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Highlights 

• Modelling wind energy based on five different distributions. 

• Five optimization methods are employed to select the optimal parameters per distribution. 

• A good-of-fitness is computed based on five error criteria and seven statistical descriptors. 
 

Article Info 

 

Abstract 

Determining wind regime distribution patterns is essential for many reasons; modelling wind 

power potential is one of the most crucial. In that regard, Weibull, Gamma, and Rayleigh 

functions are the most widely used distributions for describing wind speed distribution. However, 

they could not be the best for describing all wind systems. Also, estimation methods play a 

significant role in deciding which distribution can achieve the best matching. Consequently, 

alternative distributions and estimation methods are required to be studied. An extensive analysis 

of five different distributions to describe the wind speeds distribution, namely Rayleigh, Weibull, 

Inverse Gaussian, Burr Type XII, and Generalized Pareto, are introduced in this study. Further, 

five metaheuristic optimization methods, Grasshopper Optimization Algorithm, Grey Wolf 

Optimization, Moth-Flame Optimization, Salp Swarm Algorithm, and Whale Optimization 

Algorithm, are employed to specify the optimum parameters per distribution. Five error criteria 

and seven statistical descriptors are utilized to compare the good-of-fitness of the introduced 

distributions. Therefore, this paper provides different important methods to estimate the wind 

potential at any site. 
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1. INTRODUCTION 

 

Specifying wind regime distribution patterns is essential for many reasons, like estimating wind potential 

and designing wind turbines and farms. Therefore, selecting appropriate distributions for determining wind 

speed distribution accurately is a significant task. Besides, the fineness of the results fundamentally depends 

on the used distribution function which successes to represent the best fitness of the real wind data. During 

the last decades, numerous Probability Density Functions (PDFs) have been appeared in the literature to 

describe wind speed distributions, in particular, Weibull [1-3], Rayleigh [4], Gamma [5], Normal [6-8], 

Lognormal [9], Logistic [10, 11], Beta [12], Nakagami [13], Burr Type XII [14], Extreme Value [15, 16], 

Inverse Gaussian [17], Log-Logistic [18], Laplace [19], Half Normal [20, 21], Generalized Extreme Value 

[22, 23], Generalized Pareto [24, 25], T Location-Scale [26], and others. However, Weibull distribution is 

the extensively used among these distributions [27-29]. 

 

Using Weibull distribution and three years of wind datasets at Catalca in Istanbul, Turkey, the statistical 

study for wind data was performed [28]. Energy Pattern Factor (EPF), approximation, and graphical 

assessment methods were examined. Two years of wind data in Pakistan were employed to model the wind 

profile with the Weibull function [29]. The Weibull parameters were assessed by Cuckoo Search 

Optimization (CSO), Grey Wolf Optimization (GWO), and Particle Swarm Optimization (PSO). Moreover, 

four numerical approaches, the Empirical Method of Justus (EMJ), Modified Maximum Likelihood 

(MML), Method of Moments (MOM), and EPF, were manipulated. Junk and Schindler [30] introduced 24 

distributions to assess their Goodness-Of-Fit (GOF) based on four years of wind speed data at different   
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sites worldwide. MOM, L-moment, Maximum Likelihood (ML), and least-squares estimation methods 

were used to estimate these parameters. In addition, the empirical, graphical, MML, and EBF methods were 

employed with the Weibull function to evaluate the wind turbines' capacity factor [31]. MML outperformed 

the other methods, whereas the graphical presented the most insufficient matching. Two and three 

parameters Weibull, two-parameter Gamma, and two-parameter Lognormal were presented to model wind 

speed at the airport site in Dolny-Hricov [32]. ML method was applied to determine the parameter values. 

The Weibull function performed the most satisfactory matching. Weibull, Elliptical, and Non-Gaussian 

distributions were introduced to estimate wind speed distribution at 89 locations over France [33]. The 

study showed that Elliptical and Non-Gaussian distributions outperformed Weibull in some locations due 

to their topography and anisotropy discrepancy. 

