ≤ p with 1

p + 1
q = 1. Assume that X is a p-uniformly convex, uniformly

smooth real Banach space, we define the Bregman distance ∆X
p : X × X → R by

∆X
p (x, y) = 1

q
∥x∥p− ≺ JX

p x, y ≻ +1
p

∥y∥p,

= 1
p

(∥y∥p − ∥x∥p)+ ≺ JX
p x, x − y ≻,

= 1
q

(∥x∥p − ∥y∥p)− ≺ JX
p x − JX

p y, y ≻,

(2.3)

for all x, y ∈ X. Using the definition of ∆X
p , we can easily conclude that

∆X
p (x, y) = ∆X

p (x, z) + ∆X
p (z, y)+ ≺ JX

p x − JX
p z, z − y ≻, ∀ x, y, z ∈ X, (2.4)

and
∆X

p (x, y) + ∆X
p (y, x) =≺ JX

p x − JX
p y, x − y ≻, ∀ x, y ∈ X. (2.5)

Moreover, in a p-uniformly convex space X, we have the property [41]

τ∥x − y∥p ≤ ∆X
p (x, y), (2.6)

for all x, y ∈ X and for some constant τ > 0. It is worth noting that, in a Hilbert space
H, ∆X

2 (x, y) = 1
2∥x − y∥2 for all x, y ∈ X.

Now, suppose that C is a nonempty closed convex subset of a Banach space X. Recall
that, metric projection of X onto C is defined by

PCx = argminy∈C∥x − y∥, x ∈ X.

Here, PC is characterized by the following variational inequality:

≺ JX
p (x − PCx), z − PCx ≻≤ 0, z ∈ C.

The Bregman projection [41] is defined as the unique minimizer of the Bregman distance
and is denoted by ΠCx, so

ΠCx = argminy∈C∆X
p (x, y), ∀x ∈ X.

Some useful properties of the Bregman projection are expressed in the following lemma.

Lemma 2.1 ([41]). Let C be a nonempty closed subset of a p-uniformly convex and uni-
formly smooth real Banach space X and let (x, z) ∈ X×C. Then the following propositions
hold:

(i) z = ΠCx if and only if ≺ JX
p x − JX

p z, y − z ≻≤ 0 for all y ∈ C,
(ii) ∆X

p (ΠCx, z) + ∆X
p (x, ΠCx) ≤ ∆X

p (x, z),
(iii) ∆X

p (x, ΠCx) = miny∈C ∆X
p (x, y).

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space X, let T be a mapping from C into itself. A point p ∈ C is said to be an
asymptotic fixed point of T if there exists {xn} in C which converges weakly to p and
limn→∞ ∥xn − Txn∥ = 0. We denote the set of all fixed points and all asymptotic fixed
points of T by F (T ) and F̂ (T ) respectively. Following Matsushita and Takahashi [29,30],
a mapping T of C into itself is said to be relatively nonexpansive (see also [36]) if the
following conditions are satisfied:

(i) F (T ) is nonempty,
(ii) ∆X

p (Tx, u) ≤ ∆X
p (x, u), ∀u ∈ F (T ), x ∈ C,

(iii) F̂ (T ) = F (T ).
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Lemma 2.2 ([29]). Let C be a nonempty closed convex subset of a smooth, strictly convex,
and reflexive Banach space X and let T be a relatively nonexpansive mapping from C into
itself. Then F (T ) is closed and convex.

2.5. Subdifferentiability of convex functions
To present our algorithm in the next section we need the following definitions and

lemmas.
The function f : X → (−∞, +∞] is proper if domf= {x ∈ X | f(x) < +∞} is

nonempty. Let f : X → (−∞, +∞] be a proper and convex function. For x0 ∈ Dom(f),
the subdifferential of f at x0 as the subset of X is given by

∂f(x0) =
{

x∗ ∈ X∗ : f(x) ≥ f(x0)+ ≺ x∗, x − x0 ≻, ∀x ∈ X
}

.

If ∂f(x0) ̸= ∅, then f is called subdifferentiable at x0. If ∂f(x0) is single valued, then f is
said to be Gâteaux differentiable at x0 which is denoted by ∇f(x0).
Let f : X × X → (−∞, +∞] be a proper bifunction and f(x, .) be a convex function,
i.e., f(x, y) be convex respect to the second argument y ∈ X, for each fixed x ∈ X, the
subdifferential of f(x, .) at y0 as the subset of X is given by

∂2f(x, y0) =
{

x∗ ∈ X∗ : f(x, y) ≥ f(x, y0)+ ≺ x∗, y − y0 ≻, ∀y ∈ X
}

.

If ∂2f(x, y0) ̸= ∅, then f is called subdifferentiable respect to the second argument y0. If
∂2f(x, y0) is single valued, then f(x, .) is said to be Gâteaux differentiable respect to the
second argument y0 which is denoted by ∇2f(x, y0).

Let f : X → (−∞, ∞] be proper, and let x0 ∈ X. Then x0 is a minimizer of f if
f(x0) = infx∈X f(x). The set of minimizers of f is denoted by Argminf . If Argminf is a
singleton, its unique element is denoted by argminx∈Xf(x).

Lemma 2.3 ([20]). Let X be a reflexive Banach space. If f : X → (−∞, +∞] and
g : X → (−∞, +∞] are proper, convex, and lower semicontinuous functions and if 0 ∈
Int(Domf − Domg), then ∂(f + g)(x) = ∂f(x) + ∂g(x).

Lemma 2.4 ([20]). Let C be a nonempty convex subset of a Banach space X and f :
X → R be a convex and subdifferentiable function. Then x̂ is the solution of the convex
problem

min{f(x) : x ∈ C}
if and only if

0 ∈ ∂f(x̂) + NC(x̂),

where NC(ν) :=
{

x∗ ∈ X∗ :≺ x∗, ν − y ≻≥ 0, ∀ y ∈ C
}

is normal cone of C at ν ∈ C.

If X is a real Banach space, a closed half-space in X is a set of the form

{x ∈ X :≺ x∗, x ≻≤ a},

where x∗ ∈ X∗ and a ∈ R.
The bifunction f : X × X → (−∞, +∞] is said to be

(i) monotone on C, if

f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C,

(ii) pseudomonotone on C, if

f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0 ∀ x, y ∈ C.
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2.6. Monotone mappings
Next, we present the monotone, pseudomonotone and Lipschitz continuous concepts of

a mapping A : H → H, where H is a real Hilbert space with the inner product ⟨.⟩ and
the associated norm ∥.∥. Assume that C ⊆ H is a nonempty closed convex subset. The
mapping A : H → H is said to be

(i) monotone on C if
⟨Ax − Ay, x − y⟩ ≥ 0, ∀x, y ∈ C,

(ii) pseudomonotone on C if
⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, x − y⟩ ≤ 0, ∀x, y ∈ C,

(iii) L-Lipschitz continuous on C if there exists L > 0 such that
∥Ax − Ay∥ ≤ L∥x − y∥, ∀x, y ∈ C.

It is well known that the monotonicity of mapping A (bifunction f) on C imply that A
(f) is pseudomonotone on C. Also, It is clear that if A : C → H is monotone on C then
the corresponding bifunction f(x, y) = ⟨Ax, y − x⟩ is monotone on C.

2.7. Proximity operator
For a proper, convex and lower semicontinuous function g : H → (−∞, ∞] and γ > 0,

the Moreau envelope of g of parameter γ is the convex function

γg(x) = inf
y∈H

{g(y) + 1
2γ

∥y − x∥2} ∀x ∈ H.

