
Sakarya University Journal of Science
SAUJS

e-ISSN 2147-835X Period Bimonthly Founded 1997 Publisher Sakarya University
http://www.saujs.sakarya.edu.tr/

Title: Real-Time Encrypted Traffic Classification with Deep Learning

Authors: Deniz Tuana ERGÖNÜL, Onur DEMİR

Recieved: 2021-11-23 00:00:00

Accepted: 2022-03-08 00:00:00

Article Type: Research Article

Volume: 26
Issue: 2
Month: April
Year: 2022
Pages: 313-332

How to cite
Deniz Tuana ERGÖNÜL, Onur DEMİR; (2022), Real-Time Encrypted Traffic
Classification with Deep Learning. Sakarya University Journal of Science, 26(2),
313-332, DOI: 10.16984/saufenbilder.1026502
Access link
https://dergipark.org.tr/tr/journal/1115/issue/69580/1026502

New submission to SAUJS
http://dergipark.gov.tr/journal/1115/submission/start

Real-Time Encrypted Traffic Classification with Deep Learning

Deniz Tuana ERGÖNÜL*1, Onur DEMİR1

Abstract

Confidentiality requirements of individuals and companies led to the dominance of encrypted

payloads in the overall Internet traffic. Hence, traffic classification on a network became

increasingly difficult as it must rely on only the packet headers. Many vital tasks such as

differential pricing, providing a safe Internet for children, and eliminating malicious

connections require traffic classification, even if the payload contents are encrypted. Encrypted

traffic is harder to classify as packet content becomes unreadable. In this work, we aim to

provide an insight into traffic classification using encrypted packets in terms of both accuracy

and packet processing time. LSTM (Long Short-Term Memory) architecture is a good

candidate for this problem as it can handle sequences. Each flow can be modeled as a sequence

and patterns of the sequences can provide valuable information. We compare the performance

of LSTM with other methods in both real-time and offline experiments. Compared to a machine

learning method both online and offline LSTM excelled with precision and recall differences

up to 50%. Average accuracy with LSTM was measured as 97.77% offline and 91.7% in real-

time. Average packet processing time in real-time was recorded as 0.593 msec which is 5 times

faster than a recent work that uses LSTM method.

Keywords: Deep learning, neural networks (Computer), computer communication networks,

classification

1. INTRODUCTION

In traffic classification, the principal aim is to

recognize and name different groups of packets

using the information available at the network

level. Identifying the class of a network packet

can be used for running predefined rules on it,

such as ensuring the quality of service promised

to the customer, detecting malicious user

activities, or dropping certain content for parental

control [1]. Classification can be in terms of the

application, protocol, or category of a packet [2];

* Corresponding author: dtergonul@gmail.com
1 Yeditepe University, Faculty of Engineering

E-mail: odemir@cse.yeditepe.edu.tr

ORCID: https://orcid.org/0000-0003-2945-0833, https://orcid.org/0000-0002-1088-6461

for example, WhatsApp Web application, HTTPS

protocol, chat category; Skype application, TLS

protocol, VoIP category. The need for

classification comes from different reasons such

as offering specialized internet packages

according to customer needs (prioritizing online

gaming traffic and reducing latency in the game

for an online gamer), setting a special discount for

social media platforms (e.g., Facebook, Twitter),

or managing traffic of protocols that use too much

bandwidth such as BitTorrent. Mostly, it is the

focus of ISPs (Internet Service Provider) and

Sakarya University Journal of Science 26(2), 313-332, 2022

defense industry units of countries; however,

every institution can benefit from a dedicated

solution whether it is online or offline [3].

Labeling of pre-captured network packets is

called offline classification; online classification

is when they are labeled one after another in real-

time [4].

Classification is usually performed on

bidirectional flows instead of a single packet. A

flow is a set of packets exchanged between two

distinct networks, using the same transport

protocol (e.g., TCP, UDP) and port numbers.

What identifies a flow is called a five-tuple:

transport protocol, source IP, destination IP,

source port, destination port. In a bidirectional

flow, packets that have their IP and port pairs

reversed also counts. Once a flow is labeled, any

packet that belongs to that flow can be labeled as

the same.

The oldest and easiest method of classifying a

flow is querying for its port numbers in IANA’s

(Internet Assigned Numbers Authority) Service

Name and Transport Protocol Port Number

Registry [5]. Although practical in respect of time

and effort, this technique is not very reliable. The

applications can pick other ports to communicate

with each other rather than using the standard

ports. Usage of nonstandard ports jeopardizes the

reliability of this method. There is even a term

called port obfuscation [6]. Protocols using

obfuscation (e.g., VPNs) willingly avoid using the

standards to hide their identity.

A somewhat more advanced way to classify flows

is to do deep packet inspection (DPI), in other

words, to analyze all layers of packets, including

packet payload. An unencrypted payload can give

a clear idea of what protocol a packet uses. Some

protocols have unique patterns (signatures) which

can be directly used to label packets. Regular

expression databases are generated to store this

information. However, maintaining such a

database is a tedious job. On the other hand,

payload encryption got popular over the years. As

an example, Google Transparency Report [7]

(Figure 1) shows that the preference for HTTPS

over HTTP has increased significantly in the last

seven years, from 48% in 2014 to 95% in 2021.

Encryption changes the content of packets in such

a way that they are no longer human-readable. For

this reason, it becomes very challenging to find an

easily recognizable pattern in the payload.

Figure 1 Encrypted traffic across Google

Statistical flow classification is another valid

method that uses features such as average packet

inter-arrival times, packets per second, byte

frequencies, etc. [6].

In recent years, research on machine learning and

deep learning models intensified, since the

accumulation and storage of data has become

easier and cheaper. The advantages of these

models are that they can be trained offline with an

abundant amount of training data. As it is for

many learning problems, feature selection may be

considered a tedious task, but it is possible to

make a model learn how to do that on its own.

Deep learning is a relatively new technology for

flow classification. There are not many research

papers yet, especially with an LSTM model, and

the existing ones usually do offline classification

[8]. Thus, the elapsed time, a critical performance

measure for online classification, does not get

mentioned.

One of the challenges of traffic classification is

data, as it is for almost all learning problems.

Tools such as Wireshark [9] can collect live traffic

into packet capture (PCAP) files. The difficulty

here is that the collected data is often noisy. The

packets which do not fall in any of the main

categories are noise. The operating system,

services running in the background, other

applications, or services that applications use

might be the reason for the noise. It is crucial to

feed learning models with clean data since any

noise might cause them to make incorrect

connections, leading them to deduct unreliable

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 314

knowledge. Thankfully, there is a very common

public dataset named ISCXVPN2016 (UNB

ISCX Network Traffic Dataset) [10] that is used

prevalently in this area. However, it is worth

noting that a model trained with data obtained

from a particular network may not perform well

on a different network [11].

This work aims to classify flows, even if they

contain encrypted packets, as to their categories,

in real-time. Encryption adds a new difficulty

level since the packet payload becomes

indecipherable to infer a piece of information

from it without decryption. This difficulty has no

effect on the proposed solution because the

solution does not require the examination of

packet payloads. Crucial metrics for this work

include accuracy, and elapsed time for processing

(analyzing and classifying) a single packet. The

biggest goal of the study is to examine the

performance of an LSTM model named LSTM-

FS (LSTM with Flow Sequences) for the

categorization problem both offline and online, to

find out accuracies, to observe the number of

packets processed per second in the online

environment, and the processing time of a single

network packet.