 

Many invaluable research works appeared in the literature which covered Extreme Value distribution [15, 

25, 34-36]. Xaio et al. [37] proposed a technique to describe the extreme wind speed data depends on 

Extreme Value distribution in Hong Kong. It was compared to two and three parameters Weibull 

distributions. The obtained results demonstrated that the Extreme Value and Weibull distributions matched 

best. 

 

Many research works for describing wind speed distribution based on Inverse Gaussian distribution were 

appeared in [17, 38, 39]. Inverse Gaussian and other nine distributions were examined to evaluate the wind 

potential in India [38]. The parameters were optimized via Moth Flame Optimization (MFO) and ML 

estimation method. The results indicated that the bimodal Weibull outperformed the others.  

 

Many invaluable studies based on both Logistic and Log-Logistic distributions to determine the wind speed 

pattern were presented in [11, 18, 40, 41]. Lin et al. [41] introduced 15 distributions to describe wind speed 

distribution in Xiamen in China. Among of these distributions both Logistic and Log-Logistic were used. 

The parameters are estimated by generalized unified probability plotting method. The obtained results 

showed that Log-Logistic distribution was better than Logistic distribution in terms of performance. 

 

Laplace distribution was also introduced in [8, 19]. Laplace, Uniform, and Gaussian distributions based on 

golden search method were introduced to estimate wind speed distribution [19]. Laplace distribution 

achieved better performance than Uniform and Gaussian distributions. Normal distribution was also utilized 

in many studies [8, 18]. Ten distributions to assess the wind speed shape in Northern Cyprus were 

introduced by Alayat et al. [18]. The results proved that Generalized Extreme Value distribution gave the 

top matching for some locations while Log-Logistic, Weibull, and Gamma distributions were the best for 

the others. However, Normal distribution was not able to provide a good matching in all cases. 

 

The generalized Extreme Value function has been extensively employed in wind distribution modelling 

[22, 23, 35, 38, 42]. Weibull and Generalized Extreme Value distributions in India were presented to 

evaluate the wind speed at different locations [23]. The results referred to that Weibull distribution 

accurately assessed the lower tail of the wind speed data, but it failed to assess the upper tail. In addition, 

combining Generalized Extreme Value distribution with Weibull distribution was also proposed to improve 

the matching. Likewise, Generalized Pareto distribution has been utilized in many studies [24, 43-45]. The 

Generalized Pareto distribution was introduced by Holmes and Moriarty [45] to characterize extreme wind 

speeds. The results confirmed that this distribution is crucial for selecting the convenient value of the shape 

parameter. Moreover, Generalized Pareto distribution was also exploited to model the extreme wind speeds 

on small time scales in Denmark [46] and the method suggested to be an alternative modeling approach for 

Weibull distribution. 

 

This paper's primary incentive is to scrutinize the performance of Rayleigh, Weibull, Inverse Gaussian, 

Burr Type XII, and Generalized Pareto distributions in modelling the pattern of wind distribution. The 

reason behind selecting these distributions is that they may be feasible substitutes to the widely used 

Weibull and Gamma distributions which in many cases cannot accurately match the wind speed pattern 

because of the variations of wind speeds characteristic from one site to another. To demonstrate the 

effectiveness of these distributions on describing wind speed distribution, two recent wind datasets in the 
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North of Turkey are selected to conduct this analysis. Besides, the performance of the employed 

distributions and the approximation methods are analyzed by five different accuracy measures. 

 

Regarding the estimation methods, five metaheuristic optimization methods namely, Salp Swarm 

Algorithm (SSA), Grasshopper Optimization Algorithm (GOA), Whale Optimization Algorithm (WOA), 

GWO, and MFO are utilized. These methods vary in their robustness, computation complexity and ability 

to approach solutions. 

 

The rest of this article consists of many sections: Section two introduces the statistical distribution 

functions, including the formulas of PDF, CDF, and ICDF for each distribution. Furthermore, Section three 

presents the methodology, including a concise preface of each optimization method. Section four explains 

the accuracy measures employed to examine the distribution's performance. Besides, Section five explores 

the results. Finally, Section six concludes the article. 

