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Real-Time Encrypted Traffic Classification with Deep Learning 

Deniz Tuana ERGÖNÜL*1, Onur DEMİR1 

Abstract 

Confidentiality requirements of individuals and companies led to the dominance of encrypted 

payloads in the overall Internet traffic. Hence, traffic classification on a network became 

increasingly difficult as it must rely on only the packet headers. Many vital tasks such as 

differential pricing, providing a safe Internet for children, and eliminating malicious 

connections require traffic classification, even if the payload contents are encrypted. Encrypted 

traffic is harder to classify as packet content becomes unreadable. In this work, we aim to 

provide an insight into traffic classification using encrypted packets in terms of both accuracy 

and packet processing time. LSTM (Long Short-Term Memory) architecture is a good 

candidate for this problem as it can handle sequences. Each flow can be modeled as a sequence 

and patterns of the sequences can provide valuable information. We compare the performance 

of LSTM with other methods in both real-time and offline experiments. Compared to a machine 

learning method both online and offline LSTM excelled with precision and recall differences 

up to 50%. Average accuracy with LSTM was measured as 97.77% offline and 91.7% in real-

time. Average packet processing time in real-time was recorded as 0.593 msec which is 5 times 

faster than a recent work that uses LSTM method. 

Keywords: Deep learning, neural networks (Computer), computer communication networks, 

classification 

 

1. INTRODUCTION 

In traffic classification, the principal aim is to 

recognize and name different groups of packets 

using the information available at the network 

level. Identifying the class of a network packet 

can be used for running predefined rules on it, 

such as ensuring the quality of service promised 

to the customer, detecting malicious user 

activities, or dropping certain content for parental 

control [1]. Classification can be in terms of the 

application, protocol, or category of a packet [2]; 
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for example, WhatsApp Web application, HTTPS 

protocol, chat category; Skype application, TLS 

protocol, VoIP category. The need for 

classification comes from different reasons such 

as offering specialized internet packages 

according to customer needs (prioritizing online 

gaming traffic and reducing latency in the game 

for an online gamer), setting a special discount for 

social media platforms (e.g., Facebook, Twitter), 

or managing traffic of protocols that use too much 

bandwidth such as BitTorrent. Mostly, it is the 

focus of ISPs (Internet Service Provider) and 
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defense industry units of countries; however, 

every institution can benefit from a dedicated 

solution whether it is online or offline [3]. 

Labeling of pre-captured network packets is 

called offline classification; online classification 

is when they are labeled one after another in real-

time [4]. 

Classification is usually performed on 

bidirectional flows instead of a single packet. A 

flow is a set of packets exchanged between two 

distinct networks, using the same transport 

protocol (e.g., TCP, UDP) and port numbers. 

What identifies a flow is called a five-tuple: 

transport protocol, source IP, destination IP, 

source port, destination port. In a bidirectional 

flow, packets that have their IP and port pairs 

reversed also counts. Once a flow is labeled, any 

packet that belongs to that flow can be labeled as 

the same. 

The oldest and easiest method of classifying a 

flow is querying for its port numbers in IANA’s 

(Internet Assigned Numbers Authority) Service 

Name and Transport Protocol Port Number 

Registry [5]. Although practical in respect of time 

and effort, this technique is not very reliable. The 

applications can pick other ports to communicate 

with each other rather than using the standard 

ports. Usage of nonstandard ports jeopardizes the 

reliability of this method. There is even a term 

called port obfuscation [6]. Protocols using 

obfuscation (e.g., VPNs) willingly avoid using the 

standards to hide their identity. 

A somewhat more advanced way to classify flows 

is to do deep packet inspection (DPI), in other 

words, to analyze all layers of packets, including 

packet payload. An unencrypted payload can give 

a clear idea of what protocol a packet uses. Some 

protocols have unique patterns (signatures) which 

can be directly used to label packets. Regular 

expression databases are generated to store this 

information. However, maintaining such a 

database is a tedious job. On the other hand, 

payload encryption got popular over the years. As 

an example, Google Transparency Report [7] 

(Figure 1) shows that the preference for HTTPS 

over HTTP has increased significantly in the last 

seven years, from 48% in 2014 to 95% in 2021. 

Encryption changes the content of packets in such 

a way that they are no longer human-readable. For 

this reason, it becomes very challenging to find an 

easily recognizable pattern in the payload. 

 

Figure 1 Encrypted traffic across Google 

Statistical flow classification is another valid 

method that uses features such as average packet 

inter-arrival times, packets per second, byte 

frequencies, etc. [6]. 

In recent years, research on machine learning and 

deep learning models intensified, since the 

accumulation and storage of data has become 

easier and cheaper. The advantages of these 

models are that they can be trained offline with an 

abundant amount of training data. As it is for 

many learning problems, feature selection may be 

considered a tedious task, but it is possible to 

make a model learn how to do that on its own. 

Deep learning is a relatively new technology for 

flow classification. There are not many research 

papers yet, especially with an LSTM model, and 

the existing ones usually do offline classification 

[8]. Thus, the elapsed time, a critical performance 

measure for online classification, does not get 

mentioned. 

One of the challenges of traffic classification is 

data, as it is for almost all learning problems. 

Tools such as Wireshark [9] can collect live traffic 

into packet capture (PCAP) files. The difficulty 

here is that the collected data is often noisy. The 

packets which do not fall in any of the main 

categories are noise. The operating system, 

services running in the background, other 

applications, or services that applications use 

might be the reason for the noise. It is crucial to 

feed learning models with clean data since any 

noise might cause them to make incorrect 

connections, leading them to deduct unreliable 
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knowledge. Thankfully, there is a very common 

public dataset named ISCXVPN2016 (UNB 

ISCX Network Traffic Dataset) [10] that is used 

prevalently in this area. However, it is worth 

noting that a model trained with data obtained 

from a particular network may not perform well 

on a different network [11]. 

This work aims to classify flows, even if they 

contain encrypted packets, as to their categories, 

in real-time. Encryption adds a new difficulty 

level since the packet payload becomes 

indecipherable to infer a piece of information 

from it without decryption. This difficulty has no 

effect on the proposed solution because the 

solution does not require the examination of 

packet payloads. Crucial metrics for this work 

include accuracy, and elapsed time for processing 

(analyzing and classifying) a single packet. The 

biggest goal of the study is to examine the 

performance of an LSTM model named LSTM-

FS (LSTM with Flow Sequences) for the 

categorization problem both offline and online, to 

find out accuracies, to observe the number of 

packets processed per second in the online 

environment, and the processing time of a single 

network packet. 

