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Abstract 

The orthogonal projection of a fixed point on the tangent lines of a given curve yields a pedal curve of 
that curve. The aim of this study is to examine some special curves, such as pedal curves, which have 
singular points even for regular curves, in the Minkowski plane. For this, we investigate an anti-pedal 
and a primitive of curve, which is closely related to the pedal curve. The primitive of a curve is a curve 
that is provided by the inverse construction to make pedal. Using the envelope of a family of functions, 
we obtain the notion of primitive for the curves in the Minkowski plane. Then, we show that an anti-
pedal of the original curve is equal to the inversion image of the pedal curve. Moreover, we analyze the 
relationships between primitive and anti-pedal of the curve using the inversion. We also present 
examples that provide our results. 

 

Minkowski Düzleminde Eğrilerin Anti-Pedalları ve İlkelleri 
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Öz 

Verilen bir eğrinin teğet doğruları üzerindeki sabit bir noktanın dik izdüşümü, o eğrinin bir pedal eğrisini 

oluşturur. Bu çalışmanın amacı, düzgün eğriler için bile tekil noktaları olan pedal eğriler gibi bazı özel 

eğrileri Minkowski düzleminde incelemektir. Bunun için, pedal eğrisi ile yakından ilişkili olan, eğrinin 

anti-pedalını ve ilkelini araştırdık. Bir eğrinin ilkeli, pedal yapmak için ters yapı tarafından sağlanan bir 

eğridir. Bir fonksiyon ailesinin örtüsünü kullanarak, Minkowski düzlemindeki eğriler için ilkel kavramını 

elde ettik. Daha sonra, orijinal eğrinin bir anti-pedalının, pedal eğrisinin inversiyon görüntüsüne eşit 

olduğunu gösterdik. Dahası, inversiyonu kullanarak eğrinin ilkeli ve anti-pedalı arasındaki ilişkileri analiz 

ettik. Ayrıca, sonuçlarımızı sağlayan örnekler sunduk. 

© Afyon Kocatepe Üniversitesi

 

1. Introduction  

Singularity theory is one of important topics to 
research because it arises in many problems in daily 
life. This theory is also used to link physics and 
mathematics. Many other sub-disciplines of 
mathematics, including differential geometry and 
algebra, utilize from it (Li and Sun 2019). The idea of 
combining differential geometry with singularity 
theory was proposed by Arnold (1990) and Thom 
(1956). Therefore, it can be said that they did  
pioneering work in this field. Many researchers later 
discussed the singularity of curves in accordance 
with their theories.  
 
Pedal, anti-pedal and primitive curves, which form 
the basis of our study, are closely related to the 

singularity theory. Pedal curves are defined as the 
locus of the foot of the perpendicular from the given 
point to the tangent to given curve and primitive 
curves are defined as the envelope of the normal 
lines to its position vectors at their ends (Arnold 
1989). There are numerous studies on pedal curves. 
One of the studies has been proposed by Nishimura 
(2008). He worked on pedal curves produced by dual 
curve germs that are non-singular. Another study on 
this subject has been introduced by Bakurova 
(2013). He examined pedal curves in Minkowski 
plane. After that, the pedaloids have been obtained 
as an analogous notion of evolutoids (Izumiya and 
Takeuchi 2019a). Also, using definition of the pedal 
curve,  Izumiya and Takeuchi (2020) introduced the 
notion of the anti-pedal of a curve whose 
singularities also correspond to the inflection points 
of the original curve. Moreover, they gave the notion 
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of primitivoids, which are relatives of the primitive. 
In another study, they examined pedal, anti-pedal 
and primitive for quadratic curves (Izumiya and 
Takeuchi 2019b). 
  
In this study, we look at anti-pedals and primitives, 
both of which have singularities even for regular 
curves. Especially, we consider curves in the 
Minkowski plane. Our conclusions are Lorentzian 
analogue to the results of Izumiya and Takeuchi 
(2020). Then, we define the notions of anti-pedal, 
primitive in the Minkowski plane and examine the 
relationships between them.  
 