 

 

2. STATISTICAL DISTRIBUTIONS 

 

Wind speed profile characterization is crucial in assessing wind availability at a particular location. When 

the wind speed pattern is described accurately, the other studies belonging to the site can be appropriately 

specified. Five different distributions are introduced to characterize the distribution of wind speeds. 

Hereinafter, a concise explanation of these distributions is given.  

 

2.1. Rayleigh Distribution 

 

The British physicist Lord Rayleigh derived the Rayleigh distribution by the end of the 19th century. The 

Rayleigh distribution with one parameter is a special case of the Weibull distribution when kW equals two 

[47]. Due to its ability to accurately describe wind regimes, many research works utilized Rayleigh 

distribution to assess wind potential at various locations worldwide [48-50]. One-parameter Rayleigh PDF 

is defined as follows [51] 

 

𝑓(𝑣) =
2𝑣

𝑏𝑅
2 exp (−

𝑣

𝑏𝑅
)
2
                                                                                                                                (1) 

 

where 𝑓(𝑣) is the probability of the predicted wind speed (𝑣), 𝑣 = 0,1,2,… ,𝑁,𝑁 is the wind speed vector 

length, and 𝑏𝑅 > 0.  
 

The Rayleigh CDF 𝐹(𝑣) and ICDF 𝐺(𝑝) are defined according to Equations (2) and (3), respectively 

 

𝐹(𝑣) = 1 − exp (
𝑣2

2𝑏𝑅
2)                                                                                                                                      (2) 

 

𝐺(𝑝) = 𝑏𝑅 √−2 ln(𝑝 − 1)                                                                                                                                   (3) 

 

where 0 ≤  𝑝 ≤  1. 

 

 

2.2. Weibull Distribution 

 

Weibull distribution is one of the commonly used distributions to assess wind speed because of its high 

performance [31, 52]. The bi-parameter Weibull distribution depends on shape (kW)  and scale (cW) 

parameters. The Weibull PDF is defined [4]: 

 

𝑓(𝑣) =
𝑘𝑊

𝑐𝑊
(
𝑣

𝑐𝑊
)
𝑘𝑊−1

exp (−(
𝑣

𝑐𝑊
)
𝑘𝑊
).                                                                                                        (4) 
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The Weibull function has essential features, one of them that its parameters that estimated at a particular 

height can be extrapolated at other heights [53]. The Weibull CDF and ICDF, also known as the quantile 

[54, 55] are defined as Equations (5) and (6), respectively 

 

𝐹(𝑣) = 1 − exp (−(
𝑣

𝑐𝑊
)
𝑘𝑊
)                                                                                                                            (5) 

 

𝐺(𝑝) = −𝑐𝑊[ln(1 − 𝑝)]
1

𝑘𝑊 .                                                                                                                         (6) 

 

 

2.3. Inverse Gaussian Distribution 

 

The Inverse Gaussian function, also called the Wald distribution, is the inverse of the Gaussian distribution. 

The density of Inverse Gaussian is like Gamma with more significant skewness and a sharper peak. The 

PDF formula of two-parameter Inverse Gaussian distribution is as given [17]: 

 

𝑓(𝑣) = √
𝑘𝐼

2π𝑣3
exp (−

𝑘𝐼(𝑣−𝑐𝐼)
2

2𝑐𝐼
2𝑣

)                                                                                                                   (7) 

 

where 𝑐𝐼 and 𝑘𝐼 are Inverse Gaussian scale and shape parameters, respectively. 