Here is the list of questions this study intends to 

shed some light on: 

• Why is LSTM a good candidate for the 

traffic classification problem? 

• How to model this problem for LSTM? 

• How does LSTM perform both accuracy 

and timewise? 

The reason for choosing LSTM is that it has a 

memory where earlier sequences of packets can 

be remembered. LSTM, a variant of RNN 

(Recurrent Neural Network), can store 

information for a while and use this information 

for future predictions. It has structures called 

gates which let information be stored or forgotten. 

This approach allows LSTM to perform well with 

data sequences. For instance, LSTM has been 

used for NLP (Natural Language Processing) 

problems because words in a paragraph are 

somehow related, and LSTM can figure out these 

relationships. Similarly, network packets also 

have temporal information thus can be handled in 

sequences. What is inside an encrypted network 

packet is often a mystery; it is not straightforward 

how to obtain information from them with 

techniques such as DPI. It is both challenging and 

time-consuming for the human eye to find 

consistent patterns for each label when payloads 

are encrypted. However, LSTM can make 

deductions from data that are not directly visible. 

There are four scenarios to test LSTM-FS. The 

first scenario is to detect whether the traffic is 

VPN or not. In the second scenario, six non-VPN 

categories (chat, email, file transfer, P2P, 

streaming, VoIP) exist to label the given data. The 

third scenario only includes VPN versions of 

these six categories. In the last scenario, with the 

second and third scenarios combined, labeling is 

made among six non-VPN and six VPN 

categories. Along with offline tests, online 

simulations also exist for each scenario of LSTM-

FS. LSTM-FS gave good results with respect to 

speed and accuracy. 

Section 2 includes briefs of 11 studies in the 

traffic classification field. At the end of it, there is 

a table that summarizes the big picture. The 

problem is explained along with the presented 

solution in Section 3. Section 4 introduces the 

environment in which the tests ran, the test 

scenarios, the data and its usage, and the 

parameters; it contains test results. Inferences 

made following the tests are shared in Section 5; 

possible improvements and new ideas for future 

work are also discussed. 

2. BACKGROUND 

In this section, we tried to compile a 

comprehensive list of related studies to our work. 

One of the studies included in this section is a 

purely statistical method, while three of them 

consist of machine learning models trained with 

statistical features. There is a survey paper about 

deep learning methods that also underlines the 

difficulties of encrypted traffic classification. The 

remaining works are all deep learning methods, 

and two of which are LSTM. Most of the 

classification involves grouping based on 

protocols, applications, or other categories. Only 
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the last study mentions real-time classification. 

ISCXVPN2016 [10] stands out as the major 

dataset used. 

Statistical Protocol Identification (SPID) [12-14] 

is an open-source project that accepts PCAP files 

as input to generate protocol models by 

examining flow and payload statistics. Before any 

classification can be performed, the user must 

initiate training by feeding pre-labeled PCAP files 

to SPID. At the training phase, for each flow in a 

pre-labeled PCAP, a protocol model is generated. 

SPID stores the generated models in a database. If 

there exists another model with the same label, the 

two models get merged. At the testing phase, a 

new model is generated that corresponds to the 

current session; then, it is compared with the 

models in the database. SPID algorithm uses 

packets with payload in a session to calculate 

some features (attribute meters). A protocol 

model is made of these meters. There are 34 

available, 7 of them are flow-level, and 27 are 

payload-level. Each one has a counter vector of 

size 256 that has a unique meaning for the meter. 

For example, ByteFrequency is a payload-level 

meter that interprets this vector as a list of ASCII 

characters where index 65 corresponds to the ’A’ 

character. Each meter calculation returns a list of 

indices for the meter’s counter vector. The 

elements at these indices are increased by 1. The 

researchers got an average of 100% precision and 

92% recall when tested with BitTorrent, 

eDonkey, HTTP, SSL, and SSH flows. 

Characterization of Encrypted and VPN Traffic 

Using Time-Related Features [15] is a significant 

study for two reasons: they provide a public 

dataset named ISCXVPN2016 which has been 

used by many researchers through the years, and 

they present a machine learning approach for flow 

classification. The dataset consists of various 

PCAPs, and it is 26.2 GB large. The files can be 

grouped into 14 different categories: chat, email, 

file transfer, P2P, streaming, VoIP, VPN chat, 

VPN email, VPN file transfer, VPN P2P, VPN 

streaming, VPN VoIP, Tor (The Onion Router) 

browsing, Tor streaming. They calculate a total of 

24 time-based, statistical features to perform 

classification. The main features include flow 

duration, the time between two successive packets 

(in the forward, backward, and both directions), 

the time a flow is active and idle, flow bytes per 

second, and flow packets per second. Other 

features are the minimum, maximum, average, 

and standard deviation of these features. They 

employed four flow timeout values 15, 30, 60, and 

120; to find out 15 is the most accurate. They had 

accuracy levels above 80%. 

Yamansavascilar et al. [11] used machine 

learning algorithms J48 (also known as C4.5), 

Random Forest, k-Nearest Neighbors (k-NN), and 

Bayes Net to identify popular consumer 

applications such as Facebook, Twitter, and 

Skype. Just as we do in this paper, the 

ISCXVPN2016 dataset is made use of along with 

an internal dataset. For applications that are 

available on mobile phones, they captured cellular 

traffic as well. 

The datasets contain 15,462 and 3,748 flows, 

respectively. They chose 111 features, but the 

selection procedure of these features is not 

unclear. Accuracy varies between 85.44%-

93.94% for the external dataset and 69.90%-

90.87% for the internal. Using evaluators, they 

succeeded in decreasing the number of features as 

down as 12; while maintaining the accuracy 

levels. They realized that the misclassified 

samples are often in the same category. Therefore, 

category classification before application 

identification can be considered as future work. 

Bagui et al. [16] compared the performance of six 

supervised machine learning techniques: Logistic 

Regression, Support Vector Machine (SVM), 

Naive Bayes, kNN, Gradient Boosting Trees, and 

Random Forest, in terms of accuracy, precision, 

sensitivity, and specificity. They utilized the same 

24 time-related features in [15] along with the 

ISCXVPN2016 dataset. Separately for each 

category (browsing, chat, email, file transfer, P2P, 

streaming, VoIP), they did binary classification to 

identify if traffic is VPN encrypted or non-VPN 

encrypted. The sample distribution within each 

category is well-balanced (almost 50%-50%). 

