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ABSTRACT 

Estimating the unknown parameter vector of the system model is the most important prob-
lems in system identification. Especially in cases where the system’s parameters are time-
variable, it is observed that estimations obtained using estimator have deviated from the actual 
values, and therefore that the estimator must be corrected to some extent. In this paper, some 
methods for the parameter estimation in cases where a system is modelled with ARX Autore-
gressive Exogenous Input) are considered. After reviewing the problems, a simulation study 
has been made on comparing different estimation methods. Corrected (Adaptive) Kalman 
Filter (CKF) gives results more accurately than Normal Kalman Filter (NKF) for time varying 
parameter estimation. Moreover, after an introduction to the method of minimum variance 
feed-back control, using this method and CKF, a heating control is done in computer aided 
experimental study. CKF ensures that the system is kept under control by correctly estimating 
the parameter that changes over time. 
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INTRODUCTION 

Nowadays, different methods are used for system identi-
fication and control. Considering how the system responds 
to given commands, system model may be developed, and 
system control may be performed over this model in the 
manner that it will adapt to changes in environmental con-
ditions. Such kind of methods are classified as adaptive con-
trol methods. On one hand, these methods called “the best 
control methods” focus on getting the system to desired tar-
get values; on the other hand, they minimize an identified 
cost function. 

This study deals with the development of the system 
model considering the system’s response to given inputs 
and the system control method on the developed model. 
In the first section, ARX (autoregressive exogenous input) 
models which are frequently used in system identification 
have been introduced and explanations about related prob-
lems have been made. In the second section, information 
on Weighted Least Squares method which is used for esti-
mating the parameters in ARX models have been given. 
After making explanations about the studies on encoun-
tered problems and their solution methods, Kalman Filter 
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system are the most important two problems in system 
identification. Several methods for the estimation of the 
unknown parameter vector and related encountered prob-
lems have been discussed broadly in [1–16]. Especially in 
cases where the system’s parameters are time-variable, it is 
observed that estimations obtained using estimator have 
deviated from the actual values, and therefore that the esti-
mator must be corrected to some extent. Several methods 
are used for the estimation of model parameters. Only the 
Least Squares (LS) method and Kalman Filter have been 
emphasized in this paper.

RECURSIVE WEIGHTED LEAST SQUARES 
METHOD (RWLS)

For the purpose of estimating the parameters in the 
model given in Equation (3), if the cost function
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is minimized with respect to θ, LS estimator of θ is 
found as
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Under the assumption that new data will include more 
information compared to the older, it may be selected as

	 β(t,k) = λ(t)β(t – 1, k), 1 ≤ k ≤ t – 1	  (6) 

In this case,

	
1

( , ) ( ),      ( , ) 1
t

j k

t k j k kβ λ β
= +

= =∏ 	  (7)

may be taken instead of Equation (6). If it is considered that 
λ(k) ≤ 1 and λ(k) = λ for every k, result

	 β(t,k) = λt–k 	  (8)

is obtained from Equation (7). If Equation (8) is used in 
cost function (4), it is assumed that the effects of new data 
will be more powerful, and the effects of old data will be 
weaker in the cost function. In other words, old data are 
being forgotten. Therefore, λ is called “forgetting factor”. 
Estimator given with (5) is not recursive. In order to get the 
recursive estimator, if taken as
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	 R(t) = λ(t)R(t – 1) + φ(t) φT(t)	  (10)

which is another frequently used application and its solu-
tion methods have been introduced as well. In the third 
section, “the least variance” control rule has been explained 
briefly. As it is known, success in employing this method 
depends on the success of parameter estimations existing 
in the ARX model. In the fourth section, simulation study 
has been made on how the methods of Successive Weighted 
Least Squares, Normal Kalman Filter and Corrected 
Kalman Filter work in the case that they are used for the 
identification process of a system which has time-varying 
parameters. In the fifth section, an experimental study has 
been made in order to make temperature control using the 
Corrected Kalman Filter which was explained in the sec-
ond section and the Least Variance control rule which was 
explained in the third section. 