 

One of the valuable features of Inverse Gaussian distribution is its ability to model the low frequency and 

the low-speed wind speed data. Moreover, it has a simple computation complexity of its parameters 

compared to other distributions [56]. The CDF of Inverse Gaussian distribution is given by [17] 

 

𝐹(𝑣) = Φ(√
𝑘𝐼

𝑣
(
𝑣

𝑐𝐼
− 1)) + exp (

2𝑘𝐼

𝑐𝐼
)Φ(−√

𝑘𝐼

𝑣
(
𝑣

𝑐𝐼
+ 1))                                                                             (8) 

 

where Φ(𝑣) is the standard Gaussian CDF. Finally, Inverse Gaussian distribution has no known closed-

form for its ICDF, but it can be numerically estimated using a guess refined by Newton-Raphson iteration. 

 

2.4. Burr Type XII Distribution 

 

The Burr type XII function is a continuous distribution which is originally proposed by Irving W. Burr [57]. 

The three-parameter Burr PDF is given by the following Equation [58-60] 

 

𝑓(𝑣) =

𝑘𝐵2𝑘𝐵1
𝑐𝐵

(
𝑣

𝑐𝐵
)
𝑘𝐵1−1

(1+(
𝑣

𝑐𝐵
)
𝑘𝐵1

)

𝑘𝐵2+1
,  𝑣 > 0, 𝑐𝐵 > 0, 𝑘𝐵1 > 0, 𝑘𝐵2 > 0                                                                            (9) 

 

where 𝑐𝐵, 𝑘𝐵1, and 𝑘𝐵2 are the scale, the first and the second shape parameters. 

 

One of the crucial features of Burr distribution is the controllable scale and shape parameters which make 

it convenient for matching different distributions [14]. The Burr distribution formulas for the CDF [61] and 

ICDF [62] can be computed from Equations (10) and (11), respectively 

 

𝐹(𝑣) = 1 −
1

(1+(
𝑣

𝑐𝐵
)
𝑘𝐵1

)

𝑘𝐵2
,  𝑣 > 0, 𝑐𝐵 > 0, 𝑘𝐵1 > 0, 𝑘𝐵2 > 0                                                                          (10) 

 

𝐺(𝑝) = ((1 − 𝑝)
−1

𝑘𝐵2 − 1)

1

𝑘𝐵1
   .                                                                                                                             (11) 
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2.5. Generalized Pareto Distribution 

 

The Generalized Pareto function is a continuous distribution that generally can describe the tails of different 

distributions [63]. Its PDF can be given [64]: 

 

𝑓(𝑣) =
1

𝑐𝐺𝑃
(1 +

𝑘𝐺𝑃(𝑣−λ𝐺𝑃)

𝑐𝐺𝑃
)
−

1

𝑘𝐺𝑃
−1

                                                                                                                     (12) 

 

where 𝑐𝐺𝑃, 𝑘𝐺𝑃, and λ𝐺𝑃 are the scale, shape, and location parameters. One of the important features of 

Generalized Pareto distribution is its suitability for analyzing gust wind data [65]. The CDF and ICDF of 

the Generalized Pareto distribution are as presented as follows [66] 

 

𝐹(𝑣) =

{
 

 exp (−exp (
𝑣−𝜆𝐺𝐸

𝑐𝐺𝐸
)) , 𝑘𝐺𝐸 = 0

exp (−(1 + 𝑘𝐺𝐸
𝑣−𝜆𝐺𝐸

𝑐𝐺𝐸
)

−1

𝑘𝐺𝐸) , 1 + 𝑘𝐺𝐸
𝑣−𝜆𝐺𝐸

𝑐𝐺𝐸
> 0, 𝑘𝐺𝐸 ≠ 0

                                                               (13) 

 

𝐺(𝑝) = {
𝜆𝐺𝐸 − 𝑐𝐺𝐸 log(− log(𝑝)) , 𝑘𝐺𝐸 = 0

𝜆𝐺𝐸 +
𝑐𝐺𝐸

𝑘𝐺𝐸
((− log(𝑝))−𝑘𝐺𝐸 − 1), 𝑘𝐺𝐸 ≠ 0

.                                                                                         (14) 

 

Table 1 summarizes the employed distributions with their parameters. 