Sample amounts range between 1,113 and 10,000, 

not enough to try out deep neural networks, as 

they state. Gradient Boosting Tree and Random 

Forest outperformed the other methods in respect 
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of all metrics with values around 94%. Aiming for 

high accuracy and low overfitting, they used grid 

search to find an optimal, work-for-all set of 

hyperparameters which increased the values by a 

few percent. Additionally, through feature 

selection, they ordered a minimum set of features 

by importance for each category. Although 

feature selection deteriorates accuracy results to 

90%, they claim that it can be advantageous 

where speed matters more, but they did not 

present any experiment results backing this 

assumption. 

One-dimensional Convolutional Neural Network 

(1-D CNN) is a model for traffic identification 

and classification. Wang et al. [17] claimed 

network traffic as sequential data. They argue that 

solution becomes more prone to get stuck at a 

local minimum when a problem is divided into 

sub-problems. Consequently, they present an end-

to-end solution where feature extraction, feature 

selection, and classifier are one [16]. In other 

words, their model takes raw data and learns 

features on its own. They used the ISCXVPN2016 

dataset, excluded capture files that are vague. 

(e.g., Both browsing and streaming is a suitable 

label for “Facebook_video.pcap”, they say.) To 

do data pre-processing, they adopted a toolkit of 

their team named USTC-TK2016 [19] which 

transforms capture files into images. Wang et al. 

noticed that the images generated for same-class 

flows looked very similar. They observed that 

bidirectional flows yield higher accuracy than 

unidirectional ones; and as opposed to using only 

the application layer of a packet, using all layers 

is better. Since CNN accepts equally long data, 

they employed only the first 784 bytes of each 

flow. How many samples they had for each 

category is not addressed in the paper. However, 

they did mention an imbalance in the dataset as a 

future concern. They did four experiments: binary 

classification between VPN and non-VPN data, 

category classification among non-VPN, VPN, 

and mixed data. Best accuracy results were 

respectively 99.9%, 83%, 98.6% and 86.6%. 

They also pointed out that 1-D CNN delivers 

better performance than two-dimensional. 

Rezaei and his team [8] provided a survey paper 

about traffic classification with deep learning 

techniques, namely, Multi-Layer Perceptron 

(MLP), CNN, RNN, Autoencoder, and 

Generative Adversarial Network. They 

emphasized the challenging aspects of this field, 

such as data collection. They state that other than 

ISCXVPN2016 and a few others, there is not a 

publicly available and widely used dataset. 

Researchers tend to capture data on their own, 

specific to their needs. Because of background 

traffic caused by routers, operating systems, et 

cetera, collecting noiseless capture files is far 

from an easy task. Another issue is that a model 

trained with a particular network’s data might 

perform way worse when tested on another 

network or even on the same network but under 

different circumstances (i.e., high congestion). 

They also stressed how to tackle encrypted traffic. 

For example, time-series features such as inter-

arrival time are not changed by encryption, 

because they do not depend on packet payloads. 

Using the payload of the first TCP packets may 

still be convenient since the handshake stays 

unencrypted. However, the authors also pointed 

out that newer encryption protocols such as QUIC 

and TLS 1.3 remain open for investigation. Other 

problems they discussed are zero-day applications 

(classes the model has not seen yet), multi-label 

classification (one flow carrying multiple 

classes), middle flow classification (classification 

using packets from the middle of the flow), 

transfer learning, and multi-task learning. 

Deep Packet [20] can identify the protocol or 

application to which a packet belongs (by 98% 

recall), label it by its category while 

differentiating VPN from non-VPN (94%). 

Lotfollahi et al. used the ISCXVPN2016 dataset 

by dividing it into 17 application classes for the 

first experiment: 6 VPN, 6 non-VPN category 

classes for the second. Instead of flows, they work 

with packets, and the packet distribution within 

each set of classes is highly imbalanced. (e.g., 5K 

AIM vs. 7872K FTPS, 13K VPN email vs. 5120K 

VoIP) To handle this matter, they did under-

sampling; they excluded samples from dominant 

classes. Their model consists of two parts: stacked 

autoencoders and 1-D CNN. The autoencoders 

take care of feature extraction automatically, 

eliminating the need for an expert. Since inputs 

fed into a NN must be fixed length, they decided 
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on 1500 bytes after examining packet length 

histogram. Some pre-processing steps are 

padding UDP headers (so they become equal 

length with TCP), discarding TCP handshake and 

DNS packets (bring no useful information), and 

masking IP addresses (causes over-fitting). They 

explain how their model can classify encrypted 

packets with the following hypothesis: although 

encrypted, packets of the same application may 

still contain consistent patterns. This hypothesis is 

also how they justify why their model failed to 

classify Tor categories. 

Parchekani et al. [21] adopted the ISCXVPN2016 

dataset and a local ISP’s data to classify five non-

VPN (chat, email, FTP, streaming, VoIP), and one 

VPN class which symbolizes all kinds of VPN 

traffic. They fed each flow’s first 784 bytes into 

their models. The models consist of MLP and 

RNN layers. To receive the best precision values 

(above 80%), they tried two approaches: score 

and distance. Their study reveals that distance is a 

better metric than score. Both include a definition 

of a threshold parameter to either accept or reject 

a label. For the given input, in the first approach, 

each candidate non-VPN label gets a score. If the 

one with the maximum score is less than the 

threshold, it gets rejected. In the second approach, 

candidates get a distance value; and if the label 

with the minimum distance is more than the 

threshold, it is not accepted. In both cases, 

rejection means classification as VPN. Accepted 

ones go through a second phase where their 

category decision becomes finalized. To 

accomplish this, they use other thresholds to 

decide if another classification is necessary. 

With his team, Zhou [22] combined entropy 

estimation with traditional machine learning 

methods SVM, Random Forest, Naive Bayes, and 

Logistic Regression along with a NN, to 

distinguish VPN from non-VPN on the 

ISCXVPN2016 dataset. Compared with metrics 

from past works, results improved by 1% to 7%, 

with Random Forest remaining the best method 

(98%). Additionally, they built a NN which takes 

23 statistical features (from [15]) as input to 

classify Tor data (ISCXTor2016 [23]) into 8 

categories, as opposed to 7 seen in prior works. 