SYSTEM IDENTIFICATION

This section deals with the methods on estimation of 
parameters in a model in the case that a system is modelled 
with ARX and addresses to several problems. Let a system 
with input (control variable) {u(t)}, and output {y(t)} is 
modelled with linear difference equation 

	 y(t) + a1y(t – 1) + ... + any(t – n) 
	       = b1u(t – 1) + ... + bmu(t – m)+ ν(t) 	  (1)

here, {ν(t)} shows white noise process and t = 
1, 2, ..., N shows time periods. Equation (1) may be 
written using delay operator q–1 ; q–1y(t) = y(t – 1)

	 A(q–1)y(t) = B(q–1)u(t) +ν(t) 	  (2)

here,

	 A(q–1) = 1 + a1q
–1 + ... + anq

–n	

	 B(q–1) = b1q
–1 + b2q

–2 + ... + bmq–m	

and n, m are lag of the model; a1, ..., an, b1, ..., bm are unknown 
parameters of the model. Models (1) or (2) show the 
dynamic relation between input and output, and they are 
known as ARX models in the literature. Given that

	 θT = (a1, ..., an, b1, ..., bm)	

	 φT(t) = (–y(t – 1)), ..., –y(t – n)u(t –1), ..., u(t – m))	

the models (1) or (2) may be written as 

	 y(t) = θTφ(t) + ν(t)	 (3) 

Estimating the unknown parameter vector and deter-
mining the lag of the model which best represents the 
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matrix is unitary. The filtering problem is the problem of 
determining the best estimate of its θ(t) condition, given 
its observations y(t), y(t – 1), ..., y(1) (Kalman, [17]. When 
y(t), y(t – 1), ..., y(1) observations are given, the estimation 
of state θ(t) with (̂ 1)t tθ −  and the covariance matrix of the 
error with P(t) when y(t), y(t – 1), ..., y(1) observations are 
given, the estimation of state θ(t) with (̂ 1)t tθ −  and the 
covariance matrix of the error are shown with P(t  + 1|t). 
Let the initial state be assumed to have a normal distri-
bution. The optimum update equations for Kalman Filter 
(KF) are

	 ˆ ˆ( 1) ( 1 1)t t t tθ θ− = − − 	 (17)

	 ˆ ˆ ˆ( ) ( 1) ( ) ( ) ( ) ( 1)Tt t t t K t y t t t tθ θ φ θ = − + − −  	 (18)
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In the above equations (̂ 1)t tθ −  is the a priori estima-
tion and (̂ )t tθ  is the a posteriori estimation of θ(t). Also, 
P(t + 1|t) and P(t) are the covariance of a priori and a pos-
teriori estimations respectively.

Hagglund [11] has proposed a test which detects the 
change of parameters of model (4.3) and made correc-
tions on Kalman Filter accordingly. Beltran [13] has pro-
posed a test which detects the change in parameter for a 
particular situation (for the case that there is no system 
input) of model (3) and made corrections on the filter 
accordingly. Filter correction processes in the case that the 
model is constructed incorrectly are discussed in [4-13]. 
Considering that the filter is used online, it becomes more 
of an issue to perform the correction processes with very 
few calculations.

FEEDBACK CONTROL

Feedback input (control) ut at time t, depending on val-
ues {y(0), ..., y(t), u(0), ..., u(t – 1)}, is generated by minimiz-
ing function
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*

is obtained. Using the equalities (9) and (10) in Equation 
(5), and considering that P(t) = R–1(t), RWLS algorithm is 
given as
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		  (13) [1-2-11-15-16].

Estimation parameters (11)-(13) are commonly used 
for systems which have time-varying parameters. As seen 
in the algorithm, the algorithm gain reduces when matrix 
P shrinks, and thus the estimation deviates from the actual 
value. Forgetting factor λ is used to neutralize the effect of 
this problem. Many amplified RWLS algorithms have been 
proposed for the problem of the time-varying parameter 
estimation. In cases where the parameters given by Equation 
(3) are time-varying, various corrections in LS method have 
been made in order to estimate these parameters. Especially 
these methods have focused on selecting the forgetting fac-
tor and correcting the P matrix. Different perspectives have 
been used for successive calculation of the forgetting factor 
and correction of P matrix [4-13]. 

Selection of Forgetting Factor
Forgetting factor λ is selected as a value close to 1 and 

taken as λ = 0.90, λ = 0.95 or λ = 0.99 [1, 2]. In general. 
Additionally, given that Σ0 is a small constant (for example, 
Σ0 = 0.05), it may be also selected as 
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	  (14)[4]. 