 

Table 1. The employed distributions 

Distributions  Number, (Name) of parameters Parameters 

 Rayleigh  1, (Defining parameter) P1=bR 

 Weibull  2, (Scale, Shape) P1=cW, P2=kW 

 Inverse Gaussian  2, (Scale, Shape)  P1=cI, P2=kI 

 Burr Type XII  3, (Scale, Shape1, Shape2) P1=cB, P2=kB1, P3=kB2 

 Generalized Pareto  3, (Shape, Scale, Location) P1=kGP, P2=cGP, P3=λGP 

 

3. METHODOLOGY AND MATERIALS 

 

However, Evolutionary Algorithms (EAs) are very popular in many research areas due to their simplicity, 

flexibility, and capability to avoid local optima. They may suffer from drawbacks such as long computation 

time, no guarantee to converge, and having several operating parameters to be adjusted before starting [67]. 

Five EAs, GOA, GWO, MFO, SSA, and WOA, are employed to overcome these limitations. In this section, 

these EAs are introduced briefly.  

 

3.1. Grasshopper Optimization Algorithm 

 

GOA is a new algorithm found in 2017 to solve various optimization problems [68]. It is an algorithm that 

emulates the way of food-seeking of grasshoppers. The grasshopper is a pest that can usually be seen 

individually in nature, but grasshoppers join swarms when seeking food. The way which a grasshopper 

swarm is used to move towards food sources is utilized artificially in GOA. 

 

Indeed, the grasshopper position in a grasshopper swarm is naturally affected by three distinct powers, 

namely, gravity, wind, and social interaction. However, in GOA, only social interaction among 

grasshoppers in a swarm is considered whereas the others are neglected [68]. GOA is like its EAs 

counterparts has two major phases, they are exploration and exploitation. In the exploration phase, the 



1101  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

algorithm tends to a highly random behavior that lets the grasshoppers to change their position in a 

significant and large movements. This helps the swarm to explore its promising regions fastly. On another 

hand, in the exploitation phase, the grasshopper changes their position in a small scale to let the swarm to 

search the space locally [69]. 

 

Mathematically, the GOA consists of three stages. Firstly, all grasshoppers in the swarm are randomly 

initialized within the lower and upper bounds [LB, UB]. Afterward, the fitness score per search agent is 

evaluated by the accompanying index function, and the best solution is saved (𝑇). Then, the algorithm starts 

the first iteration and, per search agent, updates its position according to the following Equation 

 

 𝑋𝑖
𝐷 = 𝑐 [(∑ 𝑐

𝑈𝐵𝐷−𝐿𝐵𝐷

2
𝑁
𝑗=1, 𝑗≠𝑖 𝑆 (|𝑥𝑗

𝐷 − 𝑥𝑖
𝐷|)

𝑥𝑗−𝑥𝑖

𝑑𝑖𝑗
] + 𝑇𝐷                                                                               (15) 

 

where 𝑋𝑖
𝐷 is the next position of the 𝑖𝑡ℎ search agent in the  𝐷𝑡ℎ dimension, 𝑐 is a decreasing factor, 𝑁 is 

the swarm size, 𝐿𝐵𝐷 and 𝑈𝐵𝐷 are the lower and upper boundary in the  𝐷𝑡ℎ dimension, 𝐿𝐵𝐷 is the lower 

bound in the  𝐷𝑡ℎ  dimension, and S(r) is a function to specify the social relation between two grasshoppers 

and can be calculated by: 

 

𝑆(𝑟) = 𝑓 exp (
−𝑟

𝑙
) − exp(−𝑟)                                                                                                                         (16) 

 

where 𝑙 and 𝑓 are constants and equal 1.5 and 0.5, respectively [68]. 𝑋𝑗
𝐷 and 𝑋𝑖

𝐷 are the current positions 

in the  𝐷𝑡ℎ  dimension of the  𝑗𝑡ℎ and  𝑖𝑡ℎ   search agents, respectively. 𝑋𝑗
  and 𝑋𝑖

  are the current positions of 

the 𝑗𝑡ℎ and  𝑖𝑡ℎ search agents, respectively. 𝑑𝑖𝑗 is the distance between the current positions of the 𝑗𝑡ℎ and 