(Streaming is divided into two labels: audio and 

video) With this model, they improved some of 

the previous studies’ metrics by nearly 30%. They 

also examined the 23 features using principal 

component analysis and found that it is possible 

to eliminate half of the features without 

significantly sacrificing accuracy. 

Network traffic classifier by Lopez-Martin et al. 

[24] integrated LSTM on top of CNN to classify 

a dataset from RedIRIS [25], which contains 

266,160 flows with 108 applications. They used 

nDPI [26], an open-source DPI library, to label 

the data. Label distribution is quite imbalanced; 

almost half of the data is HTTP, followed by DNS 

with 20% and SSL with 15%. After trying out a 

few combinations, they settled on five features: 

source port, destination port, payload length, TCP 

window size, and packet direction. (96% 

accuracy) They observed that adding timestamp 

as a feature did not enhance the results. Before 

further experiments, they set the sequence length 

as 20 packets. For each flow, they discarded the 

packets after the 20th; and if the flow was not long 

enough, they employed padding. Later they 

realized that a length of 5 to 15 is sufficient for 

good results. Among models CNN-only, RNN-

only, and CNN with LSTM, the latter performed 

the best with an accuracy of 96%. 

Byte Segment Neural Network is a model by Liu 

et al. [27] based on RNN variants LSTM and 

GRU (Gated Recurrent Unit) to classify protocols 

and applications DNS, BitTorrent, PPLive, QQ, 

SMTP, 360, Amazon, Yahoo, Cloudmusic, and 

Foxmail. The real-world data they used consisted 

of 2,516 (DNS) to 55,576 (Cloudmusic) 

samples/datagrams. All header information 

(Ethernet, IP, TCP/UDP) got removed from 

datagrams. The segment generator splits the 

payload into equally length byte segments. 

According to their experiments, the most practical 

length is 8, against 3, 5, and 10. Compared to 

nDPI and a binary classifier named Securitas [28], 

they got better results for 5 of the applications 

considering recall, precision, and F-score. They 

have an average F-score of 95.82%. In the training 

phase, it takes 43 msec on average to prepare 

input, and 20 epochs of training take 123 minutes, 

whereas, in the testing phase, processing a 

datagram takes 2.97 msec. 
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Table 1 Related Work 

Paper Classification Method Features 

Statistical Protocol IDentification with SPID: 

Preliminary Results [14] 

Protocol Statistical 7 flow-level, 

27 payload-

level 

Characterization of Encrypted and VPN Traffic Using 

Time-Related Features [15] 

Category k-NN, C4.5 (J48) 24 time-based 

Application Identification via Network Traffic 

Classification [11] 

Application J48, Random Forest, 

k-NN, Bayes Net 

111 (Reduced 

to 12) 

Comparison of machine-learning algorithms for 

classification of VPN network traffic flow using time-

related features [16] 

Category Logistic Regression, 

SVM, Naive Bayes,  

k-NN, Gradient Boosting 

Trees, Random Forest 

24 time-based 

End-to-end Encrypted Traffic Classification with  

One-dimensional Convolution Neural Networks [17] 

Category 1-D CNN First 784 bytes 

of a flow 

Deep Packet: A Novel Approach for Encrypted Traffic 

Classification Using Deep Learning [20] 

Protocol, 

Application, 

Category 

Stacked autoencoders  

+ 1-D CNN 

First 1500 bytes 

of a packet 

Classification of Traffic Using Neural Networks by 

Rejecting: A Novel Approach in Classifying VPN Traffic 

[21] 

Category MLP + RNN First 784 bytes 

of a flow 

Practical evaluation of encrypted traffic classification 

based on a combined method of entropy estimation and 

neural networks [22] 

Category Entropy estimation 

+ (SVM, Random Forest, 

Naive Bayes, 

Logistic Regression, NN) 

23 time-based 

Network Traffic Classifier with Convolutional and 

Recurrent Neural Networks for Internet of Things [24] 

Protocol, 

Application 

CNN, RNN, 

CNN + LSTM 

5 

Byte Segment Neural Network for Network Traffic 

Classification [27] 

Protocol, 

Application 

LSTM, GRU Equal length 

byte segments 

Table 1 consists of all the studies summarized 

except Deep Learning for Encrypted Traffic 

Classification [8], a survey paper. Classification 

is usually done based on protocol, application, or 

category. The methods used include purely 

statistical methods as well as decision tree 

solutions with statistical features. Tree-based 

machine learning methods have gradually started 

to be replaced by deep learning methods. Features 

used include both flow-level and payload-level 

information. Specifically, the use of time-based 

features is quite common. All studies except the 

last take place offline. 

Unquestionably, the work of Draper-Gil et al. 

stands out in this area. Noise-free data is a big 

problem in traffic classification as in almost every 

field; Draper-Gil and his team present a quality 

dataset that is used by many researchers after 

them. This dataset is quantitatively full enough to 

be used even for deep learning solutions; plus, it 

consists of popular applications (such as 

YouTube, Netflix, Skype, etc.). Besides, it can 

easily be seen that the 24 time-based features they 

offer inspired many studies. 

The five features used by the penultimate study, 

one of the 2 studies that use LSTM, are taken 

directly from the packets as in this study (LSTM-

FS). Unlike that study, there are 23 features 

defined in LSTM-FS. They use flows of length 20 

as sequences, any flow longer gets its packets 

discarded, and any flow shorter gets padded. On 

the contrary, the length of 10 is used in LSTM-

FS, and no packets get discarded; instead, they are 

handled in new sequences. The other LSTM-
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based study only checks payloads, which is 

different than in LSTM-FS. They are the only 

researchers who shared elapsed time results. They 

report 2.97 msec as the average datagram 

processing time; our proposed solution LSTM-FS 

performs 5 times faster than their solution. 

3. METHODOLOGY 

In this section, our proposed solution for traffic 

classification, LSTM with Flow Sequences 

(LSTM-FS), is described. The section is divided 

into five subsections for flow generation (3.1.), 

feature extraction (3.2.), creating train and test 

data (3.3.), model generation (3.4.), and testing 

offline/online classification (3.5.). 