For all x ∈ H, the function
y → g(y) + 1

2γ
∥y − x∥2

is proper, strongly convex and lower semicontinuous, thus the infimum is attained.
The unique minimum of

y → g(y) + 1
2

∥y − x∥2

is called proximal point of g at x and it is denoted by proxg(x). The operator
proxg(x) : H → H

x → argminy∈H{g(y) + 1
2γ

∥y − x∥2}

is well-defined and is said to be the proximity operator of g. When g = iC (the indicator
function of the convex set C), one has

proxiC (x) = PC(x)
for all x ∈ H.

3. Main results
The goal of this section is presenting a new hybrid proximal point algorithm which

generates a sequence that strongly converges to the solution of the (SEP ) under some
mild conditions in Banach spaces. In fact, to get our algorithm, we combine the hybrid
method and the proximal point method. One of the convex subprograms of our algorithm
only needs to be solved in a half-space instead of on the feasible set. This change simplifies
the calculations and may increase the performance of the algorithm.

Throughout this paper, assume that C and Q are nonempty, convex and closed subsets
of p-uniformly convex and uniformly smooth real Banach spaces X and Y , respectively
and A : X → Y is a bounded linear operator. Let g : Q × Q → R be a bifunction, which
satisfies the following :
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Condition A:
(A1) g(y, y) = 0, for all y ∈ Q,
(A2) g is monotone on Q,
(A3) g(y, .) is convex, lower semicontinuous on Q for all y ∈ Q,
(A4) for each x, y, z ∈ Q,

lim
t→0+

g(tz + (1 − t)x, y) ≤ g(x, y).

Moreover, suppose that the bifunction f : X × X → R satisfies the following :
Condition B:

(B1) f(x, x) = 0, for all x ∈ X,
(B2) f is pseudomonotone on X,
(B3) f(x, .) is convex, lower semicontinuous and subdifferentiable on X, for all x ∈ X,
(B4) f is jointly weakly continuous on X × X, i.e., if x, y ∈ X and {xn} and {yn} are two
sequences in X converging weakly to x and y, respectively, then f(xn, yn) → f(x, y),
(B5) f satisfies ∆-Lipschitz-type condition:

∃c1, c2 > 0 s.t. f(x, y) + f(y, z) ≥ f(x, z) − c1∆X
p (x, y) − c2∆X

p (y, z), ∀x, y, z ∈ X.

From now on, we denote the ∆X
p and JX

p by ∆p and Jp, respectively, for convenience.

Remark 3.1. If H is a Hilbert space, then the bifunction f : H × H → R satisfies
Lipschitz-type condition if

∃c1, c2 > 0 s.t. f(x, y) + f(y, z) ≥ f(x, z) − c1∥x − y∥ − c2∥y − z∥, ∀x, y, z ∈ H. (3.1)

Remark 3.2. Let A : C → H be Lipschitz continuous with constant L > 0, if we define
f(x, y) := ⟨Ax, y − x⟩, then f is a Lipschitz-type mapping with constants c1 = c2 = L

2 .

Indeed, for all x, y, z ∈ C we have
f(x, y) + f(y, z) − f(x, z) = ⟨Ax, y − x⟩ + ⟨Ay, z − y⟩ − ⟨Ax, z − x⟩

= −⟨Ay − Ax, y − z⟩
≥ −∥Ax − Ay∥∥y − z∥
≥ −L∥x − y∥∥y − z∥

≥ −L

2
∥x − y∥2 − L

2
∥y − z∥2

= c1∥x − y∥2 − c2∥y − z∥2.

Thus, f satisfies the inequality (3.1).

Remark 3.3. If there exists λ > 0 such that
|f(z, w) − f(x, w) − f(z, y) + f(x, y)| ≤ λ∥z − x∥∥w − y∥ ∀x, y, z, w ∈ C, (3.2)

then it is easy to see that f also satisfies the inequality (3.1). The inequality (3.2) is called
Lipschitz type inequality and has been introduced by Antibin [3]. In the framework of
a finite dimensional space, he showed that if f is a differentiable function whose partial
derivative with respect to the first variable satisfies the Lipschitz type inequality, then the
inequality (3.2) holds. Therefore, the class of these functions also satisfies the inequality
(3.1).

Remark 3.4. Assume that A : H → H is weak to strong continuous mapping on H, that
is, for each sequence {xn} ⊆ H such that xn ⇀ x̂, then Axn → Ax̂. Define f(x, y) =
⟨Ax, y − x⟩, then f is jointly weakly continuous on H × H, because if x, y ∈ X and {xn}
and {yn} are two sequences in X converging weakly to x and y, respectively, then

lim
n→∞

f(xn, yn) = lim
n→∞

⟨Axn, yn − xn⟩ = ⟨Ax, y − x⟩ = f(x, y).
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Lemma 3.5. Let Q be a nonempty, closed and convex subset of a smooth, strictly convex
and reflexive Banach space Y . Suppose that the bifunction g : Q × Q → R satisfies the
condition A and let r > 0 and x ∈ Y . Then, there exists z ∈ Q such that

g(z, y) + 1
r

≺ JY
p z − JY

p x, y − z ≻≥ 0, ∀y ∈ Q.

Proof. Using a similar argument such as in Corollary 1 of [4], we can prove the statement.
�

Lemma 3.6. Let Q be a nonempty, closed and convex subset of a smooth, strictly convex
and reflexive Banach space Y . Suppose that the bifunction g : Q × Q → R satisfies the
condition A and let r > 0 and x ∈ Y . Define a mapping T g

r : Y → 2Q as follows:

T g
r (x) = {z ∈ Q : g(z, y) + 1

r
≺ JY

p z − JY
p x, y − z ≻≥ 0, ∀y ∈ Q}.

Then, the following statements hold:
(i) T g

r (x) is single-valued for all x ∈ Y ,
(ii) T g

r is firmly nonexpansive-type, i.e. for all x, y ∈ Y ,

≺ JY
p T g

r x − JY
p T g

r y, T g
r x − T g

r y ≻≤≺ JY
p x − JY

p y, T g
r x − T g

r y ≻,

(iii) F (T g
r ) = EP (g, Q) ̸= ∅, where F (T g

r ) is the fixed point set of T g
r ,

(iv) ∆Y
p (T g

r x, z) ≤ ∆Y
p (x, z), ∀z ∈ F (T g

r ), ∀x ∈ Y ,
(v) EP (g, Q) is closed and convex.

Proof. (i) We claim that T g
r (x) is single-valued. Indeed, for x ∈ C and r > 0 let z1, z2 ∈

T g
r (x). Then,

g(z1, z2) + 1
r

≺ JY
p z1 − JY

p x, z2 − z1 ≻≥ 0

and
g(z2, z1) + 1

r
≺ JY

p z2 − JY
p x, z1 − z2 ≻≥ 0.

Adding the two inequalities, we have

g(z1, z2) + g(z2, z1) + 1
r

≺ JY
p z1 − JY

p z2, z2 − z1 ≻≥ 0.

From (A2) and r > 0, we have

≺ JY
p z1 − JY

p z2, z2 − z1 ≻≥ 0.

Therefore, since (2.5), we have z1 = z2.
(ii) Next, we claim that T g

r (x) is a firmly nonexpansive-type mapping. Indeed, for x, y ∈ Q,
we have

g(T g
r (x), T g

r (y)) + 1
r

≺ JY
p T g

r (x) − JY
p x, T g

r (y) − T g
r (x) ≻≥ 0,

and
g(T g

r (y), T g
r (x)) + 1

r
≺ JY

p T g
r (y) − JY

p y, T g
r (x) − T g

r (y) ≻≥ 0.