Here is the list of questions this study intends to

shed some light on:

• Why is LSTM a good candidate for the

traffic classification problem?

• How to model this problem for LSTM?

• How does LSTM perform both accuracy

and timewise?

The reason for choosing LSTM is that it has a

memory where earlier sequences of packets can

be remembered. LSTM, a variant of RNN

(Recurrent Neural Network), can store

information for a while and use this information

for future predictions. It has structures called

gates which let information be stored or forgotten.

This approach allows LSTM to perform well with

data sequences. For instance, LSTM has been

used for NLP (Natural Language Processing)

problems because words in a paragraph are

somehow related, and LSTM can figure out these

relationships. Similarly, network packets also

have temporal information thus can be handled in

sequences. What is inside an encrypted network

packet is often a mystery; it is not straightforward

how to obtain information from them with

techniques such as DPI. It is both challenging and

time-consuming for the human eye to find

consistent patterns for each label when payloads

are encrypted. However, LSTM can make

deductions from data that are not directly visible.

There are four scenarios to test LSTM-FS. The

first scenario is to detect whether the traffic is

VPN or not. In the second scenario, six non-VPN

categories (chat, email, file transfer, P2P,

streaming, VoIP) exist to label the given data. The

third scenario only includes VPN versions of

these six categories. In the last scenario, with the

second and third scenarios combined, labeling is

made among six non-VPN and six VPN

categories. Along with offline tests, online

simulations also exist for each scenario of LSTM-

FS. LSTM-FS gave good results with respect to

speed and accuracy.

Section 2 includes briefs of 11 studies in the

traffic classification field. At the end of it, there is

a table that summarizes the big picture. The

problem is explained along with the presented

solution in Section 3. Section 4 introduces the

environment in which the tests ran, the test

scenarios, the data and its usage, and the

parameters; it contains test results. Inferences

made following the tests are shared in Section 5;

possible improvements and new ideas for future

work are also discussed.

2. BACKGROUND

In this section, we tried to compile a

comprehensive list of related studies to our work.

One of the studies included in this section is a

purely statistical method, while three of them

consist of machine learning models trained with

statistical features. There is a survey paper about

deep learning methods that also underlines the

difficulties of encrypted traffic classification. The

remaining works are all deep learning methods,

and two of which are LSTM. Most of the

classification involves grouping based on

protocols, applications, or other categories. Only

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 315

the last study mentions real-time classification.

ISCXVPN2016 [10] stands out as the major

dataset used.

Statistical Protocol Identification (SPID) [12-14]

is an open-source project that accepts PCAP files

as input to generate protocol models by

examining flow and payload statistics. Before any

classification can be performed, the user must

initiate training by feeding pre-labeled PCAP files

to SPID. At the training phase, for each flow in a

pre-labeled PCAP, a protocol model is generated.

SPID stores the generated models in a database. If

there exists another model with the same label, the

two models get merged. At the testing phase, a

new model is generated that corresponds to the

current session; then, it is compared with the

models in the database. SPID algorithm uses

packets with payload in a session to calculate

some features (attribute meters). A protocol

model is made of these meters. There are 34

available, 7 of them are flow-level, and 27 are

payload-level. Each one has a counter vector of

size 256 that has a unique meaning for the meter.

For example, ByteFrequency is a payload-level

meter that interprets this vector as a list of ASCII

characters where index 65 corresponds to the ’A’

character. Each meter calculation returns a list of

indices for the meter’s counter vector. The

elements at these indices are increased by 1. The

researchers got an average of 100% precision and

92% recall when tested with BitTorrent,

eDonkey, HTTP, SSL, and SSH flows.

Characterization of Encrypted and VPN Traffic

Using Time-Related Features [15] is a significant

study for two reasons: they provide a public

dataset named ISCXVPN2016 which has been

used by many researchers through the years, and

they present a machine learning approach for flow

classification. The dataset consists of various

PCAPs, and it is 26.2 GB large. The files can be

grouped into 14 different categories: chat, email,

file transfer, P2P, streaming, VoIP, VPN chat,

VPN email, VPN file transfer, VPN P2P, VPN

streaming, VPN VoIP, Tor (The Onion Router)

browsing, Tor streaming. They calculate a total of

24 time-based, statistical features to perform

classification. The main features include flow

duration, the time between two successive packets

(in the forward, backward, and both directions),

the time a flow is active and idle, flow bytes per

second, and flow packets per second. Other

features are the minimum, maximum, average,

and standard deviation of these features. They

employed four flow timeout values 15, 30, 60, and

120; to find out 15 is the most accurate. They had

accuracy levels above 80%.

Yamansavascilar et al. [11] used machine

learning algorithms J48 (also known as C4.5),

Random Forest, k-Nearest Neighbors (k-NN), and

Bayes Net to identify popular consumer

applications such as Facebook, Twitter, and

Skype. Just as we do in this paper, the

ISCXVPN2016 dataset is made use of along with

an internal dataset. For applications that are

available on mobile phones, they captured cellular

traffic as well.

The datasets contain 15,462 and 3,748 flows,

respectively. They chose 111 features, but the

selection procedure of these features is not

unclear. Accuracy varies between 85.44%-

93.94% for the external dataset and 69.90%-

90.87% for the internal. Using evaluators, they

succeeded in decreasing the number of features as

down as 12; while maintaining the accuracy

levels. They realized that the misclassified

samples are often in the same category. Therefore,

category classification before application

identification can be considered as future work.

Bagui et al. [16] compared the performance of six

supervised machine learning techniques: Logistic

Regression, Support Vector Machine (SVM),

Naive Bayes, kNN, Gradient Boosting Trees, and

Random Forest, in terms of accuracy, precision,

sensitivity, and specificity. They utilized the same

24 time-related features in [15] along with the

ISCXVPN2016 dataset. Separately for each

category (browsing, chat, email, file transfer, P2P,

streaming, VoIP), they did binary classification to

identify if traffic is VPN encrypted or non-VPN

encrypted. The sample distribution within each

category is well-balanced (almost 50%-50%).

Sample amounts range between 1,113 and 10,000,

not enough to try out deep neural networks, as

they state. Gradient Boosting Tree and Random

Forest outperformed the other methods in respect

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 316

of all metrics with values around 94%. Aiming for

high accuracy and low overfitting, they used grid

search to find an optimal, work-for-all set of

hyperparameters which increased the values by a

few percent. Additionally, through feature

selection, they ordered a minimum set of features

by importance for each category. Although

feature selection deteriorates accuracy results to

90%, they claim that it can be advantageous

where speed matters more, but they did not

present any experiment results backing this

assumption.

One-dimensional Convolutional Neural Network

(1-D CNN) is a model for traffic identification

and classification. Wang et al. [17] claimed

network traffic as sequential data. They argue that

solution becomes more prone to get stuck at a

local minimum when a problem is divided into

sub-problems. Consequently, they present an end-

to-end solution where feature extraction, feature

selection, and classifier are one [16]. In other

words, their model takes raw data and learns

features on its own. They used the ISCXVPN2016

dataset, excluded capture files that are vague.