Our solution operates with PCAP files; and 

includes libpcap [29], a C/C++ library for 

network traffic capture operations. Wireshark [9], 

which is a well-known opensource network 

packet analyzer, also utilizes this library. The 

solution supports Ethernet as data link layer 

(Layer 2, L2) protocol; IPv4 as network layer 

protocol (Layer 3, L3); TCP and UDP as transport 

layer (Layer 4, L4) protocols. Raw IP packets 

which do not involve a data link layer at all are 

not supported directly. Instead, these PCAPs are 

modified with a tool named tcprewrite [30] so that 

their packets have fake Ethernet layers. 

3.1. Flow Generation 

The first step of our solution for the traffic 

classification problem is bidirectional flow 

generation; in other words, identifying the packets 

with the same endpoints and ports so that they are 

associated with the same flow. Since its five-tuple 

uniquely describes a flow, after a given packet is 

analyzed, it is grouped with the others which have 

the same L4 protocol, source-destination port, and 

IP pairs. In our design, a flow is strictly related to 

at least one non-dummy packet (A dummy 

packet’s all features appear as -1.), and a 

classification label. 

3.2. Feature Extraction 

In our solution, packets hold almost everything 

one can obtain from a network packet except the 

payload. We exclude capture length, MAC 

addresses, IP addresses, IP Identification, 

fragmentation-related IP fields, and checksums 

since these are not used for classification. Other 

left-out fields are Ethernet type, IP version, and 

Protocol field of IP header, as these are identical 

for all packets (IPv4, 4, TCP/UDP, respectively). 

Packet fields shown in Table 2 directly 

correspond to features to feed into the learning 

model. Valid packet directions are forward and 

backward. TCP fields are all set to 0 for UDP 

packets and vice versa. It is important to note that 

packets lined up in a PCAP file may not represent 

their actual order. That is why epoch time is a 

more reliable reference since it indicates when a 

packet is captured. 

Table 2 Packet fields 

Field Definition 

direction Packet direction 

actualLength Length on wire, frame length 

arrivalTime Epoch time 

ipHeaderLength IP header length (IHL) 

ipTypeOfService Type of Service (TOS) field of IP 

header 

ipTotalLength IP header length + IP data length 

(datagram length) 

ipTimeToLive Time to Live (TTL) field of IP 

header 

tcpSrcPort TCP source port 

tcpDestinationPort TCP destination port 

tcpSeqNumber Sequence number field of TCP 

header 

tcpAckNumber Acknowledgement number field 

of TCP header 

tcpHeaderLength TCP header length (HLEN, data 

offset) 

tcpReserved Reserved field of TCP header 

tcpFlags Flags field of TCP header 

tcpWindowSize Sliding window size field of TCP 

header 

tcpUrgentPointer Urgent pointer field of TCP 

header 

udpSrcPort UDP source port 

udpDestinationPort UDP destination port 

udpLength UDP header length (8 bytes) 

+ UDP data length 

3.3. Creating Train and Test Data 

To create training and testing data, we first 

examine PCAP files under subdirectories of a 

given directory. Subdirectory names get 

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 320



 

 

interpreted as labels. After all the PCAPs get 

examined, sample creation will take place, as 

shown in Figure 2. 

 

Figure 2 Sample creation flowchart 

For each flow, a set of samples get created. A 

sample is a flow sequence which is part of a flow 

and consists of at least one non-dummy packet. 

Sequences have a preset length of 10. Thus, flows 

with fewer packets get padded with dummy 

packets (Figure 3). On the other hand, for flows 

with more packets, extra samples are created. To 

be exact, every 10 consecutive packets in a flow 

becomes a sample (Figure 4). Users can choose 

whether they want the data to be balanced per 

label or not. This way, any deprivation an 

imbalanced dataset may cause (e.g., over-fitting) 

can be prevented by under-sampling. If no 

balancing should occur, the algorithm will output 

label weights for the learning model to use. After 

samples are created, (optionally) balanced, then 

shuffled, 85% of them are training data, and the 

rest is testing data. It is crucial to emphasize that 

packets in a sequence must be in order. So, 

shuffling samples only means swapping ten 

packets in bulks. 

 

 

 

Figure 3 Sample creation when the number of 

packets in flow is less than 10 

 

Figure 4 Sample creation when the number of 

packets in flow is greater than 10 

Samples go through one more step before being 

written to the relevant file; feature scaling. 

Equation 1 shows min-max normalization 

(rescaling) formula where xi is the original value 

for ith sample, and xi
0 is the normalized value. This 

requires finding the minimum and maximum 

values for each feature. Note we only consider 

TCP packets for the calculation for TCP-related 

features. Naturally, the same applies to UDP as 

well. Dummy packets are not considered for 

scaling. Next, invalid features are determined. If 

the minimum and maximum values are equal or if 

at least one of them is undefined, the feature is 

invalid. Invalid features will not appear in training 

and testing files. 

𝑥𝑖 
′ =  

𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
 (1) 

One of the goals of this work is to come up with a 

feasible solution for online classification. To 

properly test this solution, an online environment 

or a realistic simulation is required. Our outputs 

are training and test datasets as CSV files; the test 

data is also extracted as a single PCAP file 

(dummy packets excluded) where its packets are 

shuffled using Algorithm 1. This mixed data is 

more representative of an online setting than data 

in which flow sequences come in sizes of 10 one 

after another. Function nextPacketID ensures that 

packets stay in order in their flows (Figure 5). The 
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new packet series gets dumped to a PCAP file 

beside a text file for each packet label. 

1: function shufflePackets 

2: packets ← [] 

3: availableFlowCount ← size(flows) 

4: while availableFlowCount > 0 do 

5: f ← random(availableFlowCount) 

6: p ← nextPacketID(f) 

7: if ID(p) ≠ −1 then 

8: Add p to packets 

9:       else ► End of flow 

10:          availableFlowCount ← 

availableFlowCount – 1 

11:            Remove f from flows 

12: end if 

13: end while 

14: end function 

Algorithm 1 Algorithm to shuffle packets 

retaining order in their flows 

 

Figure 5 Valid shuffle examples 

3.4. Model Generation 

Our solution includes a Python program that uses 

TensorFlow [31] and Keras [32] libraries. The 

program builds a learning model, trains it with 

given data, and serializes it. The serialized model 

is imported through an API named CppFlow [33]. 

Its first layer, the masking layer, helps disregard 

dummy values, such as values of dummy packets. 