Adding the two inequalities, we have

g(T g
r (x), T g

r (y))+g(T g
r (y), T g

r (x))+1
r

≺ JY
p T g

r (x)−JY
p T g

r (y)−JY
p x+JY

p y, T g
r (y)−T g

r (x) ≻≥ 0,

also, from (A2) and r > 0, we have

≺ JY
p T g

r (x) − JY
p T g

r (y) − JY
p x + JY

p y, T g
r (y) − T g

r (x) ≻≥ 0,

therefore, we get

≺ JY
p T g

r (x) − JY
p T g

r (y), T g
r (x) − T g

r (y) ≻≤≺ JY
p x − JY

p y, T g
r (x) − T g

r (y) ≻ .
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(iii) Next, we claim that F (T g
r ) = EP (g, Q). Indeed we have the following:

u ∈ F (T g
r ) ⇔ u = T g

r (u) ⇔ g(u, y) + 1
r

≺ JY
p u − JY

p u, y − u ≻≥ 0, ∀y ∈ Q

⇔ g(u, y) ≥ 0, ∀y ∈ Q ⇔ u ∈ EP (g, Q).
(iv) From (ii) we have, for x, y ∈ Q,

≺ JY
p T g

r (x) − JY
p T g

r (y), T g
r (x) − T g

r (y) ≻≤≺ JY
p x − JY

p y, T g
r (x) − T g

r (y) ≻ .

Moreover, we have

∆p(T g
r (x), T g

r (y)) + ∆p(T g
r (y), T g

r (x)) =≺ JY
p T g

r (x) − JY
p T g

r (y), T g
r (x) − T g

r (y) ≻

and from (2.3) we get

∆Y
p (y, T g

r (x))+∆Y
p (x, T g

r (y))−∆Y
p (x, T g

r (x))−∆Y
p (y, T g

r (y)) =≺ JY
p x−JY

p y, T g
r (x)−T g

r (y) ≻ .

Hence from (ii) we have

∆Y
p (T g

r (x), T g
r (y)) + ∆Y

p (T g
r (y), T g

r (x)) ≤ ∆Y
p (y, T g

r (x)) + ∆Y
p (x, T g

r (y))
− ∆Y

p (x, T g
r (x)) − ∆Y

p (y, T g
r (y)),

(3.3)

so, we conclude, for x, y ∈ Q,

∆Y
p (T g

r (x), T g
r (y)) + ∆Y

p (T g
r (y), T g

r (x)) ≤ ∆Y
p (y, T g

r (x)) + ∆Y
p (x, T g

r (y)).

Taking y = z ∈ F (T g
r ), we have

∆Y
p (T g

r (x), z) ≤ ∆Y
p (x, z)

(v) Next, we claim that EP (g, Q) is closed and convex. Indeed, from (iii) we have
EP (g, Q) = F (T g

r ). Now, we show that F̂ (T g
r ) = EP (g, Q). Let p ∈ F̂ (T g

r ). Then,
there exists {zn} ⊆ Y such that zn ⇀ p and limn→∞(zn − T g

r zn) = 0. Moreover, we get
T g

r zn ⇀ p. Hence we have p ∈ Q. Since JY
p is uniformly continuous on bounded sets, we

have
lim

n→∞
1
r

∥JY
p zn − JY

p T g
r zn∥Y ∗ = 0.

From the definition of T g
r , we have

g(T g
r zn, y) + 1

r
≺ JY

p T g
r zn − JY

p zn, y − T g
r zn ≻≥ 0.

Since
1
r

≺ JY
p T g

r zn − JY
p zn, y − T g

r zn ≻≥ −g(T g
r zn, y) ≥ g(y, T g

r zn),

and g is lower semicontinuous and convex in the second variable. So, we have

g(y, p) ≤ lim inf
n→∞

g(y, T g
r zn) ≤ 0.

Therefore, we have
g(p, y) ≥ 0, ∀y ∈ Q.

Hence p ∈ EP (g, Q). So, we get F (T g
r ) = EP (g, Q) = F̂ (T g

r ). Therefore, we have T g
r is

a relatively nonexpansive mapping. From Lemma 2.2, EP (g, Q) = F (T g
r ) is closed and

convex. �

Remark 3.7. In the rest of the paper, for convenience, we denote JX
p by Jp, JX∗

q by J∗
q

and ∆X
p by ∆p.
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Now we present a new algorithm and show that it generates iterates that converge
strongly to a solution of the (SEP ) under some mild assumptions.

Algorithm 1 (Hybrid proximal point algorithm for SEPs):

Step 0: Suppose that 0 < a ≤ λ ≤ b < min{ 1
c1

, 1
c2

}, {rn} ⊆ (0, ∞) satisfies
lim infn→∞ rn > 0, {αn} ⊆ [0, d] for some d < 1 and {βn} ⊆ [0, 1].

Step 1: Let x0 ∈ C and n = 0,
Step 2: Compute yn such that

yn = argminy∈C{λf(xn, y) + ∆p(xn, y)},

Step 3: Let ωn ∈ ∂2f(xn, yn) such that there exists an element qn ∈ NC(yn) satis-
fying

qn = Jpxn − Jpyn − λωn (3.4)
and construct the half-space

Hn = {z ∈ X :≺ Jpxn − Jpyn − λωn, z − yn ≻≤ 0},

Step 4: Compute zn such that

zn = argminy∈Hn
{λf(yn, y) + ∆p(xn, y)},

Step 5: Let tn = J∗
q (βnJpxn + (1 − βn)Jpzn) and vn = ΠQ(Atn), where ΠQ is the

Bregman projection from X onto Q.
Step 6: Let un ∈ Q such that g(un, y) + 1

rn
≺ JY

p un − JY
p vn, y − un ≻≥ 0 , ∀y ∈ Q,

and compute
wn = JY ∗

q

(
αnJY

p vn + (1 − αn)JY
p un

)
,

Step 7: Compute xn+1 = ΠDn∩A−1(En)(xn), where ΠDn∩A−1(En) is the Bregman
projection from X onto Dn ∩ A−1(En) and

En =
{

z ∈ Q : ∆Y
p (wn, z) ≤ ∆Y

p (vn, z)
}

,

Dn =
{

z ∈ C : ∆p(zn, z) ≤ ∆p(xn, z)
}

,

Step 8: put n = n + 1 and go to Step 2.

Remark 3.8. The existence of wn ∈ ∂2f(xn, yn) and qn ∈ NC(yn) satisfying (3.4) is
guaranted by Lemma 2.3. Hence, Algorithm 1 is well-defined.

Remark 3.9. It should be noted that the definitions yn and zn in Step 2 and step 4 are
well-defined because f(x, .) is proper, convex and lower semicontinuous . Also lemmas
2.4 and 3.6 guarantee the existence of ωn and un, respectively. Moreover, since Q and
Dn ∩ A−1(En) are nonempty closed convex, by the definition of Bregman projection ΠQ

and ΠDn∩A−1(En)(xn) are uniquely determined.

We claim that the iterates generated by Algorithm 1 converge to limn→∞ ΠΩxn strongly,
where Ω is the solution set of (SEP) and ΠΩ is the Bregman projection onto Ω.
At first, we prove some lemmas which are useful in the proof of our main results in this
paper.

Lemma 3.10. For each n ∈ N ∪ {0}, C ⊆ Hn.
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Proof. Utilizing lemmas 2.3 and 2.4, we get

yn = argminy∈C{λf(xn, y) + ∆p(xn, y)} ⇔ 0 ∈ λ∂2f(xn, yn) + ∇2∆p(xn, yn) + NC(yn).

Using Proposition 4.9 of [7], we have ∂(∥·∥p

p ) = Jp(·) and so from (2.3) , we deduce that
∇2∆p(xn, yn) = Jpyn − Jpxn. Thus ωn ∈ ∂2f(xn, yn) and qn ∈ NC(yn) exist such that

qn = Jpxn − Jpyn − λωn, ∀n ≥ 1.