2. Material and Method  

 

It is well known that the Minkowski plane ℝ1
2 is the 

plane ℝ2 allowing the metric produced by the scalar 
product < 𝐮, 𝐯 > =  −u1v1  + u2v2 where 𝐮 =

 (u1, u2)  and  𝐯 =  (v1, v2). The vectors in ℝ1
2 are 

classified as follows by this product: 
 
If ⟨𝐮, 𝐮⟩ > 0 or 𝐮 = 0, then 𝐮 is spacelike. If ⟨𝐮, 𝐮⟩ =
0 or ⟨𝐮, 𝐮⟩ < 0 for a non-zero vector, then 𝐮 is  
lightlike or timelike, respectively (O’Neill 1983).  
 

The norm of a vector 𝐮 = (u1, u2) ∈ ℝ1
2 is given by 

‖𝐮‖ = √|⟨𝐮, 𝐮⟩| and the vector 𝐮⊥ is provided by 

𝐮⊥ = (u2, u1), which is orthogonal to 𝐮 (Izumiya et 
al. 2018). Furthermore, the signature of 𝐮 is 

indicated by ε and so 
⟨𝐮,𝐮⟩

‖𝐮‖2
= ε.  

Let 𝛄: I → ℝ1
2 be a regular curve, which is 

parametrized by an open interval I. For any s ∈ I, the 
curve is a spacelike curve, a timelike curve, a lightlike 
curve if ⟨𝛄′(s), 𝛄′(s)⟩ > 0, ⟨𝛄′(s), 𝛄′(s)⟩ < 0, 

⟨𝛄′(s), 𝛄′(s)⟩ = 0, respectively. In addition, 𝛄′(s) is 

velocity vector of 𝛄 and is written as 𝛄′(s) =
d𝛄

ds
(s). 

If a curve 𝛄 is timelike or spacelike, we call it a non-
lightlike curve (Li and Sun 2019). 

 

Assume that 𝛄: I → ℝ1
2 is a non-lightlike curve with 

an arc-length parameter s such that ‖𝛄′(s)‖ = 1. In 
this situation, T(s) = 𝛄′(s) is the unit tangent vector 
with  

𝑠𝑔𝑛 𝐓(s) = ⟨T(s),T(s)⟩ = ε                                       (1) 

and N(s) is the unit normal vector with  

𝑠𝑔𝑛 𝐍(s) = ⟨N(s),N(s)⟩ = −ε.                                 (2) 

Hence, we write the Frenet formula: 

d

ds
[
𝐓(s)

𝐍(s)
] = [

0 κ(s)

κ(s) 0
] [
𝐓(s)

𝐍(s)
] (3) 

where κ(s) is the curvature of 𝛄 (Li and Sun 2019). 
 
Definition 2.1. For a fixed ϕ, the envelope of the 
family of lines defined by F(s, 𝐱) consists of the 
points 𝐱 in the plane where s exists with (Giblin and 
Warder 2014) 

F(s, 𝐱) =
∂F

∂s
(s, 𝐱) = 0. 

       (4) 

Definition 2.2. Let 𝛄 be a non-lightlike regular curve 
in Minkowski plane. A pedal of curve 𝛄 is given by 
(Aydın Şekerci and Izumiya 2021) 

Pe𝛄(s) = −ε⟨𝛄(s), 𝐍(s)⟩𝐍(s).                                 (5) 

3. Results and Discussion  
 

Let 𝛄: I → ℝ1
2/{0} be a non-lightlike curve with arc-

parameter in Minkowski plane and there are no 
lightlike points. We define a family of functions 

H: I × (ℝ1
2/{0}) → ℝ                                             

                    (s, 𝐱) ↦ H(s, 𝐱) = 〈𝐱 − 𝛄(s), 𝛄(s)〉.
 

For fixed s ∈ I, H(s, 𝐱) = 0 is an equation of the line 
through 𝛄(s) and orthogonal to the position vector 
𝛄(s). 
The envelope of family of lines is the primitive of 
curve γ. According to that, we obtain 

∂H

∂s
(s, 𝐱) = ⟨−𝛄′(s), 𝛄(s)⟩ + ⟨𝐱 − 𝛄(s), 𝛄′(s)⟩

= ⟨𝐱 − 2𝛄(s), 𝐓(s)⟩
 

Any vector in ℝ1
2 is represented by a linear 

combination as λ𝐓(s) + ξ𝐍(s). Using this linear 
combination for the vector 𝐱 − 𝛄(s) and 

substituting to 
∂H

∂s
(s, 𝐱) = 0, we obtain 

⟨λ𝐓(s) + ξ𝐍(s) − 𝛄(s), 𝐓(s)⟩ = 0.                            (6) 