(e.g., Both browsing and streaming is a suitable

label for “Facebook_video.pcap”, they say.) To

do data pre-processing, they adopted a toolkit of

their team named USTC-TK2016 [19] which

transforms capture files into images. Wang et al.

noticed that the images generated for same-class

flows looked very similar. They observed that

bidirectional flows yield higher accuracy than

unidirectional ones; and as opposed to using only

the application layer of a packet, using all layers

is better. Since CNN accepts equally long data,

they employed only the first 784 bytes of each

flow. How many samples they had for each

category is not addressed in the paper. However,

they did mention an imbalance in the dataset as a

future concern. They did four experiments: binary

classification between VPN and non-VPN data,

category classification among non-VPN, VPN,

and mixed data. Best accuracy results were

respectively 99.9%, 83%, 98.6% and 86.6%.

They also pointed out that 1-D CNN delivers

better performance than two-dimensional.

Rezaei and his team [8] provided a survey paper

about traffic classification with deep learning

techniques, namely, Multi-Layer Perceptron

(MLP), CNN, RNN, Autoencoder, and

Generative Adversarial Network. They

emphasized the challenging aspects of this field,

such as data collection. They state that other than

ISCXVPN2016 and a few others, there is not a

publicly available and widely used dataset.

Researchers tend to capture data on their own,

specific to their needs. Because of background

traffic caused by routers, operating systems, et

cetera, collecting noiseless capture files is far

from an easy task. Another issue is that a model

trained with a particular network’s data might

perform way worse when tested on another

network or even on the same network but under

different circumstances (i.e., high congestion).

They also stressed how to tackle encrypted traffic.

For example, time-series features such as inter-

arrival time are not changed by encryption,

because they do not depend on packet payloads.

Using the payload of the first TCP packets may

still be convenient since the handshake stays

unencrypted. However, the authors also pointed

out that newer encryption protocols such as QUIC

and TLS 1.3 remain open for investigation. Other

problems they discussed are zero-day applications

(classes the model has not seen yet), multi-label

classification (one flow carrying multiple

classes), middle flow classification (classification

using packets from the middle of the flow),

transfer learning, and multi-task learning.

Deep Packet [20] can identify the protocol or

application to which a packet belongs (by 98%

recall), label it by its category while

differentiating VPN from non-VPN (94%).

Lotfollahi et al. used the ISCXVPN2016 dataset

by dividing it into 17 application classes for the

first experiment: 6 VPN, 6 non-VPN category

classes for the second. Instead of flows, they work

with packets, and the packet distribution within

each set of classes is highly imbalanced. (e.g., 5K

AIM vs. 7872K FTPS, 13K VPN email vs. 5120K

VoIP) To handle this matter, they did under-

sampling; they excluded samples from dominant

classes. Their model consists of two parts: stacked

autoencoders and 1-D CNN. The autoencoders

take care of feature extraction automatically,

eliminating the need for an expert. Since inputs

fed into a NN must be fixed length, they decided

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 317

on 1500 bytes after examining packet length

histogram. Some pre-processing steps are

padding UDP headers (so they become equal

length with TCP), discarding TCP handshake and

DNS packets (bring no useful information), and

masking IP addresses (causes over-fitting). They

explain how their model can classify encrypted

packets with the following hypothesis: although

encrypted, packets of the same application may

still contain consistent patterns. This hypothesis is

also how they justify why their model failed to

classify Tor categories.

Parchekani et al. [21] adopted the ISCXVPN2016

dataset and a local ISP’s data to classify five non-

VPN (chat, email, FTP, streaming, VoIP), and one

VPN class which symbolizes all kinds of VPN

traffic. They fed each flow’s first 784 bytes into

their models. The models consist of MLP and

RNN layers. To receive the best precision values

(above 80%), they tried two approaches: score

and distance. Their study reveals that distance is a

better metric than score. Both include a definition

of a threshold parameter to either accept or reject

a label. For the given input, in the first approach,

each candidate non-VPN label gets a score. If the

one with the maximum score is less than the

threshold, it gets rejected. In the second approach,

candidates get a distance value; and if the label

with the minimum distance is more than the

threshold, it is not accepted. In both cases,

rejection means classification as VPN. Accepted

ones go through a second phase where their

category decision becomes finalized. To

accomplish this, they use other thresholds to

decide if another classification is necessary.

With his team, Zhou [22] combined entropy

estimation with traditional machine learning

methods SVM, Random Forest, Naive Bayes, and

Logistic Regression along with a NN, to

distinguish VPN from non-VPN on the

ISCXVPN2016 dataset. Compared with metrics

from past works, results improved by 1% to 7%,

with Random Forest remaining the best method

(98%). Additionally, they built a NN which takes

23 statistical features (from [15]) as input to

classify Tor data (ISCXTor2016 [23]) into 8

categories, as opposed to 7 seen in prior works.

(Streaming is divided into two labels: audio and

video) With this model, they improved some of

the previous studies’ metrics by nearly 30%. They

also examined the 23 features using principal

component analysis and found that it is possible

to eliminate half of the features without

significantly sacrificing accuracy.

Network traffic classifier by Lopez-Martin et al.

[24] integrated LSTM on top of CNN to classify

a dataset from RedIRIS [25], which contains

266,160 flows with 108 applications. They used

nDPI [26], an open-source DPI library, to label

the data. Label distribution is quite imbalanced;

almost half of the data is HTTP, followed by DNS

with 20% and SSL with 15%. After trying out a

few combinations, they settled on five features:

source port, destination port, payload length, TCP

window size, and packet direction. (96%

accuracy) They observed that adding timestamp

as a feature did not enhance the results. Before

further experiments, they set the sequence length

as 20 packets. For each flow, they discarded the

packets after the 20th; and if the flow was not long

enough, they employed padding. Later they

realized that a length of 5 to 15 is sufficient for

good results. Among models CNN-only, RNN-

only, and CNN with LSTM, the latter performed

the best with an accuracy of 96%.

Byte Segment Neural Network is a model by Liu

et al. [27] based on RNN variants LSTM and

GRU (Gated Recurrent Unit) to classify protocols

and applications DNS, BitTorrent, PPLive, QQ,

SMTP, 360, Amazon, Yahoo, Cloudmusic, and

Foxmail. The real-world data they used consisted

of 2,516 (DNS) to 55,576 (Cloudmusic)

samples/datagrams. All header information

(Ethernet, IP, TCP/UDP) got removed from

datagrams. The segment generator splits the

payload into equally length byte segments.

According to their experiments, the most practical

length is 8, against 3, 5, and 10. Compared to

nDPI and a binary classifier named Securitas [28],

they got better results for 5 of the applications

considering recall, precision, and F-score. They

have an average F-score of 95.82%. In the training

phase, it takes 43 msec on average to prepare

input, and 20 epochs of training take 123 minutes,

whereas, in the testing phase, processing a

datagram takes 2.97 msec.