Since NC(yn) =
{

q ∈ X :≺ q, y − yn ≻≤ 0 , ∀y ∈ C
}

, we deduce

≺ Jpxn − Jpyn − λωn, y − yn ≻≤ 0 ∀y ∈ C, ∀n ≥ 1.

This shows that C ⊆ Hn, ∀n ∈ N ∪ {0}. �

Lemma 3.11. Assume that {xn}, {yn} and {zn} are the sequences generated by Algorithm
1 and x∗ ∈ Ω, where Ω is the solution set of (SEP ). Let c1 and c2 be the ∆-Lipschitz-type
constants of the bifunction f . Then
(i) ≺ Jpxn − Jpzn, y − zn ≻≤ λ[f(yn, y) − f(yn, zn)], for all y ∈ Hn,
(ii) ∆p(zn, x∗) ≤ ∆p(xn, x∗) − (1 − λc1)∆p(xn, yn) − (1 − λc2)∆p(yn, zn),

Proof. Since zn = argminy∈Hn

{
λf(yn, y)+∆p(xn, y)

}
, using lemmas 2.3 and 2.4, we have

0 = λω′
n + Jpzn − Jpxn + q′

n, q′
n ∈ NHn(zn), ω′

n ∈ ∂2f(yn, zn). (3.5)

From the definitions of ∂2f(yn, zn) and NHn(zn) we get
f(yn, y) − f(yn, zn) ≥≺ ω′

n, y − zn ≻, ∀y ∈ X, (3.6)

and
λ ≺ ω′

n, y − zn ≻≥≺ Jpxn − Jpzn, y − zn ≻ ∀y ∈ Hn. (3.7)
Therefore we conclude

≺ Jpxn − Jpzn, y − zn ≻≤ λ(f(yn, y) − f(yn, zn)) , ∀y ∈ Hn. (3.8)

Putting y = x∗ in (3.8), we have
≺ Jpxn − Jpzn, x∗ − zn ≻≤ λ(f(yn, x∗) − f(yn, zn)). (3.9)

It follows from (2.4), (2.5) and (3.9), that
∆p(zn, x∗) = ∆p(zn, xn) + ∆p(xn, x∗)+ ≺ Jpzn − Jpxn, xn − x∗ ≻

= ∆p(xn, x∗) − ∆p(xn, zn)+ ≺ Jpzn − Jpxn, zn − xn ≻
+ ≺ Jpzn − Jpxn, xn − x∗ ≻

= ∆p(xn, x∗) − ∆p(xn, zn)+ ≺ Jpzn − Jpxn, zn − x∗ ≻
≤ ∆p(xn, x∗) − ∆p(xn, zn) + λ(f(yn, x∗) − f(yn, zn))
= ∆p(xn, x∗) − ∆p(xn, zn) + λ(f(xn, yn) − f(xn, zn))

+ λ(f(xn, zn) − f(xn, yn) − f(yn, zn)) + λf(yn, x∗).

(3.10)

Since zn ∈ Hn, we have ≺ Jpxn − Jpyn, zn − yn ≻≤ λ ≺ ωn, zn − yn ≻, where ωn ∈
∂2f(xn, yn) and therefore

f(xn, y) − f(xn, yn) ≥≺ ωn, y − yn ≻ ∀ y ∈ X. (3.11)

Setting y = zn in (3.11), we conclude

λ(f(xn, yn) − f(xn, zn)) ≤ λ ≺ ωn, yn − zn ≻≤≺ Jpyn − Jpxn, zn − yn ≻ .

On the other hand
≺ Jpyn − Jpxn, zn − yn ≻= ∆p(xn, zn) − ∆p(xn, yn) − ∆p(yn, zn). (3.12)



Hybrid proximal point algorithm for solving (SEP ) 945

Replacing, x, y and z by xn, yn and zn in (B5), respectively, we get
λ(f(xn, zn) − f(xn, yn) − f(yn, zn)) ≤ λc1∆p(xn, yn) + λc2∆p(yn, zn). (3.13)

Therefore, using (3.10), (3.12) and (3.13), we can derive that
∆p(zn, x∗) ≤ ∆p(xn, x∗) − ∆p(xn, yn) − ∆p(yn, zn) + λc1∆p(xn, yn) + λc2∆p(yn, zn)

= ∆p(xn, x∗) − (1 − λc1)∆p(xn, yn) − (1 − λc2)∆p(yn, zn).
So, the proof is complete. �
Lemma 3.12. Let f and g be the bifunctions which satisfy conditions A and B, respec-
tively. Then Ω is convex and closed.

Proof. To show the closedness of Ω, Suppose that xn ∈ Ω, for all n ∈ N ∪ {0}, such that
xn → x̂. This implies that xn ∈ C for all n ∈ N∪ {0} such that f(xn, y) ≥ 0 for all y ∈ C
and all n ∈ N∪ {0} and Axn ∈ Q for all n ∈ N∪ {0} such that g(Axn, z) ≥ 0 for all z ∈ Q
and all n ∈ N ∪ {0}. Also, Axn → Ax̂, because A is bounded linear. Closedness of C and
Q implies that x̂ ∈ C and Ax̂ ∈ Q and so from condition (B4), we obtain f(x̂, y) ≥ 0 for
all y ∈ C. It follows from Lemma 3.6(v) that EP (g, Q) is closed, so g(Ax̂, z) ≥ 0 for all
z ∈ Q. Therefore x̂ ∈ Ω.

For proving convexity of Ω, assume that x1, x2 ∈ Ω and 0 ≤ λ ≤ 1. So, λx1 +(1−λ)x2 ∈
C and λAx1 + (1 − λ)Ax2 ∈ Q, since of C and Q are convex. Utilising conditions (B2)
and (B3), we get

f(y, λx1 + (1 − λ)x2) ≤ λf(y, x1) + (1 − λ)f(y, x2) ≤ 0, (3.14)
for all y ∈ C and using the conditions (A2) and (A3), we have

g(z, λAx1 + (1 − λ)Ax2) ≤ λg(z, Ax1) + (1 − λ)g(z, Ax2) ≤ 0, (3.15)
for all z ∈ Q. Let y ∈ C, z ∈ Q and 0 < t < 1 and yt = ty + (1 − t)(λx1 + (1 − λ)x2) and
zt = tz + (1 − t)(λAx1 + (1 − λ)Ax2). Using (B1) and (B3) and (3.14), we can conclude
that

0 = f(yt, yt) ≤ tf(yt, y) + (1 − t)f(yt, λx1 + (1 − λ)x2) ≤ tf(yt, y)
and also utilizing conditions (A1) and (A3) and (3.15), we get

0 = g(zt, zt) ≤ tg(zt, z) + (1 − t)g(zt, λAx1 + (1 − λ)Ax2) ≤ tg(zt, z).
Hence, f(yt, y) ≥ 0 and g(zt, z) ≥ 0. Letting as t → 0 and using (A4) and (B4), we yield
that f(λx1 + (1 − λ)x2, y) ≥ 0 and g(λAx1 + (1 − λ)Ax2, z) ≥ 0. So λx1 + (1 − λ)x2 ∈ Ω.
Since y ∈ C and z ∈ Q had been selected arbitrarily, we derive Ω is convex. �
Lemma 3.13. The generated sequence {xn} in Algorithm 1 is well defined.

Proof. For any n ∈ N ∪ {0}, we prove Dn ∩ A−1(En) is nonempty, convex and closed. It
is readily seen that En and Dn are closed for all n ∈ N ∪ {0}. Since

∆p(wn, z) ≤ ∆p(vn, z) ⇔≺ JY
p vn − JY

p wn, z ≻≤ 1
q

(∥vn∥p − ∥wn∥p),

and
∆p(zn, z) ≤ ∆p(xn, z) ⇔≺ Jpxn − Jpzn, z ≻≤ 1

q
(∥xn∥p − ∥zn∥p),

so En and Dn are the half-spaces and therefore, are convex. Thus Dn ∩A−1(En) is convex
and closed for all n ∈ N ∪ {0}, due to the assumption that A is bounded and linear.