Then, we have the following equation for 𝜆: 

λ = ε⟨𝐓(s), 𝛄(s)⟩.                                                         (7) 

Also, considering H(s, 𝐱) = 0, we get 

H(s, 𝐱) = ⟨𝐱 − 𝛄(s), 𝛄(s)⟩ = 0.                                 (8) 

Moreover, from 𝐱 − 𝛄(s) =  λ𝐓(s) + ξ𝐍(s), we 
have 

λ⟨𝐓(s), 𝛄(s)⟩ + ξ⟨𝐍(s), 𝛄(s)⟩ = 0.                             (9) 
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Using λ we write 

ε⟨𝐓(s), 𝛄(s)⟩2 + ξ⟨𝐍(s), 𝛄(s)⟩ = 0.                           (10) 

Thus, we find 

ξ = −ε
⟨𝐓(s), 𝛄(s)⟩2

⟨𝐍(s), 𝛄(s)⟩
        (11) 

Taking into account λ and ξ,  

𝐱 = 𝛄(s) + ε⟨𝐓(s), 𝛄(s)⟩𝐓(s) −
ε⟨𝐓(s), 𝛄(s)⟩2

⟨𝐍(s), 𝛄(s)⟩
𝐍(s). 

From 𝛄(s) = ε⟨𝐓(s), 𝛄(s)⟩𝐓(s) − ε⟨𝐍(s), 𝛄(s)⟩𝐍(s),  
we write 

𝐱 = 𝛄(s) + ε⟨𝐓(s), 𝛄(s)⟩𝐓(s) −
ε⟨𝐓(s), 𝛄(s)⟩2

⟨𝐍(s), 𝛄(s)⟩
𝐍(s) 

 = 𝛄(s) + 𝛄(s) + ε⟨𝐍(s), 𝛄(s)⟩𝐍(s) 

 
    −

ε⟨𝐓(s), 𝛄(s)⟩2

⟨𝐍(s), 𝛄(s)⟩
𝐍(s)  

 
= 2𝛄(s) + ε [

⟨𝐍(s), 𝛄(s)⟩2

⟨𝐍(s), 𝛄(s)⟩
]𝐍(s) 

 
    −ε [

⟨𝐓(s), 𝛄(s)⟩2

⟨𝐍(s), 𝛄(s)⟩
]  𝐍(s). 

Using the norm of  𝛄(s), which is given as 

‖𝛄(s)‖2 = 𝑠𝑔𝑛 𝛄(s) [
ε⟨𝐓(s), 𝛄(s)⟩2

  −ε⟨𝐍(s), 𝛄(s)⟩2
],  

there exists 

𝐱 = 2𝛄(s) − 𝑠𝑔𝑛 𝛄(s)
‖𝛄(s)‖2

⟨𝐍(s), 𝛄(s)⟩
𝐍(s). 

Definition 3.1. The primitive Pr𝛄: I → ℝ1
2/{0} of 

Minkowski plane curve 𝛄 is given by 

 Pr𝛄(s) = 2𝛄(s) − 𝑠𝑔𝑛 𝛄(s)
‖𝛄(s)‖2

⟨𝐍(s), 𝛄(s)⟩
𝐍(s). (12) 

Now, let us define the anti-pedal curve in the 
Minkowski plane. The anti-pedal curve is defined by 
the pedal curve and inversion. It is known that the 
pedal is given as the envelope of a family of 
functions (Aydın Şekerci and Izumiya 2021): 

G: I × (ℝ1
2/{0}) → ℝ                                             

                    (s, 𝐱) ↦ G(s, 𝐱) = ⟨𝐱 − 𝛄(s), 𝐱⟩.
 