 𝑖𝑡ℎ  and can be computed based on the following Equation 

 

𝑑𝑖𝑗 =∣ 𝑥𝑗 − 𝑥𝑖 ∣  .                                                                                                                                                   (17) 

 

𝑇𝐷 represents the gain of the  𝐷𝑡ℎ dimension in the optimal solution and indicates the tendency of the 

grasshoppers to move towards sources of food. The decreasing parameter 𝑐 is applied twice. The outer c 

preserves the balance between the exploration and exploitation of the swarm near the target; meanwhile, 

the inner c reduces the attraction, comfort, and repulsion zones between grasshoppers. Each iteration, 𝑐 is 

updated [70] 

 

𝑐 = 𝑈𝐵 − 𝑡
𝑈𝐵−𝐿𝐵

𝐿
                                                                                                                                          (18) 

 

where 𝑡 is the current iteration and 𝐿 is the maximum number of iterations. GOA enters the next iteration 

and repeats the same procedure until L is attained. Figure 1(a) shows the flowchart of GOA. 

 

3.2. Grey Wolf Optimization 

 

GWO simulates the grey wolves hunting in nature. It mainly based on three steps of hunting, namely, 

searching for booty, encircling booty, then, attacking booty, which is utilized to carry out optimization [71]. 

 

The GWO mechanism includes three primary stages. Initially, the search agents (the grey wolves) in the 

population (collection) are arbitrarily initialized within the period [LB, UB]. Later, the optimum score index 

per search agent is assessed by the accompanying criterion function. The best solution is alpha, then beta, 

and delta. The omega includes the remaining group of wolves. Subsequently, the positions of search agents 

are updated according to the prey position as in Equations (19) to (21) 

 

𝐷𝛼 =∣ 𝐶1𝑋𝛼 − 𝑋(𝑡) ∣, 𝐷𝛽 =∣ 𝐶2𝑋𝛽 − 𝑋(𝑡) ∣, 𝐷𝛿 =∣ 𝐶3𝑋𝛿 − 𝑋(𝑡) ∣                                                                   (19) 

 

𝑋𝛼 = 𝑋𝛼 − 𝐴1𝐷𝛼, 𝑋𝛽 = 𝑋𝛽 − 𝐴2𝐷𝛽 , 𝑋𝛿 = 𝑋𝛿 − 𝐴3𝐷𝛿                                                                                       (20) 
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𝑋(𝑡 + 1) =
𝑋𝛼+𝑋𝛽+𝑋𝛿

3
                                                                                                                                           (21) 

 

where 𝑡, 𝑋(𝑡), 𝑋(𝑡 + 1), 𝑋𝛼, 𝑋𝛽, 𝑋𝛿 denote the current iteration, the current and following positions of the 

prey, and the alpha, beta, and delta positions, respectively. The vectors 𝐴 and 𝐶 are computed as follows 

 

𝐴 = 2. 𝑎. 𝑟1 − 𝑎                                                                                                                                          (22) 

 

𝐶 = 2. 𝑟2                                                                                                                                                      (23) 

 

where the random vectors 𝑟1 and 𝑟2 are uniformly distributed in the period [0, 1], and the control vector 𝑎 

is linearly decreased within the period [2, 0] for best candidate solutions. GWO continues in the same 

procedure until the maximum iteration number is fulfilled. Figure 1 (b) shows the flowchart of GWO. 