Now we prove that Dn ∩ A−1(En) is nonempty. Since Ω is nonempty, it is sufficient to
show that Ω ⊆ Dn ∩ A−1(En) for all n ∈ N ∪ {0}. To do this, let x∗ ∈ Ω and n be a fixed
positive integer number. At first, we show that Ax∗ ∈ En. Using Lemma 3.6(iv) we have

∆Y
p (un, Ax∗) = ∆Y

p (T g
rn

vn, Ax∗) ≤ ∆Y
p (vn, Ax∗), (3.16)
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since, Ax∗ ∈ F (T g
rn

). Now, it follows from (2.3) and (3.16), that

∆Y
p (wn, Ax∗)

= 1
q

∥wn∥p− ≺ Jpwn, Ax∗ ≻ +1
p

∥Ax∗∥p

= 1
q

∥αnJY
p vn + (1 − αn)JY

p un∥q
Y ∗− ≺ αnJY

p vn + (1 − αn)JY
p un, Ax∗ ≻ +1

p
∥Ax∗∥p

≤ 1
q

(
αn∥vn∥p + (1 − αn)∥un∥p

)
− αn ≺ JY

p vn, Ax∗ ≻ −(1 − αn) ≺ JY
p un, Ax∗ ≻

+ 1
p

∥Ax∗∥p

≤ αn

(1
q

∥vn∥p− ≺ JY
p vn, Ax∗ ≻ +1

p
∥Ax∗∥p

)
+ (1 − αn)(1

q
∥un∥p− ≺ JY

p un, Ax∗ ≻

+ 1
p

∥Ax∗∥p)

= αn∆Y
p (vn, Ax∗) + (1 − αn)∆Y

p (un, Ax∗) ≤ ∆Y
p (vn, Ax∗).

(3.17)
Therefore, Ax∗ ∈ En, due to the definition of En, i.e., Ω ⊆ A−1(En), for all n ∈ N ∪ {0}.
On the other hand, utilizing lemma 3.11(ii) we get

∆p(zn, x∗) ≤ ∆p(xn, x∗).

So, a glance at the definition of Dn, yields, x∗ ∈ Dn for all n ∈ N ∪ {0}. Therefore,
Ω ⊆ A−1(En) ∩ Dn, for all n ∈ N ∪ {0}. �

Theorem 3.14. Assume that Ω ̸= ϕ, then the generated sequences {xn}, {yn}, {zn}
and {tn}, in Algorithm 1 are strongly convergent to the same solution u ∈ Ω, where
u = limn→∞ ΠΩxn. Moreover, the sequences {vn}, {un} and {wn} are strongly convergent
to Au.

Proof. Suppose that x∗ ∈ Ω ⊆ A−1(En) ∩ Dn. Since xn+1 = ΠA−1(En)∩Dn
(xn) and

x∗ ∈ Dn for all n ∈ N ∪ {0}, utilizing Lemma 2.1(ii), we get

∆p(xn+1, x∗) ≤ ∆p(xn, x∗) − ∆p(xn, xn+1).

This yields limn→∞ ∆p(xn, x∗) exists. Therefore limn→∞ ∆p(xn, xn+1) = 0 and so (2.6)
implies that limn→∞ ∥xn+1 − xn∥ = 0, i.e., {xn} is a cauchy sequence. Consequently xn

converges strongly to u ∈ C such that Au ∈ Q, since Dn ∩ A−1(En) ⊆ C ∩ A−1Q, for all
n ∈ N∪{0} and C ∩A−1Q is closed. Furthermore, using uniform norm-to-norm continuity
of Jp on bounded sets, we have

lim
n→∞

∆p(zn, xn+1) ≤ lim
n→∞

∆p(xn, xn+1) = 0, (3.18)

since xn+1 ∈ Dn. Thus, utilizing (2.6) we conclude limn→∞ ∥zn − xn+1∥ = 0. This means
{zn} converges strongly to u. Moreover, we have

∆p(tn, u) ≤ βn∆p(xn, u)+(1−βn)∆p(zn, u) ≤ βn∆p(xn, u)+(1−βn)∆p(xn, u) = ∆p(xn, u),

due to u ∈ Dn. So,

lim
n→∞

∆p(tn, u) ≤ lim
n→∞

∆p(xn, u) = lim
n→∞

(1
q

∥xn∥p− ≺ Jpxn, u ≻ +1
p

∥u∥p
)

= 0. (3.19)

Hence, (3.19) implies that {tn} is bounded and tn → u. Therefore Atn → Au, since A is
bounded linear. So,

lim
n→∞

∆Y
p (vn, Au) ≤ lim

n→∞
∆Y

p (Atn, Au) = lim
n→∞

(1
q

∥Atn∥p− ≺ JY
p Atn, Au ≻ +1

p
∥Au∥p)

= 0,
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due to vn = ΠQ(Atn). Therefore, it follows from (2.6) that limn→ ∥vn − Au∥ = 0. Fur-
thermore, since xn+1 ∈ A−1(En) for all n ∈ N ∪ {0} and A−1(En) is closed, we have
u ∈ A−1(En) for all n ∈ N ∪ {0}, i.e., Au ∈ En for all n ∈ N ∪ {0}. So, a glance at the
definition of En, yields that

∆Y
p (wn, Au) ≤ ∆Y

p (vn, Au),

for all n ∈ N ∪ {0}. Therefore,

lim
n→∞

∆Y
p (wn, Au) ≤ lim

n→∞
∆Y

p (vn, Au) = 0.

Thus, utilizing (2.6), we conclude limn→∞ ∥wn −Au∥ = 0 and hence, limn→∞ ∥wn −vn∥ =
0. Moreover, from JY

p wn = αnJY
p vn + (1 − αn)JY

p un and 0 ≤ αn ≤ d, we derive

∥JY
p un − JY

p vn∥Y ∗ = 1
1 − αn

∥JY
p wn − JY

p vn∥Y ∗ ≤ 1
1 − d

∥JY
p wn − JY

p vn∥Y ∗ .

Thus,

lim
n→∞

∥JY
p un − JY

p vn∥Y ∗ ≤ lim
n→∞

1
1 − d

∥JY
p wn − JY

p vn∥Y ∗ = 0.

Since, lim infn→∞ rn > 0, we derive that

lim
n→∞

1
rn

∥JY
p un − JY

p vn∥Y ∗ = 0. (3.20)

Also, because JY ∗
q is uniformly norm-to-norm continuous on bounded sets, we can conclude

that limn→∞ ∥un − vn∥ = 0.
Now, we show that u ∈ Ω. Utilizing Lemma 3.11(ii) we obtain

(1 − λc1)∆p(xn, yn) ≤ ∆p(xn, x∗) − ∆p(zn, x∗).

