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Abstract

The orthogonal projection of a fixed point on the tangent lines of a given curve yields a pedal curve of
that curve. The aim of this study is to examine some special curves, such as pedal curves, which have
singular points even for regular curves, in the Minkowski plane. For this, we investigate an anti-pedal
and a primitive of curve, which is closely related to the pedal curve. The primitive of a curve is a curve
that is provided by the inverse construction to make pedal. Using the envelope of a family of functions,
we obtain the notion of primitive for the curves in the Minkowski plane. Then, we show that an anti-
pedal of the original curve is equal to the inversion image of the pedal curve. Moreover, we analyze the
relationships between primitive and anti-pedal of the curve using the inversion. We also present
examples that provide our results.
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Minkowski Diizleminde Egrilerin Anti-Pedallari ve ilkelleri

Oz
Verilen bir egrinin teget dogrulari Gzerindeki sabit bir noktanin dik izdlisimu, o egrinin bir pedal egrisini
Anahtar kelimeler olugturur. Bu ¢alismanin amaci, dizgiin egriler igin bile tekil noktalari olan pedal egriler gibi bazi 6zel
Diizlem Egrileri; Pedal;  egrileri Minkowski dizleminde incelemektir. Bunun icin, pedal egrisi ile yakindan iliskili olan, egrinin
Anti-pedal; ilkel; anti-pedalini ve ilkelini arastirdik. Bir egrinin ilkeli, pedal yapmak icin ters yapi tarafindan saglanan bir

Minkowski Diizlem egridir. Bir fonksiyon ailesinin értistini kullanarak, Minkowski diizlemindeki egriler icin ilkel kavramini

elde ettik. Daha sonra, orijinal egrinin bir anti-pedalinin, pedal egrisinin inversiyon goriintisiine esit
oldugunu gosterdik. Dahasi, inversiyonu kullanarak egrinin ilkeli ve anti-pedali arasindaki iligkileri analiz
ettik. Ayrica, sonuglarimizi saglayan érnekler sunduk.
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singularity theory. Pedal curves are defined as the
locus of the foot of the perpendicular from the given

1. Introduction

Singularity theory is one of important topics to
research because it arises in many problems in daily
life. This theory is also used to link physics and
mathematics. Many other sub-disciplines of
mathematics, including differential geometry and
algebra, utilize from it (Li and Sun 2019). The idea of
combining differential geometry with singularity
theory was proposed by Arnold (1990) and Thom
(1956). Therefore, it can be said that they did
pioneering work in this field. Many researchers later
discussed the singularity of curves in accordance
with their theories.

Pedal, anti-pedal and primitive curves, which form
the basis of our study, are closely related to the

point to the tangent to given curve and primitive
curves are defined as the envelope of the normal
lines to its position vectors at their ends (Arnold
1989). There are numerous studies on pedal curves.
One of the studies has been proposed by Nishimura
(2008). He worked on pedal curves produced by dual
curve germs that are non-singular. Another study on
this subject has been introduced by Bakurova
(2013). He examined pedal curves in Minkowski
plane. After that, the pedaloids have been obtained
as an analogous notion of evolutoids (lzumiya and
Takeuchi 2019a). Also, using definition of the pedal
curve, lzumiya and Takeuchi (2020) introduced the
notion of the anti-pedal of a curve whose
singularities also correspond to the inflection points
of the original curve. Moreover, they gave the notion
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of primitivoids, which are relatives of the primitive.
In another study, they examined pedal, anti-pedal
and primitive for quadratic curves (lzumiya and
Takeuchi 2019b).

In this study, we look at anti-pedals and primitives,
both of which have singularities even for regular
curves. Especially, we consider curves in the
Minkowski plane. Our conclusions are Lorentzian
analogue to the results of lzumiya and Takeuchi
(2020). Then, we define the notions of anti-pedal,
primitive in the Minkowski plane and examine the
relationships between them.

2. Material and Method

It is well known that the Minkowski plane R? is the
plane R? allowing the metric produced by the scalar
product <u,v>= —u;vy + u,v, where u =
(ug,uy) and v = (v4,v,). The vectors in R? are
classified as follows by this product:

If (u,u) > 0 oru = 0, then uis spacelike. If (u,u) =
0 or (u,u) <0 for a non-zero vector, then u is
lightlike or timelike, respectively (O’Neill 1983).