Estimation of Parameter Vector with Kalman Filter
One of the methods used for estimating the parameters 

in the model given in Equation (3) is Kalman Filter. If the 
parameter vector is regarded as random walk progress for 
this purpose, Equation (3) may be written as state space 
model 

	 θ(t + 1) = θ(t) + w(t) 	  (15)

	 y(t) = φT(t)θ(t) + e(t)	  (16)

Here, state vector is the parameter vectors {W(t)} and 
{e(t)} is the white noise processes; E[w(t)wT(s)] = R1(t)
δts, E[e(t)e(s)] = R2(t)δts, E[w(t)e(s)]  = 0, E[θ(0)] = θ̄(0), 
E[(θ0 – θ̄0) (θ0 – θ̄0)

T] = P(0)  and θ(0) have been assumed 
as independent from w(t) and ν(t). System’s transition 
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This method is known as self-adaptive least variance 
feedback control method. Here, {yi*} shows the targeted 
value (reference value) of the system output during time t 
and 1, , 1, ,

ˆ ˆˆ ˆ,... , ,...,t n t t m ta a b b  the estimations of the parameters 
existing in the system during time t [1, 2, 3, 16]. As it is 
understood from this control rule, keeping the system at 
the desired target value depends on correct estimation of 
the parameters. 

SIMULATION STUDY

This section deals with model (2) and includes a sim-
ulation study on parameter estimation using the different 
values of forgetting factor with the purpose of observing 
how RWLS method works in the case when the parameter 
is time-varying. Additionally, for this model, another sim-
ulation study has been made in order to compare Normal 
Kalman Filter (NKF) given in equalities (17) and (21) with 
Corrected Kalman Filter (CKF) proposed by Özbek [18, 
20]. Let the model for the simulation study be as follows:

	 y(t) = a1(t)y(t – 1) + ν(t)	  (24)

Here, ν(t) ~ N(0,1), ˆ(0) 10, (0) 0, (0) 1y Pθ= = =  is 
regarded as
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In RWLS method given with equalities (11) and (13), 
given that λ = 1, the astimarted values obtained from the 
algorithm, matrix P and the residues are given in Figure 1, 
Figure 2 and Figure 3. As seen in Figure 1, estimatedval-
ues of the parameter in the case that λ = 1 deviate from the 
actual value. In other words, the algorithm could not track 
this change. As it is seen in Figure 2, P matrix moves to zero, 
therefore the gain obtained from the algorithm decreases.

Given that λ = .99, matrix P and residues are shown in 
Figure 4, Figure 5 and Figure 6. Comparing Figure 4 with 
Figure 1, a small improvement is seen in the estimation. 
Again, when Figure 5 and Figure 2 are compared, it is seen 
that matrix P did not move but resulted as very close to zero.

Figure 1. Parameter estimation using RWLS method λ = 1.

Figure 2. Matrix P for state λ = 1 in RWLS method.

Figure 3. Residues for case λ = 1 in RWLS method.

Figure 4. Parameter estimation using RWLS method λ = .99.

Figure 5. Matrix P for state λ = .99 in RWLS method.

Figure 6. Residues for case λ = .99 in RWLS method.

Given that λ = .9, estimatedvalues obtained from the 
algorithm, matrix P and residues are given in Figure 7, 
Figure 8 and Figure 9. As is seen in Figure 7, the param-
eter estimations are improving significantly. As is seen in 
Figure 8, matrix P resulted as greater than other cases.
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Figure 7. Parameter estimation using RWLS method λ = .9.

Figure 8. Matrix P for state λ = .9 in RWLS method.

Figure 9. Residues for case λ = .9 in RWLS method.

Given that λ = .8, estimatedvalues obtained from the 
algorithm, matrix P and residues are given in Figure 10, 
Figure 11 and Figure 12. As is seen in Figure 10, the algo-
rithm may track the changes but oscillates greatly around 
the actual value. As is seen in Figure 11, matrix P has great-
ened significantly. 

The difference between CKF and NKF as given by Özbek 
[18, 20] is merely in Equation (21). Instead of Equation (21),

	 P*(t) = λ*(t)P(t)	  (25)

is considered. Here, given that n indicates state vector and r 
indicates observation vector,
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 		  (26)

is the result. If λ*(t) ≤ 1, λ*(t) = 1 will be considered. 
Estimation values, P matrix and residues which have been 
obtained in order to compare NKF with CKF on the model 
given in Equation (24) are given in Figure 13 and Figure 18. 
When Figure 13 and Figure 14 are compared, it is seen that 

Figure 10. Parameter estimation using RWLS method λ = .8.