The second layer, LSTM, is the heart of the 

model. LSTM is an RNN variant that utilizes 

gates to decide what to remember and forget from 

information learned so far. Considering its 

success with modeling sequential data, series of 

consecutive packets are also expected to fit in this 

model. Packets of a flow are never entirely 

independent from each other. LSTM might be 

able to figure out dependencies and different 

kinds of relations among data. Dropout is a 

reasonable parameter for an LSTM layer that 

combats with over-fitting by dropping some of the 

gathered information. Last is the dense layer; it 

has a unit for each label, and its activation 

function is SoftMax. This function will assign 

probability values for each unit stating how likely 

is it for this label to be correct. The probabilities 

will add up to 1. Model compilation configuration 

is given in Table 3. 

Table 3 Model compilation configuration 

Optimizer Learning 

Rate 

Loss 

Function 

Metrics 

Adam 0.001 Sparse 

Categorical 

Crossentropy 

Sparse 

Categorical 

Accuracy 

As the LSTM layer of Keras library requires data 

to be in a 3D shape where x is the number of 

samples, y is timesteps or sequence length (10), 

and z is feature count, the input gets reshaped 

accordingly. It is worth noting that the LSTM 

layer can be structured to take varying lengths of 

sequences by setting the input shape parameter’s 

first value as none. However, batch training, 

which reduces training time with the help of 

parallelism, must still contain equal length 

samples. For this reason, padding can be used. 

The batch count parameter for the LSTM layer 

and is set to 128. The output should contain a 
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single label for each sequence instead of each 

packet. 

Large datasets might take a lot of memory and 

other resources of computers. Chunk size is an 

advantageous parameter for this case. It is set to 1 

million, and the model’s fit function runs for each 

chunk. This means 1 million rows are processed 

at a time; for example, if there are 10 million rows 

in total, they are processed in 10 iterations. The 

critical point here is to set the chunk size to such 

a number so that there is enough RAM to handle 

that many rows. Any number higher will result in 

an insufficient memory error. The lower the 

number is, the more the iterations. An optimal 

number can be found by experiment. Another 

parameter for fit is class weight. A class weight 

map associates each label with a coefficient. If 

data is imbalanced, these may help 

underrepresented labels to get noticed more often. 

The required coefficients are outputted during 

train and test data creation. Other than fit, Keras 

provides three more functions for the model: 

compile, predict, and evaluate. Compile builds the 

model based on a given configuration. Evaluate 

assesses the model using the provided test input 

and output. For adequate evaluation, test data 

should be completely different from train data. 

Finally, predict function takes a single input 

sequence and returns the model’s prediction. 

3.5. Testing Offline/Online Classification 

 

Figure 6 Sequence (sample) creation when testing 

For this case, our solution accepts a single PCAP 

file as an input; and three text files: one for each 

packet’s actual/expected label, another for feature 

validities, and valid feature values required for 

normalization. We utilize actual packet labels for 

accuracy calculations, comparing expectations 

with predictions, and creating a confusion matrix. 

Since the learning model learns with a subset of 

features, the same subset must be obtained during 

testing. Similarly, the same scaling technique 

must be applied to data with the values obtained 

when training. Moreover, for normalization, any 

packet value less than the relevant min value will 

be elevated to the min, and a value more than the 

max will be lowered to the max. Unlike when 

train and test data creation take place, sequences 

are created during analysis, not after all packets 

are seen (Figure 6). Thus, each packet can be 

directly sent to the classification model right after 

being analyzed.  

We let the user pick a number which will be the 

number of packets to wait to get a classification 

result. Since the model works with sequences of 

(10) packets, it makes sense to assign this number 

to at least 2. Any sequence having less than this 

number of non-dummy packets will get skipped. 

There is also a limit calculation for probability 

found by the model (Equation 2, L is the number 

of labels.). Packets with predicted results with less 

will be labeled as unknown. This parameter can 

be used to decrease the number of false positives. 

Misclassifications are prevented by setting a 

confidence limit; any prediction with lower 

probability will be classified as unknown, instead 

of accepting the predicted label no matter how 

low the probability is. For instance, for 2 labels (L 

= 2) we required the model to be more than 50% 

(1/L) confident with its prediction. Thus 1.5 is 

selected as the coefficient. 

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝑖𝑚𝑖𝑡 =  
1

𝐿
1.5 (2) 

3.5.1. Thread Utilization 

A key factor for online traffic classification 

simulation is packet sender-receiver threads. Two 

threads run throughout the program, one being the 

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 323



 

 

sender and the other is the receiver. The threads 

work with a shared variable which is a fixed-size 

buffer where packets are stored. The executable 

uses lock mechanisms to prevent race conditions. 

The sender’s job is to fill the buffer until there is 

no packet left. It goes back to the beginning of the 

buffer if the buffer is full and overwrites the old 

content. It also lets the reader know where to start 

reading and how many packets to read. This 

number strictly cannot be greater than the buffer 

size since this implies a packet drop. After every 

sent packet the sender sleeps for 100 nanoseconds 

which is the interpacket gap for a link speed of 1 

Gigabit/second. An interpacket gap defines the 

minimum await time between two packets. On the 

other hand, the reader waits until the buffer is 

nonempty. When it can acquire the lock, it copies 

the relevant part of the buffer pointed by the 

sender. It then forwards the copied packets for 

classification. Thread organization helps answer 

questions such as how many packets can be 

classified in a limited amount of time; how this 

number is related to buffer size, and how much 

time it takes to process a single packet. 

Although sender-receiver threads synchronize 

well, it is nearly impossible to measure the time 

elapsed for a single thread on a Windows 

machine. This study is only interested in the 

reader’s performance, how fast it can process a 

packet and how many packets it can process in a 

time frame. For this reason, to remove the sender 

from the equation, a distribution is generated of 

sent packet amounts from different program runs. 

The type of distribution (e.g., normal, 

exponential) is decided by examining these 

amounts, and the related calculations are made 

(e.g., mean and standard deviation for normal, 

rate parameter for exponential). The runs are done 

with all available cores (12). Random packet 

amounts are generated using the distribution until 

no packet is left. Up to the number of available 

cores, for each random amount, a reader will be 

spawned. For optimization, each thread will be 

assigned to a specific core. Since the external 

library class to represent the model may not be 

thread-safe, each reader has its copy of the model. 

4. TESTS AND RESULTS 

This section describes the dataset used in this 

work and how it is utilized, test scenarios, and 

hardware features; test results for LSTM-FS 

(LSTM with Flow Sequences) are given. 

Comparisons were made among different studies. 