It follows from (2.6) that
τ(1 − λc1)∥xn − yn∥ ≤ (1 − λc1)∆p(xn, yn) ≤ ∆p(xn, x∗) − ∆p(zn, x∗), (3.21)

where τ > 0 is a fixed number. Letting n → ∞ in (3.21), we conclude that limn→∞ ∥xn −
yn∥ = 0, since (1 − λc1) > 0, therefore, yn → u. On the other hand, using Lemma 3.11(i),
we yields

≺ Jpxn − Jpzn, y − zn ≻ ≤ λf(yn, y) − λf(yn, zn), (3.22)
for all y ∈ Hn. Taking the limits as n → ∞ in (3.22), it follows from conditions (B1), (B4)
and uniform continuity of Jp on bounded sets that f(u, y) ≥ 0, ∀y ∈ Hn. Since C ⊆ Hn,
we can conclude that u ∈ EP (f, C). Since un = Trnvn, we get

g(un, y) + 1
rn

≺ JY
p un − JY

p vn, y − un ≻≥ 0,

for all y ∈ Q. So, the monotonicity of g implies that
1
rn

≺ JY
p un − JY

P vn, y − un ≻≥ −g(un, y) ≥ g(y, un),

for all y ∈ Q. Taking limit n → ∞, in above inequality and using (3.20) and the condition
(A3), we can conclude that g(y, Au) ≤ 0 for all y ∈ Q. Since, g is monotone, so we derive
g(Au, y) ≥ 0, for all y ∈ Q. In other words, u ∈ Ω.

Now, we prove that u = limn→∞ ΠΩ(xn). To do this, assume that kn = ΠΩ(xn). Since
xn+1 = ΠDn∩A−1(En)(xn), we derive from Lemma 2.1(ii) that

∆p(xn+1, kn) ≤ ∆p(xn, kn). (3.23)

Therefore, due to kn ∈ Ω, we obtain

∆p(xn+1, kn+1) = ∆p(xn+1, ΠΩ(xn+1)) ≤ ∆p(xn+1, kn) ≤ ∆p(xn, kn).
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So, {∆p(xn, kn)} is bounded and decreasing and therefore limn→∞ ∆p(xn, kn) exists. On
the other hand, we deduce from Lemma 2.1(ii) and (3.23) that

∆p(kn+m, kn) + ∆p(kn+m, xn+m) ≤ ∆p(xn+m, kn) ≤ ∆p(xn, kn),
because kn+m = ΠΩ(xn+m). Hence, utilizing above inequality and (2.6), there exists τ > 0
such that

τ∥kn+m − kn∥ ≤ ∆p(kn+m, kn) ≤ ∆p(xn, kn) − ∆p(xn+m, kn+m) → 0, as n → ∞.

Therefore {kn} ⊆ Ω is a Cauchy sequence and therefore converges strongly to q ∈ Ω, since
according to Lemma 3.12, Ω is closed. Using Lemma 2.1(i), we get

≺ Jpxn − Jpkn, y − kn ≻≤ 0, ∀y ∈ Ω.

Putting y = u ∈ Ω and letting n → ∞ on both sides of above inequality and using uniform
continuity of Jp on bounded sets, we conclude, ≺ Jpu − Jpq, u − q ≻≤ 0. Moreover, the
monotonicity of Jp implies that ≺ Jpu − Jpq, u − q ≻≥ 0. Consequently, u = q, because of
Jp is one to one. Therefore xn → u, where u = limn→∞ ΠΩ(xn). �

The following remark follows from Theorem 3.14 immediately.

Remark 3.15. If X and Y are the Hilbert spaces H1 and H2, respectively, then Steps
2-8 in Algorithm 1 reduces to the following form :

Step 2 : Compute yn

yn = argminy∈C{λf(xn, y) + 1
2

∥xn − y∥2},

Step 3 : Let ωn ∈ ∂2f(xn, yn) such that there exists an element qn ∈ NC(yn) satisfying
qn = xn − yn − λωn

and construct the half-space
Hn = {z ∈ X :≺ xn − yn − λωn, z − yn ≻≤ 0},

Step 4 : Compute zn

zn = argminy∈Hn
{λf(yn, y) + 1

2
∥xn − y∥2},

Step 5 : Put tn = βnxn + (1 − βn)zn and vn = 1
2PQ(Atn),

Step 6 : Put un ∈ Q such that g(un, y)+ 1
rn

≺ y −un, un −vn ≻≥ 0 , ∀y ∈ Q, and compute

wn = αnvn + (1 − αn)un,

Step 7 : Compute xn+1 = 1
2PDn∩A−1(En)(xn), where PDn∩A−1(En) is the metric projection

from X onto Dn ∩ A−1(En) in which
En = {z ∈ Q : ∥wn − z∥ ≤ ∥vn − z∥},

Dn = {z ∈ C : ∥zn − z∥ ≤ ∥xn − z∥},

Step 8 : Put n = n + 1 and go to Step 2.

4. Application to the split variational inequality problems
Now, we give an application of our algorithm to solving the split variational inequality

problems (SV IP ) in Hilbert spaces. For this purpose, following [6], we briefly introduce
(SV IP ). Throughout this section, assume that H1 and H2 are two real Hilbert spaces
and A : H1 → H2 is a bounded linear operator. Also, let B : H1 → H1 and F : H2 → H2
be two operators and C ⊆ H1 and Q ⊆ H2 be nonempty, closed and convex subsets. So,
a point x∗ ∈ C is a solution of the (SV IP ), if

⟨B(x∗), x − x∗⟩ ≥ 0, ∀x ∈ C
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and also if the point y∗ = Ax∗ ∈ Q satisfies

⟨F (y∗), y − y∗⟩ ≥ 0, ∀y ∈ Q.

The solution set of (SVIP) is denoted by

Γ = {p ∈ V I(B, C) : Ap ∈ V I(F, Q)}.

Now, considering f(x, y) := ⟨B(x), y − x⟩ and g(u, v) := ⟨F (u), u − v⟩ in Remark 3.15
and using the above assumptions, we can present an algorithm for finding the solution of
(SV IP ).

Algorithm 2 (Hybrid proximal point algorithm for SVIPs):

Step 0: : Suppose that 0 < a ≤ λ ≤ b < 2
L , {rn} ⊆ (0, ∞) satisfies

lim infn→∞ rn > 0, {αn} ⊆ [0, d] for some d < 1 and {βn} ⊆ [0, 1].
Step 1: : Let x0 ∈ C and n = 0,
Step 2: : Compute yn such that

yn = PC(xn − λBxn),

Step 3: : Construct the half-space

Tn = {z ∈ H1 : ⟨xn − yn − λBxn, z − yn⟩ ≤ 0},

Step 4: : Compute zn such that

zn = PTn(xn − λByn),

Step 5: : Put tn = βnxn + (1 − βn)zn and vn = 1
2PQ(Atn) where PQ is the metric

projection from X on to Q.
Step 6: : Put un ∈ Q such that ⟨F (un) + 1

rn
(un − vn), y − un⟩ ≥ 0 , ∀y ∈ Q, and

compute
wn = αnvn + (1 − αn)un,

Step 7: : Compute xn+1 = 1
2PDn∩A−1(En)(xn), where PDn∩A−1(En) is the metric

projection from X on to Dn ∩ A−1(En) and

En = {z ∈ Q : ∥wn − z∥ ≤ ∥vn − z∥},

Dn = {z ∈ C : ∥zn − z∥ ≤ ∥xn − z∥},

Step 8: : Put n = n + 1 and return to Step 2.

Corollary 4.1. Assume that B is L-Lipschitz continuous and pseudomonotone on H1 and
F is monotone on Q. Also, let B be weak to strong continuous mapping on H1, that is,
for each sequence {xn} ⊆ H1 such that xn ⇀ x̂, then Bxn → Bx̂. Moreover, F is weak
to strong continuous mapping on Q and Γ ̸= ∅. Then the sequences {xn}, {yn}, {zn} and
{tn} generated by Algorithm 2 converge strongly to the same point x∗ ∈ Γ. Moreover, the
sequences {vn}, {un} and {wn} converge strongly to Ax∗. where Γ is the solution set of
(SVIP) and P is the metric projection.