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 318

Table 1 Related Work

Paper Classification Method Features

Statistical Protocol IDentification with SPID:

Preliminary Results [14]

Protocol Statistical 7 flow-level,

27 payload-

level

Characterization of Encrypted and VPN Traffic Using

Time-Related Features [15]

Category k-NN, C4.5 (J48) 24 time-based

Application Identification via Network Traffic

Classification [11]

Application J48, Random Forest,

k-NN, Bayes Net

111 (Reduced

to 12)

Comparison of machine-learning algorithms for

classification of VPN network traffic flow using time-

related features [16]

Category Logistic Regression,

SVM, Naive Bayes,

k-NN, Gradient Boosting

Trees, Random Forest

24 time-based

End-to-end Encrypted Traffic Classification with

One-dimensional Convolution Neural Networks [17]

Category 1-D CNN First 784 bytes

of a flow

Deep Packet: A Novel Approach for Encrypted Traffic

Classification Using Deep Learning [20]

Protocol,

Application,

Category

Stacked autoencoders

+ 1-D CNN

First 1500 bytes

of a packet

Classification of Traffic Using Neural Networks by

Rejecting: A Novel Approach in Classifying VPN Traffic

[21]

Category MLP + RNN First 784 bytes

of a flow

Practical evaluation of encrypted traffic classification

based on a combined method of entropy estimation and

neural networks [22]

Category Entropy estimation

+ (SVM, Random Forest,

Naive Bayes,

Logistic Regression, NN)

23 time-based

Network Traffic Classifier with Convolutional and

Recurrent Neural Networks for Internet of Things [24]

Protocol,

Application

CNN, RNN,

CNN + LSTM

5

Byte Segment Neural Network for Network Traffic

Classification [27]

Protocol,

Application

LSTM, GRU Equal length

byte segments

Table 1 consists of all the studies summarized

except Deep Learning for Encrypted Traffic

Classification [8], a survey paper. Classification

is usually done based on protocol, application, or

category. The methods used include purely

statistical methods as well as decision tree

solutions with statistical features. Tree-based

machine learning methods have gradually started

to be replaced by deep learning methods. Features

used include both flow-level and payload-level

information. Specifically, the use of time-based

features is quite common. All studies except the

last take place offline.

Unquestionably, the work of Draper-Gil et al.

stands out in this area. Noise-free data is a big

problem in traffic classification as in almost every

field; Draper-Gil and his team present a quality

dataset that is used by many researchers after

them. This dataset is quantitatively full enough to

be used even for deep learning solutions; plus, it

consists of popular applications (such as

YouTube, Netflix, Skype, etc.). Besides, it can

easily be seen that the 24 time-based features they

offer inspired many studies.

The five features used by the penultimate study,

one of the 2 studies that use LSTM, are taken

directly from the packets as in this study (LSTM-

FS). Unlike that study, there are 23 features

defined in LSTM-FS. They use flows of length 20

as sequences, any flow longer gets its packets

discarded, and any flow shorter gets padded. On

the contrary, the length of 10 is used in LSTM-

FS, and no packets get discarded; instead, they are

handled in new sequences. The other LSTM-

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 319

based study only checks payloads, which is

different than in LSTM-FS. They are the only

researchers who shared elapsed time results. They

report 2.97 msec as the average datagram

processing time; our proposed solution LSTM-FS

performs 5 times faster than their solution.

3. METHODOLOGY

In this section, our proposed solution for traffic

classification, LSTM with Flow Sequences

(LSTM-FS), is described. The section is divided

into five subsections for flow generation (3.1.),

feature extraction (3.2.), creating train and test

data (3.3.), model generation (3.4.), and testing

offline/online classification (3.5.).

Our solution operates with PCAP files; and

includes libpcap [29], a C/C++ library for

network traffic capture operations. Wireshark [9],

which is a well-known opensource network

packet analyzer, also utilizes this library. The

solution supports Ethernet as data link layer

(Layer 2, L2) protocol; IPv4 as network layer

protocol (Layer 3, L3); TCP and UDP as transport

layer (Layer 4, L4) protocols. Raw IP packets

which do not involve a data link layer at all are

not supported directly. Instead, these PCAPs are

modified with a tool named tcprewrite [30] so that

their packets have fake Ethernet layers.

3.1. Flow Generation

The first step of our solution for the traffic

classification problem is bidirectional flow

generation; in other words, identifying the packets

with the same endpoints and ports so that they are

associated with the same flow. Since its five-tuple

uniquely describes a flow, after a given packet is

analyzed, it is grouped with the others which have

the same L4 protocol, source-destination port, and

IP pairs. In our design, a flow is strictly related to

at least one non-dummy packet (A dummy

packet’s all features appear as -1.), and a

classification label.

3.2. Feature Extraction

In our solution, packets hold almost everything

one can obtain from a network packet except the

payload. We exclude capture length, MAC

addresses, IP addresses, IP Identification,

fragmentation-related IP fields, and checksums

since these are not used for classification. Other

left-out fields are Ethernet type, IP version, and

Protocol field of IP header, as these are identical

for all packets (IPv4, 4, TCP/UDP, respectively).

Packet fields shown in Table 2 directly

correspond to features to feed into the learning

model. Valid packet directions are forward and

backward. TCP fields are all set to 0 for UDP

packets and vice versa. It is important to note that

packets lined up in a PCAP file may not represent

their actual order. That is why epoch time is a

more reliable reference since it indicates when a

packet is captured.

Table 2 Packet fields

Field Definition

direction Packet direction

actualLength Length on wire, frame length

arrivalTime Epoch time

ipHeaderLength IP header length (IHL)

ipTypeOfService Type of Service (TOS) field of IP

header

ipTotalLength IP header length + IP data length

(datagram length)

ipTimeToLive Time to Live (TTL) field of IP

header

tcpSrcPort TCP source port

tcpDestinationPort TCP destination port

tcpSeqNumber Sequence number field of TCP

header

tcpAckNumber Acknowledgement number field

of TCP header

tcpHeaderLength TCP header length (HLEN, data

offset)

tcpReserved Reserved field of TCP header

tcpFlags Flags field of TCP header

tcpWindowSize Sliding window size field of TCP

header

tcpUrgentPointer Urgent pointer field of TCP

header

udpSrcPort UDP source port

udpDestinationPort UDP destination port

udpLength UDP header length (8 bytes)

+ UDP data length

3.3. Creating Train and Test Data

To create training and testing data, we first

examine PCAP files under subdirectories of a

given directory. Subdirectory names get

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 320

interpreted as labels. After all the PCAPs get

examined, sample creation will take place, as

shown in Figure 2.

Figure 2 Sample creation flowchart

For each flow, a set of samples get created. A

sample is a flow sequence which is part of a flow

and consists of at least one non-dummy packet.

Sequences have a preset length of 10. Thus, flows

with fewer packets get padded with dummy

packets (Figure 3). On the other hand, for flows

with more packets, extra samples are created. To

be exact, every 10 consecutive packets in a flow

becomes a sample (Figure 4). Users can choose

whether they want the data to be balanced per

label or not. This way, any deprivation an

imbalanced dataset may cause (e.g., over-fitting)

can be prevented by under-sampling. If no

balancing should occur, the algorithm will output

label weights for the learning model to use. After

samples are created, (optionally) balanced, then

shuffled, 85% of them are training data, and the

rest is testing data. It is crucial to emphasize that

packets in a sequence must be in order. So,

shuffling samples only means swapping ten

packets in bulks.