4.1. Dataset 

The experiments use the ISCXVPN2016 dataset 

[10]. The dataset contains all encrypted packets: 

non-VPN, VPN, and Tor samples. Tor is ruled out 

from tests for the sake of simplicity. There exist 

six non-VPN and six VPN categories for chat, 

email, file transfer, P2P, streaming, VoIP. As 

opposed to Draper-Gil et al. [15], this work does 

not include the “browsing” label since the others 

match better with the PCAPs. For the transport 

layer, TCP and UDP are supported, the program 

ignores ICMP and IGMP packets. PCAPs with 

raw IP packets, almost all VPN data, are padded 

with Ethernet headers. Doing this provides a way 

to merge multiple PCAPs with different link 

types. 

4.2. Test Scenarios 

The study by Draper-Gil et al. [15] has four test 

scenarios: A-1, A-2 non-VPN, A-2 VPN, and B, 

as summarized in Table 4. The same scenarios are 

built for the method LSTM-FS to make 

meaningful comparisons. In the first part of 

Scenario A (A-1), the researchers split the dataset 

into two labels, non-VPN and VPN, to feed into 

Weka (Figure 7). In the second part of Scenario A 

(A-2 non-VPN and A-2 VPN), they divide each 

label’s data into six categories and handle both 

separately (Figure 8 and Figure 9). In Scenario B, 

this study uses 12 labels (six non-VPN and six 

VPN categories) to perform classification in one 

step. All experiment scenarios ran both offline 

and online for LSTM-FS. 

Table 4 Test scenarios 

Scenario Labels 

A-1 non-VPN, VPN 

A-2 non-

VPN 

chat, email, file transfer, P2P, streaming, 

VoIP 
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A-2 VPN VPN chat, VPN email, VPN file transfer, 

VPN P2P, VPN streaming, VPN VoIP 

B chat, email, file transfer, P2P, streaming, 

VoIP, VPN chat, VPN email, VPN file 

transfer, VPN P2P, VPN streaming, VPN 

VoIP 

 

Figure 7 Input directory structure for Scenario A-1 

 

 

 

 

 

 

 

 

Figure 8 Input directory structure for Scenario A-2 non-VPN 

 

Figure 9 Input directory structure for Scenario A-2 VPN 
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4.3. Experimental Setup 

4.3.1. Hardware Specifications 

All tests are executed on a commercial PC with 

Intel Core i7-8750H CPU @ 2.20GHz and 16 GB 

RAM. The CPU has 12 cores. 

4.3.2. Data Sampling 

Since it takes too long to process millions of data 

(See Tables 5, 6, 7), LSTM-FS creates sub-

datasets. For every scenario, 10,000 data is chosen 

randomly per label (Figure 10), in a way that 

packet order in sequences is preserved. For its 

tests, it repeats this process five times to generate 

five models. 

Table 5 Scenario A-1 sample distribution before 

sampling 

Label Number of Samples 

nonVpn 20,998,396 

vpn 4,796,577 

 

Table 6 Scenario A-2 non-VPN sample distribution 

before sampling 

Label Number of Samples 

chat 91,509 

email 18,329 

fileTransfer 10,736,535 

p2p 105,031 

streaming 729,343 

voip 7,459,544 

Table 7 Scenario A-2 VPN sample distribution before 

sampling 

Label Number of Samples 

vpnChat 80,497 

vpnEmail 20,132 

vpnFileTransfer 372,354 

vpnP2P 419,646 

vpnStreaming 1,510,282 

vpnVoip 2,393,401 

 

Figure 10 Model generation example (Scenario A-1) 

4.3.3. Parameters 

All LSTM-FS models use the same 17 features. 

Features ipHeaderLength and tcpUrgentPointer 

are discarded by the algorithm since they are the 

same for all chosen samples. The feature scaling 

method is normalization. Dropout is 0.1. The 

sequence length is 10. 75% of the data is used to 

train, 15% to validate, and 10% to test. Class 

weight optional parameter is unused since there 

already exists an equal amount of data per label. 

Chunk size is 1 million, the batch count is 128. 

Epoch count is 1. For scenarios A-2 non-VPN and 

B, Adam learning rate was changed to 0.01 from 

0.001. (This had an impact on accuracy around 

3%.) For online classification, 1 sender and 11 

reader threads test each model first. The goal is to 

decide on an appropriate distribution type for sent 

packet amounts to replace the sender thread. The 

packet buffer is made large enough to prevent 

packet drops. 10 tests run to get average accuracy 

and time results. There is no restriction on how 

many packets LSTM-FS should see before 

classification; every sample immediately enters 

the classification model. A sample is classified as 

unknown if the best probability is under a limit 

which a formula given in Section 3 calculates. 

4.4. Test Results 

Average accuracy results, and average elapsed 

times are shared for all test scenarios. Time values 

presented are in seconds; averaged results denote 
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that the related test ran five times. Accuracy 

column corresponds to correctly classified 

instances percentage; precision, recall, and F-

measure are weighted averages. 

4.4.1. Offline Classification 

Table 8 exhibits the average accuracy results of 

offline classification with LSTM-FS for all 

scenarios. Table 9 shows the average elapsed 

times. 

Table 8 LSTM-FS (Offline) average accuracy results 

Scenario Accuracy Precision Recall F-Score 

A-1 99.818 0.9982 0.9982 0.9982 

A-2 

non-VPN 

97.988 0.9804 0.9799 0.9799 

A-2 VPN 96.828 0.9691 0.9683 0.9683 

B 96.43 0.9658 0.9643 0.9644 

Table 9 LSTM-FS (Offline) average elapsed times 

Scenario Data Generation Training Testing 

A-1 562.73 12.68 2.39 

A-2 

non-VPN 

291.39 25.96 3.54 

A-2 VPN 26.62 28.08 3.73 

B 432.17 68.29 7.36 

4.4.2. Online Classification 

After five runs for the first model, as can be seen 

from Figure 11 that the sender tends to send a low 

number of packets rather than a high number. In 

other words, the sender rarely holds the CPU for 

long and sends a high number of packets at once; 

on the contrary, it releases the CPU quite often, 

resulting in a lower number of piled-up packets. 

The mean and standard deviation is 81.3062 and 

497.534, respectively. The exponential 

distribution fits this data. The rate parameter (λ) 

is 0.0122 (1/μ).  

 

Figure 11 LSTM-FS (Online) Scenario A-1 model 1 

sent packet amounts histogram 

The maximum amount of sent packets is 7,970. 