The norm of a vector u = (u;,u,) € R? is given by

|lul| = +/|(u,u)| and the vector ut is provided by
ut = (uy,uy), which is orthogonal to u (Izumiya et

al. 2018). Furthermore, the signature of u is
(uu)
(lull?

indicated by € and so =&

Let y:1— [R% be a regular curve, which is
parametrized by an openinterval I. Forany s € I, the
curve is a spacelike curve, a timelike curve, a lightlike

curve if  (y'(s), ¥ () >0, (¥'(s)¥(s)) <O,
¥'(s),Y'(s)) = 0, respectively. In addition, y'(s) is

. o d
velocity vector of y and is written as y'(s) = d—z (s).

If a curve y is timelike or spacelike, we call it a non-
lightlike curve (Li and Sun 2019).

Assume that y:1 —» R? is a non-lightlike curve with
an arc-length parameter s such that ||y’ (s)|| = 1. In
this situation, T(s) = y’(s) is the unit tangent vector
with

sgnT(s) = (T(s),T(s)) = ¢ (1)

and N(s) is the unit normal vector with

sgn N(s) = (N(s),N(s)) = —&. (2)

Hence, we write the Frenet formula:

shol =l “VING) )

where k(s) is the curvature of y (Li and Sun 2019).

Definition 2.1. For a fixed ¢, the envelope of the
family of lines defined by F(s,X) consists of the
points X in the plane where s exists with (Giblin and
Warder 2014)

F(s,x) = g (s,%) = 0. )

Definition 2.2. Let y be a non-lightlike regular curve
in Minkowski plane. A pedal of curve y is given by
(Aydin Sekerci and Izumiya 2021)

Pe,(s) = —&(y(s), N(s))N(s). (5)
3. Results and Discussion

Let y: I > R%/{0} be a non-lightlike curve with arc-
parameter in Minkowski plane and there are no
lightlike points. We define a family of functions

H:I1x (R?/{0})) - R
(s,x) ~ H(s,x) =(x—v(s),y(s))

For fixed s € I, H(s,x) = 0 is an equation of the line
through y(s) and orthogonal to the position vector

v(9).
The envelope of family of lines is the primitive of
curve y. According to that, we obtain

0H
2560 = (V' E)YE) + x—vy(E), Y ()
= (x=2y(s), T(s))

Any vector in R? is represented by a linear
combination as AT(s) + EN(s). Using this linear
combination for the wvector x—1vy(s) and

substituting to 2—2 (s,x) = 0, we obtain

(AT(s) +EN(s) —v(s), T(s)) = 0. (6)
Then, we have the following equation for A:

A = &(T(s),y(s)). (7)
Also, considering H(s,x) = 0, we get

H(s,x) = (x —y(s),y(s)) = 0. (8)

Moreover, from x—1vy(s) = AT(s) + &N(s), we
have

MT(s),¥(s)) + &N(s),y(s)) = 0. (9)
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Using A we write

&(T(s),¥(s))? + §&N(s),y(s)) = 0. (10)
Thus, we find
f= o TOYE)Y 11)
NG, Y ()
Taking into account A and &,
T , 2
X = ¥(5) + (T(5), Y () T(S) - %N(s)

From y(s) = &(T(s),y(s))T(s) — &(N(s), Y(s))N(s),
we write

X =) + T, YEITE) — g 5y

— ¥(8) + Y(s) + (N(S), Y(S)IN(S)
£(T(s), y(s))?
TN YE) N©
) (N(S),Y(5))?
=2v(s) e [ NS, ¥))
[T, v(S))] ™
£l NG Y

N(s)

N(s)

Using the norm of y(s), which is given as

&(T(s),v(s))*

IYOIP = sgny(s)| S d )|

there exists

ly(s)II”
(N(s),y(s))

Definition 3.1. The primitive Pr,:1— RZ/{0} of
Minkowski plane curve y is given by

MOlk
(N(s),y(s))

x = 2y(s) — sgny(s) N(s).

Pry(s) = 2y(s) — sgn y(s) NG (12)

Now, let us define the anti-pedal curve in the
Minkowski plane. The anti-pedal curve is defined by
the pedal curve and inversion. It is known that the
pedal is given as the envelope of a family of
functions (Aydin Sekerci and lzumiya 2021):

G:Ix (RZ/{0}) - R
(s,x) » G(s,x) = (x—v(s),x).