Figure 3 Sample creation when the number of

packets in flow is less than 10

Figure 4 Sample creation when the number of

packets in flow is greater than 10

Samples go through one more step before being

written to the relevant file; feature scaling.

Equation 1 shows min-max normalization

(rescaling) formula where xi is the original value

for ith sample, and xi
0 is the normalized value. This

requires finding the minimum and maximum

values for each feature. Note we only consider

TCP packets for the calculation for TCP-related

features. Naturally, the same applies to UDP as

well. Dummy packets are not considered for

scaling. Next, invalid features are determined. If

the minimum and maximum values are equal or if

at least one of them is undefined, the feature is

invalid. Invalid features will not appear in training

and testing files.

𝑥𝑖
′ =

𝑥𝑖 − min(𝑥)

max(𝑥) − min(𝑥)
 (1)

One of the goals of this work is to come up with a

feasible solution for online classification. To

properly test this solution, an online environment

or a realistic simulation is required. Our outputs

are training and test datasets as CSV files; the test

data is also extracted as a single PCAP file

(dummy packets excluded) where its packets are

shuffled using Algorithm 1. This mixed data is

more representative of an online setting than data

in which flow sequences come in sizes of 10 one

after another. Function nextPacketID ensures that

packets stay in order in their flows (Figure 5). The

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 321

new packet series gets dumped to a PCAP file

beside a text file for each packet label.

1: function shufflePackets

2: packets ← []

3: availableFlowCount ← size(flows)

4: while availableFlowCount > 0 do

5: f ← random(availableFlowCount)

6: p ← nextPacketID(f)

7: if ID(p) ≠ −1 then

8: Add p to packets

9: else ► End of flow

10: availableFlowCount ←

availableFlowCount – 1

11: Remove f from flows

12: end if

13: end while

14: end function

Algorithm 1 Algorithm to shuffle packets

retaining order in their flows

Figure 5 Valid shuffle examples

3.4. Model Generation

Our solution includes a Python program that uses

TensorFlow [31] and Keras [32] libraries. The

program builds a learning model, trains it with

given data, and serializes it. The serialized model

is imported through an API named CppFlow [33].

Its first layer, the masking layer, helps disregard

dummy values, such as values of dummy packets.

The second layer, LSTM, is the heart of the

model. LSTM is an RNN variant that utilizes

gates to decide what to remember and forget from

information learned so far. Considering its

success with modeling sequential data, series of

consecutive packets are also expected to fit in this

model. Packets of a flow are never entirely

independent from each other. LSTM might be

able to figure out dependencies and different

kinds of relations among data. Dropout is a

reasonable parameter for an LSTM layer that

combats with over-fitting by dropping some of the

gathered information. Last is the dense layer; it

has a unit for each label, and its activation

function is SoftMax. This function will assign

probability values for each unit stating how likely

is it for this label to be correct. The probabilities

will add up to 1. Model compilation configuration

is given in Table 3.

Table 3 Model compilation configuration

Optimizer Learning

Rate

Loss

Function

Metrics

Adam 0.001 Sparse

Categorical

Crossentropy

Sparse

Categorical

Accuracy

As the LSTM layer of Keras library requires data

to be in a 3D shape where x is the number of

samples, y is timesteps or sequence length (10),

and z is feature count, the input gets reshaped

accordingly. It is worth noting that the LSTM

layer can be structured to take varying lengths of

sequences by setting the input shape parameter’s

first value as none. However, batch training,

which reduces training time with the help of

parallelism, must still contain equal length

samples. For this reason, padding can be used.

The batch count parameter for the LSTM layer

and is set to 128. The output should contain a

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 322

single label for each sequence instead of each

packet.

Large datasets might take a lot of memory and

other resources of computers. Chunk size is an

advantageous parameter for this case. It is set to 1

million, and the model’s fit function runs for each

chunk. This means 1 million rows are processed

at a time; for example, if there are 10 million rows

in total, they are processed in 10 iterations. The

critical point here is to set the chunk size to such

a number so that there is enough RAM to handle

that many rows. Any number higher will result in

an insufficient memory error. The lower the

number is, the more the iterations. An optimal

number can be found by experiment. Another

parameter for fit is class weight. A class weight

map associates each label with a coefficient. If

data is imbalanced, these may help

underrepresented labels to get noticed more often.

The required coefficients are outputted during

train and test data creation. Other than fit, Keras

provides three more functions for the model:

compile, predict, and evaluate. Compile builds the

model based on a given configuration. Evaluate

assesses the model using the provided test input

and output. For adequate evaluation, test data

should be completely different from train data.

Finally, predict function takes a single input

sequence and returns the model’s prediction.

3.5. Testing Offline/Online Classification

Figure 6 Sequence (sample) creation when testing

For this case, our solution accepts a single PCAP

file as an input; and three text files: one for each

packet’s actual/expected label, another for feature

validities, and valid feature values required for

normalization. We utilize actual packet labels for

accuracy calculations, comparing expectations

with predictions, and creating a confusion matrix.

Since the learning model learns with a subset of

features, the same subset must be obtained during

testing. Similarly, the same scaling technique

must be applied to data with the values obtained

when training. Moreover, for normalization, any

packet value less than the relevant min value will

be elevated to the min, and a value more than the

max will be lowered to the max. Unlike when

train and test data creation take place, sequences

are created during analysis, not after all packets

are seen (Figure 6). Thus, each packet can be

directly sent to the classification model right after

being analyzed.

We let the user pick a number which will be the

number of packets to wait to get a classification

result. Since the model works with sequences of

(10) packets, it makes sense to assign this number

to at least 2. Any sequence having less than this

number of non-dummy packets will get skipped.

There is also a limit calculation for probability

found by the model (Equation 2, L is the number

of labels.). Packets with predicted results with less

will be labeled as unknown. This parameter can

be used to decrease the number of false positives.

Misclassifications are prevented by setting a

confidence limit; any prediction with lower

probability will be classified as unknown, instead

of accepting the predicted label no matter how

low the probability is. For instance, for 2 labels (L

= 2) we required the model to be more than 50%

(1/L) confident with its prediction. Thus 1.5 is

selected as the coefficient.

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐿𝑖𝑚𝑖𝑡 =
1

𝐿
1.5 (2)

3.5.1. Thread Utilization

A key factor for online traffic classification

simulation is packet sender-receiver threads. Two

threads run throughout the program, one being the

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 323

sender and the other is the receiver. The threads

work with a shared variable which is a fixed-size

buffer where packets are stored. The executable

uses lock mechanisms to prevent race conditions.