We use the definition of inversion, which is given by 

Ψ:ℝ1
2/{0} → ℝ1

2/{0}                                             

                𝐱    ↦ Ψ(𝐱) =
𝐱

‖𝐱‖2
= 𝑠𝑔𝑛 𝐱

𝐱

⟨𝐱, 𝐱⟩
,

 

to define an antipedal curve. Then we have 

Ψ(gs
−1(0)) = {𝐱: ⟨𝐱, 𝛄(s)⟩ = 𝑠𝑔𝑛 𝐱}                     (13) 

for gs(𝐱) = G(s, 𝐱). Here, G(s, 𝐱) = 0 means that  

 𝑠𝑔𝑛 𝐱⟨
𝐱

‖𝐱‖2
, 𝛄(s)⟩ = 1                      (14) 

since ⟨𝐱 − 𝛄(s), 𝐱⟩ = 0. Thus, we define a family of 
functions: 

F: I × (ℝ1
2/{0}) → ℝ                                             

                    (s, 𝐱) ↦ F(s, 𝐱) = ⟨𝐱, 𝛄(s)⟩ − 𝑠𝑔𝑛 𝐱.
 

The envelope of the family of lines is the anti-pedal 
curve of γ. According to that, we obtain 

∂F

∂s
(s, 𝐱) = ⟨𝐱, 𝛄′(s)⟩ = 0.                              (15) 

Any vector in ℝ1
2 is represented by a linear 

combination as λ𝐓(s) + ξ𝐍(s). Using this linear 
combination for the vector 𝐱 − 𝛄(s) and 

substituting to 
∂F

∂s
(s, 𝐱) = 0, we have the following 

equation for λ: 

λ = 0 .                                                                            (16) 

Also, using λ in F(s, 𝐱) = 0, we get 

ξ⟨𝐍(s), 𝛄(s)⟩ = 𝑠𝑔𝑛 𝐱.                                                 (17) 

Then, we obtain  

 ξ =
𝑠𝑔𝑛 𝐱

⟨𝐍(s), 𝛄(s)⟩
                                       (18) 

and so, 𝐱 can be written as follows:  

𝐱 =
𝑠𝑔𝑛 𝐱

⟨𝐍(s), 𝛄(s)⟩
𝐍(s). 

                                      (19) 

Moreover, the signature of 𝐱 is equal to the 
signature of 𝐍(s). In that case, the following 
definition is expressed. 

 
Definition 3.2. An anti-pedal 𝐴Pe𝛄: I → ℝ1

2/{0} of 

the curve 𝛄 is given by 

 APe𝛄(s) =
−ε

⟨𝐍(s), 𝛄(s)⟩
𝐍(s).                (20) 

Proposition 3.3. For any unit speed non-lightlike 

regular curve 𝛄: I → ℝ1
2/{0}, there exists 
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Ψ ∘ APe𝛄 = Pe𝛄                                                          (21) 

where Ψ is an inversion, APe𝛄 is an anti-pedal curve 

of 𝛄 and Pe𝛄 is a pedal curve of 𝛄. 

 
Proof.  We obtain the equation with direct 
calculations using the anti-pedal of curve and 
inversion as follows: 

(Ψ ∘ APe𝛄)(s) = Ψ(APe𝛄(s)) 

 
= Ψ(

−ε

⟨𝐍(s), 𝛄(s)⟩
𝐍(s)) 

 

=

−ε
⟨𝐍(s), 𝛄(s)⟩

𝐍(s)

‖
−ε

⟨𝐍(s), 𝛄(s)⟩
𝐍(s)‖2

 

 

=

−ε
⟨𝐍(s), 𝛄(s)⟩

𝐍(s)

1
⟨𝐍(s), 𝛄(s)⟩2

 

 = −ε⟨𝐍(s), 𝛄(s)⟩𝐍(s) 

 = Pe𝛄(s) 

Proposition 3.4. For any unit speed non-lightlike 

regular curve 𝛄: I → ℝ1
2/{0}, there exists 

Ψ ∘ Pe𝛄 = APe𝛄                                                         (22) 

where Ψ is an inversion, APe𝛄 is an anti-pedal  curve 

of 𝛄 and Pe𝛄 is a pedal  curve of 𝛄. 

Proof. Similar to the proof of Proposition 3.3, we 
obtain the equation with direct calculations using 
the pedal of curve and inversion as follows: 

Ψ ∘ Pe𝛄(s) = Ψ(Pe𝛄(s)) 

 = Ψ(−ε⟨𝐍(s), 𝛄(s)⟩𝐍(s)) 

 
=
−ε⟨𝐍(s), 𝛄(s)⟩𝐍(s)

⟨𝐍(s), 𝛄(s)⟩2
 

 
=

−ε𝐍(s)

⟨𝐍(s), 𝛄(s)⟩
 

 = APe𝛄(s). 