 

3.3. Moth-Flame Optimization 

 

MFO is a bio-inspired optimization that simulates the moth behavior when flying towards moonlight or 

artificial light (flame) [72]. Mathematically, The MFA mechanism includes two steps. Firstly, all the search 

agents (moths) in the population (swarm) are arbitrarily initialized within the period [LB, UB]. Afterward, 

each search agent estimates the best score utilizing the accompanying criterion function. The best solution 

so far for each moth is saved as a separate flame (𝐹 𝑖
𝑁 , 𝑖 = 1, . . . , 𝑁, where 𝑁 represents the population 

size). Then, the algorithm starts the first iteration by sorting the moths according to their flames. Afterwards, 

MFO calculates the values of 𝐹𝑙𝑎𝑚𝑒𝑁𝑜, 𝑎, and 𝑡 using Equations (24), (25), and (26), respectively [73] 

 

𝐹𝑙𝑎𝑚𝑒_𝑁𝑜 = 𝑟𝑜𝑢𝑛𝑑 ((𝑁 − 𝑙)
𝑁−1

𝑇
)                                                                                                                  (24) 

 

where 𝑙 and 𝑇 are the current and the maximum number of iterations 

 

 𝑎 = −1 + (𝑙 
−1

𝑇
)                                                                                                                                               (25) 

 

𝑡 = (𝑎 − 1) 𝑟 + 1                                                                                                                                            (26) 

 

where 𝑡 is the vector of random numbers in the period [-1, 1], and 𝑟 is the vector of random numbers in the 

period [0, 1]. 

 

Then, the algorithm determines the distance between each search agent and its corresponding flame as 

follows: 

 

𝐷𝑖 =∣ 𝐹𝑗 −𝑀𝑖 ∣                                                                                                                                             (27) 

 

where 𝐷𝑖 is the space between the  𝑖𝑡ℎ  moth (𝑀𝑖) and the  𝑗𝑡ℎ flame (𝐹𝑗). Consequently, MFO updates the 

position for each search agent according to the logarithmic spiral function (𝑆): 

 

𝑆(𝑀𝑖 , 𝐹𝑗) = 𝐷𝑖  exp(𝑏𝑡) cos(2π𝑡) + 𝐹𝑗                                                                                                            (28) 

 

where the constant 𝑏 is for representing the logarithmic spiral, SSA continues in the same procedure until 

𝑇 is attained. Figure 1 (c) shows the flowchart of SSA. 

 

 

 

 

 



1103  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

3.4. Salp Swarm Algorithm 

 

SSA is a recent metaheuristic algorithm that mimics the sea squirts (salps) behavior when navigating for 

food in deep seas [74]. Indeed, salps usually tend to move in a chain. Accordingly, the swarm consists of 

the commander and the disciples. The commander is at the front of the salp and guides the disciples. 

 

The SSA mechanism contains three steps: initially, the search agents (salps) in the population (chain) are 

arbitrarily initialized within the period [LB, UB]. Then, the criterion function assesses the optimal score 

per search agent, and the best solution is saved (𝐹). After that, the algorithm starts the first iteration, and 

the leader search agent renews its position according to Equation (29) [74] 

 

𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1((𝑈𝐵𝑗 − 𝐿𝐵𝑗)𝑐2 + 𝐿𝐵𝑗   𝑐3 ≥ 0 

𝐹𝑗 − 𝑐1((𝑈𝐵𝑗 − 𝐿𝐵𝑗)𝑐2 + 𝐿𝐵𝑗   𝑐3 < 0
                                                                                                           (29) 

 

where 𝑥𝑗
1 is the commander salp position in the  𝑗𝑡ℎ  dimension, 𝐹𝑗 is the optimum solution in the  𝑗𝑡ℎ  

dimension, 𝑈𝐵𝑗 and 𝐿𝐵𝑗 are the boundaries of upper and lower parameters in the  𝑗𝑡ℎ dimension, 

respectively, 𝑐2 and 𝑐3 are uniformly distributed values in the period [0, 1], and 𝑐1 is the coefficient that 

maintains the equilibrium the exploration and exploitation processes of SSA and computed at each iteration 

as follows:  

 

𝑐1 = 2exp (−(
4𝑡

𝐿
)
2
)                                                                                                                                  (30) 

 

where 𝑡 and 𝐿 are the current and the maximum number of iterations. Moreover, the followers salps 

updating their positions according to the following Equation [74]. 