The sender’s job is to fill the buffer until there is

no packet left. It goes back to the beginning of the

buffer if the buffer is full and overwrites the old

content. It also lets the reader know where to start

reading and how many packets to read. This

number strictly cannot be greater than the buffer

size since this implies a packet drop. After every

sent packet the sender sleeps for 100 nanoseconds

which is the interpacket gap for a link speed of 1

Gigabit/second. An interpacket gap defines the

minimum await time between two packets. On the

other hand, the reader waits until the buffer is

nonempty. When it can acquire the lock, it copies

the relevant part of the buffer pointed by the

sender. It then forwards the copied packets for

classification. Thread organization helps answer

questions such as how many packets can be

classified in a limited amount of time; how this

number is related to buffer size, and how much

time it takes to process a single packet.

Although sender-receiver threads synchronize

well, it is nearly impossible to measure the time

elapsed for a single thread on a Windows

machine. This study is only interested in the

reader’s performance, how fast it can process a

packet and how many packets it can process in a

time frame. For this reason, to remove the sender

from the equation, a distribution is generated of

sent packet amounts from different program runs.

The type of distribution (e.g., normal,

exponential) is decided by examining these

amounts, and the related calculations are made

(e.g., mean and standard deviation for normal,

rate parameter for exponential). The runs are done

with all available cores (12). Random packet

amounts are generated using the distribution until

no packet is left. Up to the number of available

cores, for each random amount, a reader will be

spawned. For optimization, each thread will be

assigned to a specific core. Since the external

library class to represent the model may not be

thread-safe, each reader has its copy of the model.

4. TESTS AND RESULTS

This section describes the dataset used in this

work and how it is utilized, test scenarios, and

hardware features; test results for LSTM-FS

(LSTM with Flow Sequences) are given.

Comparisons were made among different studies.

4.1. Dataset

The experiments use the ISCXVPN2016 dataset

[10]. The dataset contains all encrypted packets:

non-VPN, VPN, and Tor samples. Tor is ruled out

from tests for the sake of simplicity. There exist

six non-VPN and six VPN categories for chat,

email, file transfer, P2P, streaming, VoIP. As

opposed to Draper-Gil et al. [15], this work does

not include the “browsing” label since the others

match better with the PCAPs. For the transport

layer, TCP and UDP are supported, the program

ignores ICMP and IGMP packets. PCAPs with

raw IP packets, almost all VPN data, are padded

with Ethernet headers. Doing this provides a way

to merge multiple PCAPs with different link

types.

4.2. Test Scenarios

The study by Draper-Gil et al. [15] has four test

scenarios: A-1, A-2 non-VPN, A-2 VPN, and B,

as summarized in Table 4. The same scenarios are

built for the method LSTM-FS to make

meaningful comparisons. In the first part of

Scenario A (A-1), the researchers split the dataset

into two labels, non-VPN and VPN, to feed into

Weka (Figure 7). In the second part of Scenario A

(A-2 non-VPN and A-2 VPN), they divide each

label’s data into six categories and handle both

separately (Figure 8 and Figure 9). In Scenario B,

this study uses 12 labels (six non-VPN and six

VPN categories) to perform classification in one

step. All experiment scenarios ran both offline

and online for LSTM-FS.

Table 4 Test scenarios

Scenario Labels

A-1 non-VPN, VPN

A-2 non-

VPN

chat, email, file transfer, P2P, streaming,

VoIP

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 324

A-2 VPN VPN chat, VPN email, VPN file transfer,

VPN P2P, VPN streaming, VPN VoIP

B chat, email, file transfer, P2P, streaming,

VoIP, VPN chat, VPN email, VPN file

transfer, VPN P2P, VPN streaming, VPN

VoIP

Figure 7 Input directory structure for Scenario A-1

Figure 8 Input directory structure for Scenario A-2 non-VPN

Figure 9 Input directory structure for Scenario A-2 VPN

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 325

4.3. Experimental Setup

4.3.1. Hardware Specifications

All tests are executed on a commercial PC with

Intel Core i7-8750H CPU @ 2.20GHz and 16 GB

RAM. The CPU has 12 cores.

4.3.2. Data Sampling

Since it takes too long to process millions of data

(See Tables 5, 6, 7), LSTM-FS creates sub-

datasets. For every scenario, 10,000 data is chosen

randomly per label (Figure 10), in a way that

packet order in sequences is preserved. For its

tests, it repeats this process five times to generate

five models.

Table 5 Scenario A-1 sample distribution before

sampling

Label Number of Samples

nonVpn 20,998,396

vpn 4,796,577

Table 6 Scenario A-2 non-VPN sample distribution

before sampling

Label Number of Samples

chat 91,509

email 18,329

fileTransfer 10,736,535

p2p 105,031

streaming 729,343

voip 7,459,544

Table 7 Scenario A-2 VPN sample distribution before

sampling

Label Number of Samples

vpnChat 80,497

vpnEmail 20,132

vpnFileTransfer 372,354

vpnP2P 419,646

vpnStreaming 1,510,282

vpnVoip 2,393,401

Figure 10 Model generation example (Scenario A-1)

4.3.3. Parameters

All LSTM-FS models use the same 17 features.

Features ipHeaderLength and tcpUrgentPointer

are discarded by the algorithm since they are the

same for all chosen samples. The feature scaling

method is normalization. Dropout is 0.1. The

sequence length is 10. 75% of the data is used to

train, 15% to validate, and 10% to test. Class

weight optional parameter is unused since there

already exists an equal amount of data per label.

Chunk size is 1 million, the batch count is 128.

Epoch count is 1. For scenarios A-2 non-VPN and

B, Adam learning rate was changed to 0.01 from

0.001. (This had an impact on accuracy around

3%.) For online classification, 1 sender and 11

reader threads test each model first. The goal is to

decide on an appropriate distribution type for sent

packet amounts to replace the sender thread. The

packet buffer is made large enough to prevent

packet drops. 10 tests run to get average accuracy

and time results. There is no restriction on how

many packets LSTM-FS should see before

classification; every sample immediately enters

the classification model. A sample is classified as

unknown if the best probability is under a limit

which a formula given in Section 3 calculates.

4.4. Test Results

Average accuracy results, and average elapsed

times are shared for all test scenarios. Time values

presented are in seconds; averaged results denote

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 326

that the related test ran five times. Accuracy

column corresponds to correctly classified

instances percentage; precision, recall, and F-

measure are weighted averages.

4.4.1. Offline Classification

Table 8 exhibits the average accuracy results of

offline classification with LSTM-FS for all

scenarios. Table 9 shows the average elapsed

times.

Table 8 LSTM-FS (Offline) average accuracy results

Scenario Accuracy Precision Recall F-Score

A-1 99.818 0.9982 0.9982 0.9982

A-2

non-VPN

97.988 0.9804 0.9799 0.9799

A-2 VPN 96.828 0.9691 0.9683 0.9683

B 96.43 0.9658 0.9643 0.9644

Table 9 LSTM-FS (Offline) average elapsed times

Scenario Data Generation Training Testing

A-1 562.73 12.68 2.39

A-2

non-VPN

291.39 25.96 3.54

A-2 VPN 26.62 28.08 3.73

B 432.17 68.29 7.36

4.4.2. Online Classification

After five runs for the first model, as can be seen

from Figure 11 that the sender tends to send a low

number of packets rather than a high number. In

other words, the sender rarely holds the CPU for

long and sends a high number of packets at once;

on the contrary, it releases the CPU quite often,

resulting in a lower number of piled-up packets.