Theorem 3.5. Let 𝛄 be a unit speed non-lightlike 
curve in Minkowski plane. Assume that 𝛄 does not 
pass through the origin and there are no lightlike 
points. Then, the primitive and the anti-pedal of 𝛄 
have the following relationship: 

Pr𝛄(s) = −ε 𝑠𝑔𝑛 𝛄(s) APeΨ∘𝛄(s)                         (23) 

where ε is the signature of the tangent vector field 
of 𝛄, 𝑠𝑔𝑛 𝛄(s) is the signature of 𝛄  and Ψ is an 
inversion. 
 
Proof. Firstly, we find APeΨ∘𝛄(s). For this, the family 

of functions is F(s, 𝐱) = ⟨𝐱, 𝛄(s)⟩ − 𝑠𝑔𝑛 𝐱. Since 
F(s, 𝐱) = 0, we get 

 ⟨𝐱, (Ψ ∘ 𝛄)(s)⟩ − 𝑠𝑔𝑛 𝐱 = 0,  

 ⟨𝐱,
𝛄(s)

‖𝛄(s)‖2
⟩ = 𝑠𝑔𝑛 𝐱. (24) 

Any vector in ℝ1
2 is represented by a linear 

combination as λ𝐓(s) + ξ𝐍(s). Using this linear 
combination for the vector 𝐱,  

  
λ

‖𝛄(s)‖2
⟨𝐓(s), 𝛄(s)⟩ +

ξ

‖𝛄(s)‖2
⟨𝐍(s), 𝛄(s)⟩  

  = 𝑠𝑔𝑛 𝐱.     (25) 

Moreover, we obtain 

∂F

∂s
(s, 𝐱) = ⟨𝐱, (

𝛄(s)

‖𝛄(s)‖2
)

′

⟩ = 0.    (26) 

Since 

  (
𝛄(s)

‖𝛄(s)‖2
)

′

=
1

‖𝛄(s)‖2
𝐓(s)

−
2 𝑠𝑔𝑛 𝛄(s)⟨𝐓(s), 𝛄(s)⟩

‖𝛄(s)‖4
𝛄(s), 

Eq. (26) is written as 

 ⟨λ𝐓(s) + ξ𝐍(s),
1

‖𝛄(s)‖2
𝐓(s)⟩ 

 

−⟨λ𝐓(s),
2 𝑠𝑔𝑛 𝛄(s)⟨𝐓(s), 𝛄(s)⟩

‖𝛄(s)‖4
𝛄(s)⟩ 

 

−⟨ξ𝐍(s),
2 𝑠𝑔𝑛 𝛄(s)⟨𝐓(s), 𝛄(s)⟩

‖𝛄(s)‖4
𝛄(s)⟩ = 0. 

(27) 

 

According to that, we have  

 λ
ε

‖𝛄(s)‖2
−
2λ 𝑠𝑔𝑛 𝛄(s)⟨𝛄(s), 𝐓(s)⟩2

‖𝛄(s)‖4
 

 

−
2ξ 𝑠𝑔𝑛 𝛄(s)⟨𝛄(s), 𝐓(s)⟩⟨𝛄(s), 𝐍(s)⟩

‖𝛄(s)‖4
= 0. (28) 
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If we multiply Eq.(25) by 
2 𝑠𝑔𝑛 𝛄(s)⟨𝛄(s),𝐓(s)⟩

‖𝛄(s)‖2
 and add 

Eq.(28) side by side, then we can write as 

λ = 2ε 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱 ⟨𝛄(s), 𝐓(s)⟩.                     (29) 

Using this λ, which we have obtained, we find ξ as 
follows: 

 ξ =
𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱

⟨𝛄(s), 𝐍(s)⟩
[⟨𝛄(s), 𝛄(s)⟩

− 2ε⟨𝛄(s), 𝐓(s)⟩2]. 