Figure 11. Matrix P for state λ = .8 in RWLS method.

Figure 12. Residues for case λ = .8 in RWLS method.

Figure 13. Parameter estimation with CKF.

Figure 14. Parameter estimation with NKF.

CKF gives results more accurately than NKF does. When 
Figure 15 and Figure 16 are compared, it is seen that P  in 
CKF does not move to zero. When Figure 17 and Figure 18 
are compared, it is seen that residues in NKF are greater 
than those in CKF. 



Sigma J Eng Nat Sci, Vol. 39, No. 4, pp. 343-350, December, 2021348

in the model are assumed as constant in standard LS method. 
Nevertheless, in the case where the input-output model in 
Equation (3) is considered as state space model in equalities 
(15) and (16), it is assumed that the parameters have not 
constant but more of a probabilistic progress feature. This is 
one of the purposes for which Kalman Filter is used in this 
model. As is known, Kalman Filter could be obtained in 
accordance with different optimization measures, and least 
squares method is one of them. Detailed information on 
obtaining the Kalman Filter is given in [20-30]. 

COMPUTER-ASSISTED TEMPERATURE  
CONTROL WITH ADATIVE KALMAN FILTER

In this section, an experimental study has been made 
in order to make temperature control using the Corrected 
Kalman Filter which was explained in the second section 
and the least variance control rule which was explained in 
the third section. 

8-litre water initially at 25°C in an aquarium has been 
placed on a container filled with ice. The purpose was to 
keep the water’s temperature at 37.5°C. With such a pur-
pose, several parts were included in the control system 
forming the testing apparatus. There were an A/D con-
verter and a temperature sensor (LM 335 temperature sen-
sor) for reading the water’s temperature and transmitting 
it into computer digitally. There were a 1500-Watt heater 
for increasing the water’s temperature, a D/A converter for 
sending the desired signal to the heater, and a triac module 
for setting the voltage coming from the computer between 
0 and 220 Volts. There was also a mixer to facilitate the heat 
dissipation in the container filled with water. 

The system has been controlled online in accordance 
with the least variance feedback control rule. Under the 
assumption that the system is modelled with Equation

	 y(t) = a(t)y(t – 1) + u(t – 1)+ ν(t)	  (27)

CKF adjusted with equalities (25) and (26) has been 
used in order to estimate the parameter a(t), and the control 
signal has been calculated using Equation (23). Sampling 
interval has been taken as 1 second. Experimental system is 
shown in Figure 19.

The output and input values obtained in accordance 
with the least variance feedback control rule are given in 
Figure 20 and Figure 21. Parameter estimation is shown in 
Figure 22. 

As is seen in Figure 20, the system’s output oscillates 
slightly around the target value. It is seen that the system 
is kept under control. In order to reduce this oscillation 
to a lower level, the control could be performed using the 
model which takes into consideration different delay times 
of output and input values. With the purpose of providing 
simplicity, Equation (27) has been regarded as the model of 
the system here.

Figure 15. P values obtained with NKF.

Figure 16. P values obtained with CKF.

Figure 17. Residues obtained with NKF.

Figure 18. Residues obtained with CKF.

In RWLS method, forgetting factor must be selected 
before the algorithm starts working. As it is also under-
stood from the simulation study, different selections of 
the forgetting factor cause the algorithm to give different 
results and it is not possible to foresee which one will suit 
better. Weighting the covariance matrix in CKF is arranged 
by the algorithm itself; there is no need to make a selection 
priorly. Since the weighting process requires less operations 
compared to other methods, CKF is more preferable than 
other methods for this model. As a result of changing the 
covariance matrix of white noise progress in Equation (15) 
mentioned in Section 2.2. and performing several simple 
operations, RWLS method given in equalities (11) and (13) 
could be obtained from the Kalman Filter given in equali-
ties (18) and (21). In other words, RWLS method could be 
regarded as a special form of Kalman Filter. The parameters 
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be seen from the simulation studies Corrected (Adaptive) 
Kalman Filter gives results more accurately than Normal 
Kalman Filter (NKF) for time varying parameter estimation. 
Corrected (Adaptive) Kalman Filter ensures that the system 
is kept under control by correctly estimating the parameter 
that changes over time. The use of the Corrected Kalman 
filter is recommended for similar control applications.
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