The mean and standard deviation is 81.3062 and

497.534, respectively. The exponential

distribution fits this data. The rate parameter (λ)

is 0.0122 (1/μ).

Figure 11 LSTM-FS (Online) Scenario A-1 model 1

sent packet amounts histogram

The maximum amount of sent packets is 7,970.

However, the packet buffer size is decided as

25,000 since further experiments showed that

sometimes each reader gets a few packets, then

the remaining packets are received by the one who

finishes reading first.

Table 10 exhibits the average accuracy results of

online classification with LSTM-FS for all

scenarios. Table 11 shows the average elapsed

times.

Table 10 LSTM-FS (Online) average accuracy results

Scenario Accuracy Precision Recall F-Score Unknown (%)

A-1 99.8554 0.9986 0.9986 0.9986 6.93

A-2

non-VPN

94.8119 0.9551 0.9515 0.9506 0.65

A-2 VPN 83.8309 0.8477 0.8346 0.8319 5.6

B 88.3211 0.9098 0.8849 0.8874 0.1

Table 11 LSTM-FS (Online) average elapsed times

Scenario Testing Packet/Second Packet Processing

Overhead (msec)

A-1 14.45 1,856.99 0.5398

A-2

non-VPN

60.81 1,355.75 0.7477

A-2 VPN 35.73 2,466.01 0.4058

B 116.89 1,529.62 0.6786

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 327

4.5. Evaluation

In the following charts (Figure 12, 13, 14, 15, 16,

17, 18, 19); LSTM-FS (Offline), LSTM-FS

(Online) precision and recall values are shown

together with the work (C4.5) by Draper-Gil et al.

[15]. They did flow-based classification. They got

the best accuracy with the C4.5 algorithm. The

purple columns in the charts correspond to their

work; the values are from their paper, but there

may be slight differences as they did not share the

exact values. The blue columns represent offline

LSTM results, while the green ones are online

LSTM results. The reason for choosing precision

and recall metrics is that Draper-Gil et al. only

presented these values. They displayed the values

per label: BRW (browsing), CHAT, STR

(streaming), MAIL, VOIP, P2P, and FT (file

transfer). Label BRW is left out from the graphs

since our work does not contain this label. It can

be generalized that offline LSTM performs the

best, followed by online LSTM. Please note that

the comparison between our method and Draper-

Gil et al.’s could be fairer if we used the same

labeling. Even though we used the same dataset,

this was not possible since they did not share how

they labeled each PCAP file. For example, it is

unclear which PCAPs they associated with the

label BRW.

Figure 12 Precision comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario A-1

Figure 13 Recall comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario A-1

For scenario A-1, this study gives much better

results than theirs, and there is not much

difference between offline/online LSTM. As

precision is related to false positives, we can infer

that all three algorithms are prone to mislabeling

as VPN where the actual label is non-VPN. On the

other hand, a higher recall means a lower number

of false negatives, which suggests that all three

algorithms are better at identifying VPN traffic

than non-VPN. Since there are only two labels for

this scenario, precision and recall gave similar

meaning results.

Figure 14 Precision comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario A-2 non-

VPN

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 328

Figure 15 Recall comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario A-2 non-

VPN

Scenario A-2 precision results show that except

for VOIP and P2P our both algorithms excelled

(especially for CHAT, STR, and MAIL). Offline

LSTM is generally better than online; for FT,

online LSTM has the best result. The difference

between both algorithms stands out for VOIP and

P2P. Furthermore, for P2P, C4.5 performs better

than online LSTM. Label CHAT seems to have

more false positives than the other labels for all

algorithms. Regarding recall results, online

LSTM now beat C4.5 for P2P. It means that even

though C4.5 gives fewer false positives, it gives

more false negatives for P2P. Interestingly, for

VOIP, C4.5’s recall result is better than both of

our algorithms’. C4.5 is especially good at

differentiating VOIP among other non-VPN

labels.

Figure 16 Precision comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario A-2 VPN

Figure 17 Recall comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario A-2 VPN

Offline LSTM stands out for its Scenario A-2

VPN-CHAT precision result, whereas online

LSTM performed the worst. For the rest of the

labels, our algorithms performed much better than

C4.5. However, VPN-VOIP results are close.

VPN-MAIL recall result for online LSTM is

especially low.

Figure 18 Precision comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario B

Figure 19 Recall comparison of [15], LSTM-FS

(Offline), LSTM-FS (Online) for Scenario B

C4.5 VOIP and VPN-VOIP precision

performance are surprisingly not good for

Scenario B, even though it excelled for Scenario

A-2 non-VPN and VPN. It can be said that when

non-VPN and VPN labels are mixed C4.5

struggles to identify correctly. Both algorithms

seem to be better at this. Online LSTM especially

struggles with P2P and VPN-FT. C4.5 VOIP and

VPN-VOIP recall results are still good; however,

none of the recall results beat our algorithms.

Byte Segment Neural Network [27] spends 43

msec for each data sample at the training phase,

and the total training time is 123 minutes. On

average, training takes at most 68.29 seconds with

LSTM-FS for Scenario B. Thus, processing

overhead per sample is 0.5 msec, since Scenario

B consists of 120,000 data. On the other hand,

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 329

they measured the average time to deal with a

sample during online classification as 2.97 msec

and shared that for Securitas [28] this is 7.01

msec. Packet processing overhead is at most

0.7477 msec with LSTM-FS for Scenario A-2

non-VPN.

5. CONCLUSION

The problem we tried to attack is to classify

encrypted packets using the packet headers. An

LSTM deep learning model trained with features

that can be taken directly from a network packet

is presented in this study. The method yields valid

results regarding both its speed and accuracy,

outperforming a well-known machine learning

study. Compared to the only paper that shared its

online classification results [27], the LSTM

model presented in this paper gave better results

in terms of speed. We are confident that this

model can be used for real life situations.

The design presented in this study can be easily

used not only for categorization but also for other

types of traffic classification (e.g., protocol or

application classification). All that needs to be

done is to pre-label the input data correctly and

introduce these labels to the algorithm. In

addition, a new feature can be easily added to the

algorithm, or an existing feature can be removed.

For these reasons, it can be said that this study will

be instrumental in paving the way for many future

studies such as intrusion detection systems.

Funding

The authors have not received any financial

support for the research, authorship or publication

of this study.

The Declaration of Conflict of Interest/Common

Interest

No conflict of interest or common interest has

been declared by the authors.

The Declaration of Ethics Committee Approval

This study does not require ethics committee

permission or any special permission.

The Declaration of Research and Publication

Ethics

The authors of the paper declare that they comply

with the scientific, ethical and quotation rules of

SAUJS in all processes of the paper and that they

do not make any falsification on the data

collected. In addition, they declare that Sakarya

University Journal of Science and its editorial

board have no responsibility for any ethical

violations that may be encountered, and that this

study has not been evaluated in any academic

publication environment other than Sakarya

University Journal of Science.

Authors' Contribution

The authors contributed equally to the study.

REFERENCES

[1] H. Tahaei, F. Afifi, A. Asemi, F. Zaki and

N. B. Anuar, “The rise of traffic

classification in IoT networks: A survey,”

Journal of Network and Computer

Applications, vol. 154, 102538, 2020.