Proof. Define
f(x, y) = ⟨Bx, y − x⟩, ∀x, y ∈ H1,

and
g(u, v) = ⟨Fu, v − u⟩, ∀u, v ∈ Q.
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It is readily seen that f is a Lipschitz-type mapping with constants c1 = c2 = L
2 . Using

the assumptions, it is easy to check that conditions A and B hold. Also, Step 2 and Step
4 in Remark 3.15 reduce to

yn = argminy∈C{λ⟨Bxn, y − xn⟩ + 1
2

∥y − xn∥2},

zn = argminy∈Tn
{λ⟨Byn, y − yn⟩ + 1

2
∥y − xn∥2}.

It follows that

yn = argminy∈C{1
2

∥y − (xn − λBxn)∥2} = PC(xn − λBxn),

zn = argminy∈Tn
{1

2
∥y − (xn − λByn)∥2} = PTn(xn − λByn).

Also, in this case ∂2f(xn, yn) = Bxn, so the definition of Tn in Step 3 of Remark 3.15
reduces to

Tn = {z ∈ H1 : ⟨xn − yn − λBxn, z − yn⟩ ≤ 0}.

By Theorem 3.14, the sequences {xn}, {yn}, {zn} and {tn} converge strongly to x∗ ∈ Ω
and {vn}, {un} and {wn} converge strongly to Ax∗. It is easy to see that by definition f
and g as above, Ω reduces to Γ. �

5. Numerical illustrations
In this section, first we present some numerical examples and investigate the behavior of

the generated sequences by hybrid proximal point Algorithm 1. we compare our algorithm
with other ones in the literature to show the efficiency of it. The optimization subproblems
in these examples are solved by the FMINCON and QUADPROG optimization toolbox in
MATLAB software. For more details about the notations which are used in this section,
we refer readers to [5].

5.1. Numerical examples
Example 5.1. Consider (R3, ∥x∥2) and let C = [−6, 5] × [−6, 6] × [−4, 6] = {x ∈ R3|a ≤
x ≤ b} where a = (−6, −6, −4), b = (5, 6, 6). Moreover, let Q = [−7, 5] × [−5, 4] ×
[−7, 6] = {x ∈ R3|e ≤ x ≤ d} where e = (−7, −5, −7) and d = (5, 4, 6). Furthermore, let
f(x, y) = 9∥y∥2

2 +⟨x, y⟩−10∥x∥2
2 , g(x, y) = 6∥y∥2

2 −4⟨x, y⟩−2∥x∥2
2 and let αn = 1

n+1 , βn =

1
3n+4 , λ = 1 , rn = 1 . Also, assume that A =

 1 −2 −1
−3 4 1

1 4 2

, hence A is bounded linear

operator and A∗ = AT . So, by this assumption our algorithm is converted to the following
form 

yn = argminy∈C{19
2 ∥y∥2

2 − 19
2 ∥xn∥2

2},

zn = argminy∈Hn
{19

2 ∥y∥2
2 − 10∥yn∥2

2 + 1
2∥xn∥2

2 + ⟨yn, y⟩ − ⟨xn, y⟩},

tn = βnxn + (1 − βn)zn,

vn = 1
2PQ(Atn),

un = vn
9 ,

wn = αnvn + (1 − αn)un,

Dn = {x ∈ C : ∥zn − x∥2 ≤ ∥xn − x∥2},

En = {z ∈ Q : ∥wn − z∥2 ≤ ∥vn − z∥2},

Hn = {z ∈ X : ⟨yn, z − yn⟩ ≤ 0},

xn+1 = 1
2PDn∩A−1(En)(xn).
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Table 1
n ∥xn∥2 ∥yn∥2 ∥zn∥2 ∥tn∥2 ∥vn∥2 ∥un∥2 ∥wn∥2

1 5.9161 0.1517 0.4473 0.8983 2.3125 0.2569 1.2847
2 2.9552 0.0758 0.2234 0.2234 0.6753 0.0750 0.2751
3 1.3419 0.0344 0.0616 0.0616 0.2797 0.0311 0.0932
4 0.7901 0.0203 0.0204 0.0204 0.0335 0.0037 0.0097
5 0.4303 0.0110 0.0162 0.0162 0.0260 0.0029 0.0067
6 0.2225 0.0057 0.0074 0.0074 0.0068 0.0008 0.0016
7 0.1146 0.0029 0.0039 0.0001 0.0031 0.0003 0.0007
8 0.0590 0.0015 0.0020 0.0000 0.0015 0.0002 0.0003
9 0.0304 0.0008 0.0010 0.0000 0.0008 0.0001 0.0002
... ... .... ..... ..... ..... ..... .....
27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 1. The sequences generated by Algorithm 1 for Example 5.1 with starting point
x0 = (−5, 3, −1) on Example 5.1.

x0 = (−5, 3, −1) x0 = (2, −4, 6) x0 = (1, 1, 1)
Algorithms Iter Iter Iter
Algorithm1 27 28 25

Hieu1 45 45 45
Hieu2 38 38 38
Hieu3 44 45 44

Table 2. A comparison of the results for Algorithm 1, Hieu 1, Hieu 2 and Hieu 3 with
different starting points on Example 5.2.

Numerical results show that {xn}, {yn}, {zn} and {tn} converges strongly to x∗ =
(0, 0, 0) and {vn}, {un} and {wn} converges strongly to Ax∗ = (0, 0, 0). Table 1 is numer-
ical results for ∥xn∥2, ∥yn∥2, ∥zn∥2, ∥tn∥2, ∥vn∥2, ∥un∥2 and ∥wn∥2 with the starting point
x0 = (−5, 3, −1) and the stopping criterion ∥xn∥2 < 10−10 . We obtain the approximate
solution after 27 iteration.

Now, we will compare the effectiveness of our algorithm with the algorithms [16, Algo-
rithm 3.1], [16, Algorithm 4.1] and [17, Algorithm 1], which we refer as Hieu 1, Hieu 2 and
Hieu 3, respectively, in the subsequent discussions.

5.2. Comparable results
Example 5.2. To get a comparative result, we let C := {x ∈ R3 : −1 ≤ xi ≤ 5, i = 1, 2, 3}
and Q := {x ∈ R3 : −2 ≤ xi ≤ 5, i = 1, 2, 3}. Also, assume that f , g, A, αn, βn, λ and
rn are the same as in Example 5.1. Moreover, in Hieu 1, Hieu 2 and Hieu 3 assume that
ξn = 0, ρn = 1, βn = 1

(n+1)0.75 , µn = 1
∥A∥2 , ∂2f(xn, xn) = 19xn and ∂2g(un, un) = 8un.

In all algorithms, we will consider the same starting point x0 and the same stopping rule
∥xn+1 − xn∥2 < 10−10. The number of iterations in Table 2 and Figure 1 show that our
Algorithm reaches to the stopping condition faster than other schemes.

Example 5.3. The test problem here can be considered as an extension of the Nash-
cournot oligopolistic equilibrium model in [10,13] to the split equilibrium model in [16].
Let X = (Rm, ∥x∥2), Y = (Rk, ∥x∥2), C := {x ∈ Rm : −1 ≤ xi ≤ 5, i = 1, ..., m} and
Q := {x ∈ Rk : −2 ≤ xi ≤ 5, i = 1, ..., k}. Assume that the bifunction f : Rm × Rm → R

is of the form f(x, y) = ⟨Px + Gy + p, y − x⟩, where p is a vector in Rm, P and G are two
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(a) Numerical behavior with x0 = (−5, 3, −1) (b) Numerical behavior with x0 = (2, −4, 6)
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(c) Numerical behavior with x0 = (1, 1, 1)
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Figure 1. Numerical behavior of Algorithm 1, Hieu 1, Hieu 2 and Hieu 3 with different
starting points on Examples 5.2.

matrices of order m such that G is symmetric positive semidefinite and G − P is negative
semidefinite. As in [15, section 5], the bifunction f satisfies the Lipschitz-type condition
that means

f(x, y) + f(y, z) ≥ f(x, z) − c1∥x − y∥2
2 − c2∥y − z∥2

2, ∀x, y, z ∈ Rm,

where c1 = c2 = ∥P −G∥
2 , The bifunction g : Rk ×Rk → R defined by g(x, y) = h(y) − h(x)

where h(x) = 1
2xT Nx + qT x, with q ∈ Rk and N being a symmetric positive definite

matrix of order k. Moreover, consider that the operator A : Rm → Rk is defined by a
matrix of size k × m. In this case, the mapping T g

r coincides with the proximal mapping
of the function g with the constant r > 0, i.e., T g

r (x) = proxrg(x), where

proxrg(x) = argminy∈Q{g(y) + 1
2r

∥y − x∥2
2}.