We use the definition of inversion, which is given by

F
_(S'X) = (X'Y,(S)> = 0.

Ri/{0} - Ri/{0}
X
X > Yx) = =sgnx—,
lIx |I2 (%, x)
to define an antipedal curve. Then we have
¥(g5(0) = {x: (x,¥(s)) = sgn x} (13)

for gs(x) = G(s,x). Here, G(s,x) = 0 means that

n x( 2,v( s)) = (14)

since (x — y(s),x) = 0. Thus, we define a family of
functions:

F:Ix (R?/{0}) - R

(s,x) = F(s5,x) =(x,y(s)) —sgnx.

The envelope of the family of lines is the anti-pedal
curve of y. According to that, we obtain

ds (5]

Any vector in R? is represented by a linear
combination as AT(s) + EN(s). Using this linear
combination for the wvector x—1vy(s) and

_ F .
substituting to %(s, x) = 0, we have the following
equation for A:

A=0. (16)
Also, using A in F(s,x) = 0, we get
&N(s), y(s)) = sgnx. (17)
Then, we obtain
£ = sgnx (18)
(N(s),y(s))
and so, x can be written as follows:
ﬂ N(s). (19)
(N(s),v(s))
Moreover, the signature of x is equal to the

signature of N(s). In that case, the following
definition is expressed.

Definition 3.2. An anti-pedal APe,:1 - RZ%/{0} of
the curve y is given by

(s). 20)

—&
APeY(s) = mN S

Proposition 3.3. For any unit speed non-lightlike
regular curve y:1 - R?/{0}, there exists
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W o APe, = Pe, (212)

where W is an inversion, APe, is an anti-pedal curve
of y and Pe, is a pedal curve of y.

Proof. @ We obtain the equation with direct

calculations using the anti-pedal of curve and
inversion as follows:

(PoAPey)(s) =y (APey(s))

—E&
=Y ((N(S).Y(S)) N(S))

—&
Ny

- —£&
||ml\'(s)|l2

—&
IORIO
1

(NG, ¥(5))?
= —&(N(s), y(s))N(s)
= PeY(S)

Proposition 3.4. For any unit speed non-lightlike
regular curve y: 1 > R?/{0}, there exists

Yo Pe, = APe, (22)

where W is an inversion, APe, is an anti-pedal curve
of y and Pe, is a pedal curve of y.

Proof. Similar to the proof of Proposition 3.3, we
obtain the equation with direct calculations using
the pedal of curve and inversion as follows:

WoPe,(s) =y (Pey(S))

= ¥(—&(N(s), Y($)IN(s))
_ —&(NGs), YEIN(S)
(NS, Y(5))?

_ —eN(s)
~(N(5),¥(5))

= APe,(s).

Theorem 3.5. Let y be a unit speed non-lightlike
curve in Minkowski plane. Assume that y does not
pass through the origin and there are no lightlike
points. Then, the primitive and the anti-pedal of y
have the following relationship:

Pr,(s) = —e sgn y(s) APey,(s) (23)

where € is the signature of the tangent vector field
of y,sgny(s) is the signature of y and W is an
inversion.

Proof. Firstly, we find APeys., (s). For this, the family
of functions is F(s,x) = (x,y(s)) —sgn x. Since
F(s,x) = 0, we get

(x, Woy)(s))—sgnx=0,
< Y(s)
X,

= sgnx. (24)
I|v(s)||2>

Any vector in R? is represented by a linear
combination as AT(s) + EN(s). Using this linear
combination for the vector x,

A ;
T TO YO + s (NG, ¥(s))
= sgnx. (25)

Moreover, we obtain

oF o
w60 = () o 20l
Since
yis) \ 1
<||v(s)||2> “hor'®
_250nyOTDYE)
YOI :
Eq. (26) is written as
1
(AT(S) + EN(S),WT(S)>
[ 25gn ¥ KT, Y6)
<“(S)’ YOI (S)>
L 2sgny®A@YE) | @)
N OIR (S)> =0

According to that, we have

£ 2Asgny(©)(s), T)?
YGI? &I

_28sgny(S){y(s), T()Xy(s),NGs)) _

0. 28
TOR 28)
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2 sgn y(s)(y(s),T(s))