[2] O. Salman, I.H. Elhajj, A. Kayssi et al., “A

review on machine learning-based

approaches for Internet traffic

classification,” Annals of

Telecommunications, vol. 75, no. 11, pp.

673-710, 2020.

[3] Z. J. Al-Araji, S. S. S. Ahmad, M. W. Al-

Salihi, H. A. Al-Lamy, M. Ahmed, W. Raad

and N. M. Yunos, “Network Traffic

Classification for Attack Detection Using

Big Data Tools: A Review,” Lecture Notes

in Networks and Systems, pp. 355-363,

2019.

[4] M. AlSabah, K. Bauer and I. Goldberg,

“Enhancing Tor's performance using real-

time traffic classification,” ACM

conference on Computer and

communications security, pp. 73-84, 2012.

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 330

[5] IANA. Service Name and Transport

Protocol Port Number Registry [Online].

Available:

https://www.iana.org/assignments/service-

names-port-numbers/service-names-port-

numbers.xhtml. [Accessed April 27, 2022].

[6] J. Khalife, A. Hajjar and J. Diaz-Verdejo,

“A multilevel taxonomy and requirements

for an optimal traffic-classification model,”

International Journal of Network

Management, vol. 24, no. 2, pp. 101-120,

2014.

[7] Google. HTTPS encryption on the web

[Online]. Available:

https://transparencyreport.google.com/http

s/overview?hl=en. [Accessed April 27,

2022].

[8] S. Rezaei and X. Liu, “Deep Learning for

Encrypted Traffic Classification: An

Overview,” IEEE Communications

Magazine. vol. 57. no. 5. pp. 76-81, 2019.

[9] Wireshark [Online]. Available:

https://www.wireshark.org. [Accessed

April 27, 2022].

[10] UNB. VPN-nonVPN dataset

(ISCXVPN2016) [Online]. Available:

https://www.unb.ca/cic/datasets/vpn.html.

[Accessed April 27, 2022].

[11] B. Yamansavascilar, A. Guvensan, A.

Yavuz, and E. Karsligil, “Application

identification via network traffic

classification,” International Conference on

Computing, Networking and

Communications (ICNC), pp. 843-848,

2017.

[12] E. Hjelmvik. SPID Statistical Protocol

Identification [Online]. Available:

https://sourceforge.net/projects/spid.

[Accessed April 27, 2022].

[13] E. Hjelmvik. The SPID Algorithm

Statistical Protocol IDentification. 2008.

[14] E. Hjelmvik and W. John, “Statistical

Protocol IDentification with SPID:

Preliminary Results,” Swedish National

Computer Networking Workshop. vol. 9.

pp. 4-5, 2009.

[15] A. H. Lashkari, G. Draper-Gil, M. S. I.

Mamun, and A. A. Ghorbani,

“Characterization of Encrypted and VPN

Traffic Using Time-Related Features,” In

Proceedings of the 2nd international

conference on information systems security

and privacy (ICISSP), pp. 407-414, Feb.

2016.

[16] S. Bagui, X. Fang, E. Kalaimannan, S. C.

Bagui, and J. Sheehan, “Comparison of

machine-learning algorithms for

classification of VPN network traffic flow

using time-related features,” Journal of

Cyber Security Technology. vol. 1. no. 2.

pp. 108-126, 2017.

[17] W. Wang, M. Zhu, J. Wang, X. Zeng, and

Z. Yang, “End-to-end encrypted traffic

classification with one-dimensional

convolution neural network,” IEEE

International Conference on Intelligence

and Security Informatics (ISI), pp. 43-48,

2017.

[18] echowei. Deep Learning models for

network traffic classification [Online].

Available:

https://github.com/echowei/DeepTraffic.

[Accessed April 27, 2022].

[19] yungshenglu. USTC-TK2016 [Online].

Available:

https://github.com/yungshenglu/USTC-

TK2016. [Accessed April 27, 2022].

[20] M. Lotfollahi, R. S. H. Zade, M. J.

Siavoshani, and M. Saberian, “Deep Packet:

A Novel Approach For Encrypted Traffic

Classification Using Deep Learning,” Soft

Computing, vol. 24. no. 3, pp. 1999-2012,

2020.

[21] A. Parchekani, S. N. Naghadeh, and V.

Shah-Mansouri, “Classification of Traffic

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 331

Using Neural Networks by Rejecting: a

Novel Approach in Classifying VPN

Traffic,” Jan. 2020. arXiv preprint

arXiv:2001.03665.

[22] K. Zhou, W. Wang, C. Wu, and T. Hu,

“Practical evaluation of encrypted traffic

classification based on a combined method

of entropy estimation and neural networks,”

ETRI Journal, vol. 42, no. 3, pp. 311-323,

2020.

[23] UNB. Tor-nonTor dataset (ISCXTor2016)

[Online]. Available:

https://www.unb.ca/cic/datasets/tor.html.

[Accessed April 27, 2022].

[24] M. Lopez-Martin, B. Carro, A. Sanchez-

Esguevillas, and J. Lloret, “Network Traffic

Classifier With Convolutional and

Recurrent Neural Networks for Internet of

Things,” IEEE Access, vol. 5, pp. 18042-

18050, 2017.

[25] RedIRIS. Welcome to RedIRIS [Online].

Available: https://www.rediris.es.

[Accessed April 27, 2022]

[26] L. Deri, M. Martinelli, T. Bujlow, and A.

Cardigliano, “nDPI: Open-source high-

speed deep packet inspection,”

International Wireless Communications

and Mobile Computing Conference

(IWCMC). pp. 617-622, 2014.

[27] R. Li, X. Xiao, S. Ni, H. Zheng, and S. Xia,

“Byte Segment Neural Network for

Network Traffic Classification,”

IEEE/ACM 26th International Symposium

on Quality of Service (IWQoS). pp. 1-10,

Jun. 2018.

[28] X. Yun, Y. Wang, Y. Zhang, and Y. Zhou,

“A Semantics-Aware Approach to the

Automated Network Protocol

Identification,” IEEE/ACM Transactions

on Networking. vol. 24. no. 1. pp. 583-595,

2016.

[29] tcpdump. TCPDUMP/LIBPCAP public

repository [Online]. Available:

https://www.tcpdump.org. [Accessed April

27, 2022].

[30] tcpreplay. tcprewrite [Online]. Available:

https://tcpreplay.appneta.com/wiki/tcprewr

ite. [Accessed April 27, 2022].

[31] Abadi et al. TensorFlow: Large-scale

machine learning on heterogeneous systems

[Online]. Available: tensorflow.org. 2015.

[Accessed April 27, 2022].

[32] F. Chollet et al. Keras [Online]. Available:

https://keras.io. 2015. [Accessed April 27,

2022].

[33] serizba. CppFlow [Online]. Available:

https://github.com/serizba/cppflow.

[Accessed April 27, 2022].

Deniz Tuana ERGÖNÜL, Onur DEMİR

Real-Time Encrypted Traffic Classification with Deep Learning

Sakarya University Journal of Science 26(2), 313-332, 2022 332