 

(30) 

Therefore, we get 

  𝐱 = 2ε 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱 ⟨𝛄(s), 𝐓(s)⟩𝐓(s) 

 
    +

𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱

⟨𝛄(s), 𝐍(s)⟩
[⟨𝛄(s), 𝛄(s)⟩ 

    −2ε ⟨𝛄(s), 𝐓(s)⟩2]𝐍(s) 

 = 2 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱[𝛄(s) + ε⟨𝛄(s),𝐍(s)⟩𝐍(s)] 

 
    +

𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱

⟨𝛄(s), 𝐍(s)⟩
[⟨𝛄(s), 𝛄(s)⟩ 

    −2ε ⟨𝛄(s), 𝐓(s)⟩2]𝐍(s) 

 = 2 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱 𝛄(s) 

 
    +

𝑠𝑔𝑛 𝐱 𝑠𝑔𝑛 𝛄(s)⟨𝛄(s), 𝛄(s)⟩

⟨𝛄(s), 𝐍(s)⟩
𝐍(s) 

 
    −

2𝑠𝑔𝑛 𝐱

⟨𝛄(s), 𝐍(s)⟩
[ε 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐓(s)⟩2 

     −ε 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐍(s)⟩2]𝐍(s) 

 = 2 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱 𝛄(s) 

 
    +

𝑠𝑔𝑛𝐱 ‖𝛄(s)‖2

⟨𝛄(s),𝐍(s)⟩
𝐍(s) −

2𝑠𝑔𝑛 𝐱‖𝛄(s)‖2

⟨𝛄(s),𝐍(s)⟩
𝐍(s) 

 = 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱[2𝛄(s) 

     −𝑠𝑔𝑛 𝛄(s)
‖𝛄(s)‖2

⟨𝛄(s), 𝐍(s)⟩
𝐍(s)] 

 = 𝑠𝑔𝑛 𝛄(s) 𝑠𝑔𝑛 𝐱 Pr𝛄(s) 

Moreover, since 𝑠𝑔𝑛 𝐱 = 𝑠𝑔𝑛 Pr𝛄(s), we get 

 

  ⟨Pr𝛄(s), Pr𝛄(s)⟩ =
‖𝛄(s)‖4

⟨𝛄(s), 𝐍(s)⟩2
⟨𝐍(s), 𝐍(s)⟩ 

 
= −ε

‖𝛄(s)‖4

⟨𝛄(s), 𝐍(s)⟩2
. 

This means that the signature of 𝐍(s) and the 
signature of Pr𝛄(s) are the same. According to that, 

we obtain 

APeΨ∘𝛄(s) = −ε 𝑠𝑔𝑛 𝛄(s) Pr𝛄(s). 

Theorem 3.6. Let 𝛄 be a unit speed non-lightlike 
curve in Minkowski plane. Assume that 𝛄 does not 
pass through the origin and there are no lightlike 
points. Then, the primitive and the anti-pedal of 𝛄 
have the following relationship: 

PrΨ∘𝛄 = −ε 𝑠𝑔𝑛 𝛄 APe𝛄                                             (31) 

Proof. Firstly, we find PrΨ∘𝛄(s). For this, the family 

of functions is H(s, 𝐱) = ⟨𝐱 − 𝛄(s), 𝛄(s)⟩. Since 
H(s, 𝐱) = 0, we get 

 ⟨𝐱 − (Ψ ∘ 𝛄)(s), (Ψ ∘ 𝛄)(s)⟩ = 0, 

 ⟨𝐱 −
𝛄(s)

‖𝛄(s)‖2
,
𝛄(s)

‖𝛄(s)‖2
⟩ = 0.  

Any vector in ℝ1
2 is represented by a linear 

combination as λ𝐓(s) + ξ𝐍(s). Taking this linear 
combination for the vector 𝐱 − (Ψ ∘ 𝛄)(s), 

  ⟨λ𝐓(s) + ξ𝐍(s),
𝛄(s)

‖𝛄(s)‖2
⟩ = 0, 

 

λ

‖𝛄(s)‖2
⟨𝐓(s), 𝛄(s)⟩ +

ξ

‖𝛄(s)‖2
⟨𝐍(s), 𝛄(s)⟩ = 0. (32) 

Moreover, we obtain 

 
∂H

∂s
(s, 𝐱) = ⟨−(

𝛄(s)

‖𝛄(s)‖2
)

′

,
𝛄(s)

‖𝛄(s)‖2
⟩ 

 

 
+⟨𝐱 −

𝛄(s)

‖𝛄(s)‖2
, (

𝛄(s)

‖𝛄(s)‖2
)

′

⟩ = 0. (33) 

Since 

(
𝛄(s)

‖𝛄(s)‖2
)

′

=
1

‖𝛄(s)‖2
𝐓(s)