If we multiply Eq.(25) by ™EIE and add
Eq.(28) side by side, then we can write as
A= 2esgny(s) sgnx (y(s), T(s)). (29)

Using this A, which we have obtained, we find € as
follows:

_sgn y(s) sgnx
E= = NGy YOV
— 26(y(9), (5?1, 30

Therefore, we get
x = 2esgny(s) sgnx(y(s), T(s))T(s)

sgny(s) sgnx
(v(s),N(s))

—2e(y(s), T(s))*IN(s)

= 2sgny(s) sgnx[y(s) + (y(s), N(s))N(s)]

[(y(s),y(s))

sgny(s) sgnx
(v(s),N(s))

—2e(y(s), T(s))*IN(s)

[(y(s),y(s))

= 25gny(s) sgnxy(s)

sgnx sgny(s){y(s),y(s))
(v(s),N(s))

2sgn X

~(y(s),N(s))

—esgn y(s) (y(s),N(s))*IN(s)

N(s)

[e sgn y(s) (v(s), T())?

= 25gny(s) sgnxy(s)

2sgn x|ly(s)||?
(v(s),N(s))

sgnx ||y (s)|I?
(y(s),N(s))

N(s) — N(s)

= sgny(s) sgn x[2y(s)

lly(s)II?

GO N E

—sgny(s)

=sgny(s) sgnx Pr,(s)

Moreover, since sgn X = sgn Pr,(s), we get

lyI*
~e.NEp N

__._Iver
YN

(Pry(s), Pry(s))

This means that the signature of N(s) and the
signature of Pr, (s) are the same. According to that,
we obtain

APey,,(s) = —e sgny(s) Pr,(s).

Theorem 3.6. Let y be a unit speed non-lightlike
curve in Minkowski plane. Assume that y does not
pass through the origin and there are no lightlike
points. Then, the primitive and the anti-pedal of y
have the following relationship:

Pry,, = —esgny APe, (31)
Proof. Firstly, we find Pry.,(s). For this, the family

of functions is H(s,x) = (x — y(s),y(s)). Since
H(s,x) = 0, we get

(X=Woy)(s),(Wey)(s) =0,

(x— HONNR(O)
MO {O]

2 =0

Any vector in ]R{% is represented by a linear
combination as AT(s) + EN(s). Taking this linear
combination for the vectorx — (¥ o y)(s),

y(s)
AT N(s),———=) =0,
A T Y6) +——— (NS ¥() = 0. (32)
@R VS Ty e e =

Moreover, we obtain

M %) = _< ¥(s) ) ¥(s)
Os Y2/ " Iy()II2
y(s) O
— =0. 33
i ||v(s)||2'(||v(s>||2)> o 63
Since

yis) \ 1
(IIV(S)HZ) “Ter e
 25gn v (T6),¥()
TOE

y(s),

Eqg. (33) is written as

R (ONN (©) (v(S) ) _o
lyIIZ Iy v (s)II? '
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According to that, using linear combination AT(s) +

_ ¥
ENGs) forx — o

v(s)
ly()I12” Iy (s)1I?

_ 259nY() (T6),¥(5)
YOI

we have

AT(s) + EN(s) — T(s)

y(s))=0.

Therefore, we obtain

A £ ZAsgny(s) (v(s), T(s))”
ly()II? ()i

(v(s), T(s))

_ 28sgny(s) (v(s), T(s)Xy(s),N(s))
v II*

lly(s)II*

25gny(s) (v(s), TNy (), ¥(s)) _ 0
lly(s)| '

From that equation, we get
At 21 sgny(s) (y(s), T(s))
ly®II? ly(s)II*
_ 28sgny(s) (v(s), T(s)Xy(s), N(s))
ly()II*
RORIO)
OIS

(34)

2sgny(S) (Y& TE) oy o4y
ly()II?
Eqg.(34) side by side, then we have
. (v(s), T(s))
O]

Using this A, which we have obtained, we find € as
follows:

If we multiply Eq.(32) by

o (35)

(v(s), T(s))? (36)

~ YO NSO

3

Therefore, we get

*TIver

G ORO)
BT
o VOTEP

A& NG

_ YO (NG
NOIRNT7OlE

e {v(s), T(5))?
WORIONO]E

v(s)

N(s)

N(s)

N(s)

Thus, it can be written as

_ &y(s), T(s))* — &(y(s), N(s))?
(Y(s), N<)HIly()II?