To get the non empty solution set for the problem and to attain all steps of the algorithms,
we choose the two vectors p and q equal to zero vectors in Rm and Rk, respectively. We
choose the parameters m and k as follow:

(m = 25, k = 15), (m = 50, k = 30) and (m = 200, k = 150).

The matrices A and N are generated randomly and uniformly with their entries in [−m, m]
and the two matrices P and G are also generated randomly as follows:

Consider two diagonal matrices A1 and A2 whose entries are chosen randomly from
[0, m] and [−m, 0], respectively. Two random orthogonal matrices B1 and B2 are used
to generate a positive semidefinite matrix M1 = B1A1BT

1 and a negative semidefinite
matrix M2 = B2A2BT

2 . Finally, set G = M1 + MT
1 , S = M2 + MT

2 and P = G − S.
Moreover, we will use the starting point x0 = (1, 1, ..., 1) ∈ Rm and the stopping rule
∥xn+1 − xn∥2 < 10−10 for all algorithms. Note that, the solution of the (SEP) in this case
is x∗ = 0. Observe that in Algorithm 1, yn = proxλf(xn,.)(xn), which means we have to
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m = 25, k = 15 m = 50, k = 30 m = 200, k = 150
Algorithms Iter Iter Iter
Algorithm1 75 94 125

Hieu1 153 189 452
Hieu2 84 136 1612
Hieu3 2223 4165 8313

Table 3. A comparison of the results for Algorithm 1, Hieu 1, Hieu 2 and Hieu 3 with
starting point x0 = (1, 1, ..., 1) ∈ Rm on Example 5.3.

solve the following quadratic minimization problems at each iteration:

yn = argmin
{1

2
yT Hny + cny : −1 ≤ yi ≤ 5 i = 1, 2, · · · , m

}
,

and
zn = argmin{1

2
yT Hny + dny : Ey ≤ b},

where yT stands for the transpose of y, Hn = 2λG + I (I is the identity matrix), cn =
λ[Pxn −Gxn]−xn, dn = λ[Pyn −Gyn]−xn, E = xn −λωn −yn and b = xnyn −λωnyn −y2

n.
Note that ωn ∈ ∂2f(xn, yn) = Pxn + Gyn. Since the feasible set C is a box in Rm, the
projection of a point x ∈ Rm onto C can be calculated as follows:

[PC(x)]i =


xi xi ∈ [−1, 5],

−1 xi < −1,

5 xi > 5.

Similarly, because the feasible set Q is a box in Rk, the projection of a point x ∈ Rk onto
Q can be calculated as follows:

[PQ(x)]i =


xi xi ∈ [−2, 5],

−2 xi < −2,

5 xi > 5.

Also, in Algorithm 1, assume that αn, βn, λ and rn are the same as in Example 5.1.
Moreover, in Hieu 1, Hieu 2 and Hieu 3 assume that ξn = 0, ρn = 1, βn = 1

n+1 , µn = 1
∥A∥2 ,

∂2f(xn, xn) = Pxn + Gxn and ∂2g(un, un) = 1
2Nun. The number of iterations in Table 3

and Figure 2 show that our algorithm reaches to the stopping condition faster than other
schemes.

5.3. LASSO problem in compressed sensing
In statistics and machine learning, least absolute selection and shrinkage and selection

operator (LASSO) is a regression analysis method that performs both variable selection
and regularization in order to enhance the prediction accuracy and interpretability of the
statistical model it produces. It was originally introduced by [44] who coined out the term
and provided further insights into the observed performance. Subsequently, a number of
(LASSO) variants have been created in order to remedy certain limitations of the original
technique and to make the method more useful for particular problems. More specifically,
the (LASSO) is a regularized regression method with the l1 penalty. Here the l1 penalty
is defined as ∥x∥1 =

∑n
i=1 |xi|.
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(a) Numerical behavior with m = 25, k = 15 (b) Numerical behavior with m = 50, k = 30
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(c) Numerical behavior with m = 200, k = 150
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Figure 2. Numerical behavior of Algorithm 1, Hieu 1, Hieu 2 and Hieu 3 with the
starting point x0 = (1, 1, ..., 1) ∈ Rm on Example 5.3.
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Figure 3. The recovered sparse signal versus the original k-sparse signal, when m=50,
n=100 and k=10.

In this section, we apply our algorithm to solve the (LASSO) problem which is of the
form

min
x∈Rn

1
2

∥Ax − b∥2
2, s.t. ∥x∥1 ≤ t, (5.1)

where A ∈ Rm×n(m ≪ n), b ∈ Rm, t > 0 is a arbitrary constant and ∥x∥2 is the Euclidean
norm of x and ∥x∥1 =

∑n
i=1 |xi| is the l1 norm of x. Compressed sensing is very important

when it comes to the problem of efficiently acquiring and reconstructing a signal. Note
that (5.1) is a convex constrained minimization problem which appears in compressed
sensing and image reconstruction where the original signal (or image) is sparse in some
orthogonal basis by the process b = Ax + e where x is orthogonal signal (or image), A
is the blurring operator, e is a noise and b is the degraded or blurred data which needs
to be recovered. The minimization problem (5.1) is reduced to the (SEP ), if we consider
f = g ≡ 0, C = {x ∈ Rn : ∥x∥1 ≤ t} and Q = {b}. To present a sparse signal recovery
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Figure 4. The recovered sparse signal versus the original k-sparse signal, when m=70,
n=150 and k=14.

illustration, we assume that the vector x ∈ Rn is a K-sparse signal which is generated
from uniform distribution in the interval [−1, 1] with K non-zero elements. Furthermore,
A ∈ Rm×n is a sampling matrix which is generated from a normal distribution and let
b = Ax. In such case, we assume that the observed data has no noise. The task is then to
recover the signal x from the data b by solving the (LASSO) problem.

We apply our algorithm for this purpose by setting αn = 1
n+1 and βn = 1

3n+4 . Also in
our algorithm the stopping criterion is considered ∥yn+1 − yn∥2

2 < 10−10. In Figures 3 and
4 we present the exact k-sparse signal and the recovered signals obtained by our method.

6. Conclusions
Using Bregman distance, we have introduced a new hybrid proximal point algorithm

for finding a solution of split equilibrium problems, which is a generalization of some
other problems in mathematics such as the multiple set split feasibility problems and
the split variational inequality problems. We have shown that the generated iterates
by our algorithm converge strongly. Also, to show the efficiency of our algorithm, we
have provided a numerical example and have compared the results of our algorithm with
other methods in the literature. We have demonstrated that the obtained iterates by
our algorithm converge to the solution of split equilibrium problems faster than the other
methods. Furthermore, we have presented an application of our algorithm for solving the
split variational inequality problems in Hilbert spaces. Also, we have applied our algorithm
to a problem that arises from compressed sensing, namely the LASSO problem.
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