−
2 𝑠𝑔𝑛 𝛄(s) ⟨𝐓(s), 𝛄(s)⟩

‖𝛄(s)‖4
𝛄(s), 

Eq. (33) is written as 

⟨𝐱 −
𝛄(s)

‖𝛄(s)‖2
−

𝛄(s)

‖𝛄(s)‖2
, (

𝛄(s)

‖𝛄(s)‖2
)

′

⟩ = 0. 
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According to that, using linear combination λ𝐓(s) +

ξ𝐍(s) for 𝐱 −
𝛄(s)

‖𝛄(s)‖2
, we have 

⟨λ𝐓(s) + ξ𝐍(s) −
𝛄(s)

‖𝛄(s)‖2
,

1

‖𝛄(s)‖2
𝐓(s)

−
2𝑠𝑔𝑛 𝛄(s) ⟨𝐓(s), 𝛄(s)⟩

‖𝛄(s)‖4
𝛄(s)⟩ = 0. 

Therefore, we obtain 

λ
ε

‖𝛄(s)‖2
−
2λ 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐓(s)⟩2

‖𝛄(s)‖4
 

−
2ξ 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐓(s)⟩⟨𝛄(s),𝐍(s)⟩

‖𝛄(s)‖4
−
⟨𝛄(s), 𝐓(s)⟩

‖𝛄(s)‖4
 

+
2 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐓(s)⟩⟨𝛄(s), 𝛄(s)⟩

‖𝛄(s)‖6
= 0. 

From that equation, we get 

 λ
ε

‖𝛄(s)‖2
−
2λ 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐓(s)⟩2

‖𝛄(s)‖4
 

 

−
2ξ 𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s), 𝐓(s)⟩⟨𝛄(s), 𝐍(s)⟩

‖𝛄(s)‖4
 

 

= −
⟨𝛄(s), 𝐓(s)⟩

‖𝛄(s)‖4
 (34) 

If we multiply Eq.(32) by 
2𝑠𝑔𝑛 𝛄(s) ⟨𝛄(s),𝐓(s)⟩

‖𝛄(s)‖2
 and add 

Eq.(34) side by side, then we have 

    λ = −ε
⟨𝛄(s), 𝐓(s)⟩

‖𝛄(s)‖2
. 

(35) 

Using this λ, which we have obtained, we find ξ as 
follows: 

  ξ = ε
⟨𝛄(s), 𝐓(s)⟩2

⟨𝛄(s), 𝐍(s)⟩‖𝛄(s)‖2
. 

              (36) 

Therefore, we get 

 

 

 

 

 

 

 

 

 

𝐱 −
𝛄(s)

‖𝛄(s)‖2
 = −ε

⟨𝛄(s), 𝐓(s)⟩

‖𝛄(s)‖2
𝐓(s) 

 

     +ε
⟨𝛄(s), 𝐓(s)⟩2

⟨𝛄(s), 𝐍(s)⟩‖𝛄(s)‖2
𝐍(s) 

 
= −

𝛄(s)

‖𝛄(s)‖2
− ε

⟨𝛄(s), 𝐍(s)⟩

‖𝛄(s)‖2
𝐍(s) 

 

     +ε
⟨𝛄(s), 𝐓(s)⟩2

⟨𝛄(s), 𝐍(s)⟩‖𝛄(s)‖2
𝐍(s) 

Thus, it can be written as 

  𝐱 =
ε⟨𝛄(s), 𝐓(s)⟩2 − ε⟨𝛄(s), 𝐍(s)⟩2

⟨𝛄(s), 𝐍(s)⟩‖𝛄(s)‖2
𝐍(s) 

 
=

𝑠𝑔𝑛 𝛄(s)

⟨𝛄(s), 𝐍(s)⟩
𝐍(s). 

According to that, we obtain 

𝐱 = −ε 𝑠𝑔𝑛 𝛄(s)
−ε

⟨𝛄(s), 𝐍(s)⟩
𝐍(s). 

Therefore, the proof is completed. 
 
4. Applications 

Example 4.1. Let 𝛄: I → ℝ1
2/{0}, I ⊂ ℝ, be a curve 

which is expressed by 𝛄(s) = (2 sinh s , cosh s) and 
is shown in Figure 1. 
 