N(s)

sgn y(s)

= WO NG &

According to that, we obtain

—€
x =—esgny(s) YEONG) N(s).

Therefore, the proof is completed.

4. Applications

Example 4.1. Let y:1 - R?/{0}, ] € R, be a curve
which is expressed by y(s) = (2 sinhs, coshs) and
is shown in Figure 1.

-6 -4 23 0 2 4 6

Figure 1. The curve y(s) = (2 sinhs, coshs)

Therefore, y(s) is a regular curve, there are no
lightlike points and y'(s) = (2 cosh's, sinh's). Then,
we say that the curve is a timelike curve. The tangent
vector field and the normal vector field of the curve
vY(s) are given in the following forms:

2 coshs
V1 + 3cosh?s V1 + 3coshZs

T(s) = ( sinhs )
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sinh s

2 coshs )

N(S) - ( )
V1 + 3cosh?s V1 + 3cosh?s

Using (12), the primitive of y is obtained as

sinh s
—— (3cosh?s + 4),

coshs (3sinh?s + 1)

Pr,(s) =

and is shown in Figure 2.

-80 -60 -40 -20 0 20 40 60 80

Figure 2. The primitive of curve y(s)

Also, from (20), the anti-pedal of y(s) is given by

1
APe,(s) = 5 (sinhs, 2 coshs)

and is shown in Figure 3.

1.25
1.20
115
1.10

1.05

-03 —-0.2 -0.1 0 0.1 0.2 0.3

Figure 3. The anti-pedal of curve y(s)
Example 4.2. Let y:1 - R?/{0}, ] c R, be a curve

which is expressed by y(s) = (coshs,s + sinhs)
and is shown in Figure 4.

0.5

-0.5

Figure 4. The curve y(s) = (coshs,s + sinhs)
Therefore, y(s) is a regular curve, there are no
lightlike points and y'(s) = (sinhs, 1 + coshs).

Then, we say that the curve is a spacelike curve.

Using (12), the primitive of y is obtained as

Pr,(s)

(1 + coshs)(s? — 1 + 2sinhs)
2 coshs — \

s sinhs —1 — coshs
(sinhs)(s? — 1 + 2sinhs)

s sinhs—1 — coshs

\Zsinhs + 2s —

and is shown in Figure 5.

-3 -2 71 0

Figure 5. The primitive of curve y(s)

Also, from (20), the anti-pedal of y(s) is given by
-1
s sinhs — 1 — coshs

APe,(s) = (1 + coshs,sinhs)

and is shown in Figure 6.

0.4
0.3
0.2
0.1

o

-0.1

-0.2

-0.3

-0.4

Figure 6. The anti-pedal of curve y(s)

5. Conclusions

In this study, the following conclusions are obtained
about Minkowski plane curves:

(1)To obtain primitive and anti-pedal of the
Minkowski plane curves, which does not pass
through the origin and does not have lightlike point,
the families of functions are defined and their
envelopes are used. Thus, the primitive of curve is
defined as

lly(s)II?

NE Y

Pry(s) = 2y(s) — sgn y(s)

and the anti-pedal of curve is defined as
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APe,(s) = (s).

—&
NEYE)

(2) The pedal of the curve, which is non-lightlike
Minkowski plane curve, does not pass through the
origin and there is no lightlike point, is equivalent to
the composition of an anti-pedal of the curve and
inversion.

(3) The anti-pedal of the curve, which is non-lightlike
Minkowski plane curve, does not pass through the
origin and there is no lightlike point, is equivalent to
the composition of a pedal of the curve and
inversion.

(4) Assume that 7y is a curve, which is a non-lightlike
Minkowski plane curve, does not pass through the
origin and there is no lightlike point, and W is an
inversion. Then, the primitive of the curve y is
written as the product of a constant and the anti-
pedal of ¥ o y where this constant is calculated by
multiplying the signature of the normal vector field
of the curve and the signature of the curve.

(5) Similar to the previous result , assume that yisa
curve, which is non-lightlike Minkowski plane curve,
does not pass through the origin and there is no
lightlike point, and W is an inversion. Then, the
primitive of W oy is written as the product of a
constant and the anti-pedal of y where this constant
is calculated by multiplying the signature of the
normal vector field of the curve and the signature of
the curve.
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