However, the packet buffer size is decided as 

25,000 since further experiments showed that 

sometimes each reader gets a few packets, then 

the remaining packets are received by the one who 

finishes reading first. 

Table 10 exhibits the average accuracy results of 

online classification with LSTM-FS for all 

scenarios. Table 11 shows the average elapsed 

times. 

Table 10 LSTM-FS (Online) average accuracy results 

Scenario Accuracy Precision Recall F-Score Unknown (%) 

A-1 99.8554 0.9986 0.9986 0.9986 6.93 

A-2 

non-VPN 

94.8119 0.9551 0.9515 0.9506 0.65 

A-2 VPN 83.8309 0.8477 0.8346 0.8319 5.6 

B 88.3211 0.9098 0.8849 0.8874 0.1 

Table 11 LSTM-FS (Online) average elapsed times 

Scenario Testing Packet/Second Packet Processing 

Overhead (msec) 

A-1 14.45 1,856.99 0.5398 

A-2 

non-VPN 

60.81 1,355.75 0.7477 

A-2 VPN 35.73 2,466.01 0.4058 

B 116.89 1,529.62 0.6786 
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4.5. Evaluation 

In the following charts (Figure 12, 13, 14, 15, 16, 

17, 18, 19); LSTM-FS (Offline), LSTM-FS 

(Online) precision and recall values are shown 

together with the work (C4.5) by Draper-Gil et al. 

[15]. They did flow-based classification. They got 

the best accuracy with the C4.5 algorithm. The 

purple columns in the charts correspond to their 

work; the values are from their paper, but there 

may be slight differences as they did not share the 

exact values. The blue columns represent offline 

LSTM results, while the green ones are online 

LSTM results. The reason for choosing precision 

and recall metrics is that Draper-Gil et al. only 

presented these values. They displayed the values 

per label: BRW (browsing), CHAT, STR 

(streaming), MAIL, VOIP, P2P, and FT (file 

transfer). Label BRW is left out from the graphs 

since our work does not contain this label. It can 

be generalized that offline LSTM performs the 

best, followed by online LSTM. Please note that 

the comparison between our method and Draper-

Gil et al.’s could be fairer if we used the same 

labeling. Even though we used the same dataset, 

this was not possible since they did not share how 

they labeled each PCAP file. For example, it is 

unclear which PCAPs they associated with the 

label BRW. 

 

Figure 12 Precision comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario A-1 

 

Figure 13 Recall comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario A-1 

For scenario A-1, this study gives much better 

results than theirs, and there is not much 

difference between offline/online LSTM. As 

precision is related to false positives, we can infer 

that all three algorithms are prone to mislabeling 

as VPN where the actual label is non-VPN. On the 

other hand, a higher recall means a lower number 

of false negatives, which suggests that all three 

algorithms are better at identifying VPN traffic 

than non-VPN. Since there are only two labels for 

this scenario, precision and recall gave similar 

meaning results. 

 

Figure 14 Precision comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario A-2 non-

VPN 
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Figure 15 Recall comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario A-2 non-

VPN 

Scenario A-2 precision results show that except 

for VOIP and P2P our both algorithms excelled 

(especially for CHAT, STR, and MAIL). Offline 

LSTM is generally better than online; for FT, 

online LSTM has the best result. The difference 

between both algorithms stands out for VOIP and 

P2P. Furthermore, for P2P, C4.5 performs better 

than online LSTM. Label CHAT seems to have 

more false positives than the other labels for all 

algorithms. Regarding recall results, online 

LSTM now beat C4.5 for P2P. It means that even 

though C4.5 gives fewer false positives, it gives 

more false negatives for P2P. Interestingly, for 

VOIP, C4.5’s recall result is better than both of 

our algorithms’. C4.5 is especially good at 

differentiating VOIP among other non-VPN 

labels. 

 

Figure 16 Precision comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario A-2 VPN 

 

Figure 17 Recall comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario A-2 VPN 

Offline LSTM stands out for its Scenario A-2 

VPN-CHAT precision result, whereas online 

LSTM performed the worst. For the rest of the 

labels, our algorithms performed much better than 

C4.5. However, VPN-VOIP results are close. 

VPN-MAIL recall result for online LSTM is 

especially low. 

 

Figure 18 Precision comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario B 

 

Figure 19 Recall comparison of [15], LSTM-FS 

(Offline), LSTM-FS (Online) for Scenario B 

C4.5 VOIP and VPN-VOIP precision 

performance are surprisingly not good for 

Scenario B, even though it excelled for Scenario 

A-2 non-VPN and VPN. It can be said that when 

non-VPN and VPN labels are mixed C4.5 

struggles to identify correctly. Both algorithms 

seem to be better at this. Online LSTM especially 

struggles with P2P and VPN-FT. C4.5 VOIP and 

VPN-VOIP recall results are still good; however, 

none of the recall results beat our algorithms. 

Byte Segment Neural Network [27] spends 43 

msec for each data sample at the training phase, 

and the total training time is 123 minutes. On 

average, training takes at most 68.29 seconds with 

LSTM-FS for Scenario B. Thus, processing 

overhead per sample is 0.5 msec, since Scenario 

B consists of 120,000 data. On the other hand, 
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they measured the average time to deal with a 

sample during online classification as 2.97 msec 

and shared that for Securitas [28] this is 7.01 

msec. Packet processing overhead is at most 

0.7477 msec with LSTM-FS for Scenario A-2 

non-VPN.  

5. CONCLUSION 

The problem we tried to attack is to classify 

encrypted packets using the packet headers. An 

LSTM deep learning model trained with features 

that can be taken directly from a network packet 

is presented in this study. The method yields valid 

results regarding both its speed and accuracy, 

outperforming a well-known machine learning 

study. Compared to the only paper that shared its 

online classification results [27], the LSTM 

model presented in this paper gave better results 

in terms of speed. We are confident that this 

model can be used for real life situations. 

The design presented in this study can be easily 

used not only for categorization but also for other 

types of traffic classification (e.g., protocol or 

application classification). All that needs to be 

done is to pre-label the input data correctly and 

introduce these labels to the algorithm. In 

addition, a new feature can be easily added to the 

algorithm, or an existing feature can be removed. 

For these reasons, it can be said that this study will 

be instrumental in paving the way for many future 

studies such as intrusion detection systems. 
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