 
Figure 1. The curve 𝛄(𝑠) = (2 sinh s , cosh s) 

 
Therefore, 𝛄(s) is a regular curve, there are no 
lightlike points and 𝛄′(s) = (2 cosh s , sinh s). Then, 
we say that the curve is a timelike curve. The tangent 
vector field and the normal vector field of the curve 
𝛄(s) are given in the following forms: 

𝐓(s) = (
2 cosh s

√1 + 3cosh2s
,

sinh s

√1 + 3cosh2s
) 
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𝐍(s) = (
sinh s

√1 + 3cosh2s
,

2 cosh s

√1 + 3cosh2s
) 

Using (12), the primitive of 𝛄 is obtained as 

Pr𝛄(s) = (

sinh s

2
(3cosh2s + 4),

cosh s (3sinh2s + 1)
) 

and is shown in Figure 2. 

 
Figure 2. The primitive of curve 𝛄(s) 

 

Also, from (20), the anti-pedal of 𝛄(s) is given by 

APe𝛄(s) =
1

2
(sinh s , 2 cosh s) 

and is shown in Figure 3. 

 
Figure 3. The anti-pedal of curve 𝛄(s) 

 

Example 4.2. Let 𝛄: I → ℝ1
2/{0}, I ⊂ ℝ, be a curve 

which is expressed by 𝛄(s) = (cosh s , s + sinh s) 
and is shown in Figure 4.  

 
Figure 4. The curve 𝛄(s) = (cosh s , s + sinh s) 

 
Therefore, 𝛄(s) is a regular curve, there are no 
lightlike points and 𝛄′(s) = (sinh s , 1 + cosh s). 
Then, we say that the curve is a spacelike curve.  

 
Using (12), the primitive of 𝛄 is obtained as 

Pr𝛄(s)

=

(

 
2 cosh s −

(1 + cosh s)(s2 − 1 + 2 sinh s)

s sinh s − 1 − cosh s
,

2 sinh s + 2s −
(sinh s)(s2 − 1 + 2 sinh s)

s sinh s − 1 − cosh s )

  

and is shown in Figure 5. 

 
Figure 5. The primitive of curve 𝛄(s) 

 

Also, from (20), the anti-pedal of 𝛄(s) is given by 

 APe𝛄(s) =
−1

s sinh s− 1− cosh s
(1 + cosh s , sinh s) 

and is shown in Figure 6. 
 

 

Figure 6. The anti-pedal of curve 𝛄(s) 

 

5. Conclusions 

In this study, the following conclusions are obtained 
about Minkowski plane curves: 
 
(1)To obtain primitive and anti-pedal of the 
Minkowski plane curves, which does not pass 
through the origin and does not have lightlike point, 
the families of functions are defined and their 
envelopes are used. Thus, the primitive of curve is 
defined as  

  Pr𝛄(s) = 2𝛄(s) − 𝑠𝑔𝑛 𝛄(s)
‖𝛄(s)‖2

⟨𝐍(s), 𝛄(s)⟩
𝐍(s), 

and the anti-pedal of curve is defined as      
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 APe𝛄(s) =
−ε

⟨𝐍(s), 𝛄(s)⟩
𝐍(s). 

(2) The pedal of the curve, which is non-lightlike 
Minkowski plane curve, does not pass through the 
origin and there is no lightlike point, is equivalent to 
the composition of an anti-pedal of the curve and 
inversion. 

(3) The anti-pedal of the curve, which is  non-lightlike 
Minkowski plane curve, does not pass through the 
origin and there is no lightlike point, is equivalent to 
the composition of a pedal of the curve and 
inversion. 

(4) Assume that  𝛄 is a curve, which is a non-lightlike 
Minkowski plane curve, does not pass through the 
origin and there is no lightlike point, and Ψ is an 
inversion. Then, the primitive of the curve 𝛄 is 
written as the product of a constant and the anti-
pedal of Ψ ∘ 𝛄 where this constant is calculated by 
multiplying the signature of the normal vector field 
of the curve and the signature of the curve. 

(5) Similar to the previous result , assume that  𝛄 is a 
curve, which is  non-lightlike Minkowski plane curve, 
does not pass through the origin and there is no 
lightlike point, and Ψ is an inversion. Then, the 
primitive of Ψ ∘ 𝛄  is written as the product of a 
constant and the anti-pedal of 𝛄 where this constant 
is calculated by multiplying the signature of the 
normal vector field of the curve and the signature of 
the curve. 
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