 

𝑥𝑗
𝑖 = 0.5(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)                                                                                                                                            (31) 

 

where (𝑖 ≥ 2) and 𝑥𝑗
𝑖 is the present placement of the  𝑖𝑡ℎ follower salp in the  𝑗𝑡ℎ  dimension. Then, SSA 

proceeds to the next iteration and repeats the same procedure until 𝐿 is fulfilled. Figure 1 (d) shows the 

flowchart of SSA. 

 

3.5. Whale Optimization Algorithm 

 

WOA is a new algorithm that appeared in 2016 for solving optimization problems [75]. It mimics the 

behavior of whales in hunting their prey [76]. In WOA, a population of whales (search agents) evolves to 

find the global optima after a defined iteration number. WOA begins with the initialization of search agents 

randomly upon the interval of LB and UB of the problem variables. After that, WOA evaluates the best 

score per search agent by using the fitness function. The best solution is saved for further processing later. 

Then, WOA updates the position of each search agent depending on the following cases. If a random 

number (𝑧) is less than 0.5 as well as 𝐴 vector is less than 1, then the particular search agent applies the 

Encircling method by updating its position for the next iteration using the following formulas 

 

𝑋(𝑡 + 1) = 𝑋∗(𝑡) − 𝐴.𝐷                                                                                                                                (32) 

 

𝐷 =∣ 𝐶. 𝑋∗(𝑡) − 𝑋(𝑡) ∣                                                                                                                               (33) 

 

𝐴 = 2. 𝑎. 𝑟 − 𝑎                                                                                                                                            (34) 

 

𝐶 = 2. 𝑟                                                                                                                                                       (35) 

 

where 𝑋∗(𝑡) is the best solution position. Furthermore, 𝐴 and 𝐶 are factor vectors. The 𝑎 vector is linearly 

decreased in the period [1, 0]. The r is the random vector in the period [0, 1]. Else if (random number (𝑧) ≤
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0.5), but A vector ≥  1, then the particular search agent applies the exploration method by updating its 

position for the next iteration using the following formulas: 

 

𝐷 =∣ 𝐶. 𝑋𝑟𝑎𝑛𝑑 − 𝑋(𝑡) ∣                                                                                                                                                    (36) 

 

𝑋(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑 − 𝐴.𝐷                                                                                                                                           (37) 

 

where 𝑋𝑟𝑎𝑛𝑑 is the random whale in the present iteration, otherwise, the particular search agent applies the 

Spiral method by updating its position for the next iteration using the following Equation: 

 

𝑋(𝑡 + 1) = {
𝑋∗(𝑡) − 𝐴. 𝐷, 𝑖𝑓𝑧 < 0.5

𝐷′ . exp(𝑏𝑙) . cos(2𝜋𝑙) + 𝑋∗, 𝑖𝑓𝑧 ≥ 0.5
                                                                                                       (38) 

 

where 𝐷′ = |𝑋∗ − 𝑋(𝑡)| represents the space between the search agent to the prey, b is constant, and 𝑙 is a 

random value within the period [-1, 1]. Finally, WOA continues in the exact methodology until the pre-

described number of iterations is attained. Figure 1 (e) depicts the flowchart of WOA. 

 

3.6. Methodology 

 

A distribution's parameter selection can be regarded as a nonlinear problem that reduces the MAE between 

the collected and expected wind vectors, as follows 

 

𝑚𝑖𝑛 {𝑀𝐴𝐸(𝑉𝑚, 𝑉𝑑)}                                                                                                                                            (39) 

 

where 𝑉𝑚 and 𝑉𝑑 are the collected and predicted speed vectors, respectively, and 𝑉𝑑  can be 

calculated based on the ICDF, as expressed in Section 2. 

 

To solve the problem of Equation (39), EAs can be used [77-80]. A population of search agents 

characterizes the optimal solution in GOA, GWO, MFO, SSA, and WOA. The initial population of search 

agents is arbitrarily produced per distribution based on the boundaries of their parameters.  

  

Afterward, Equation (39) computes the best score values per search agent. The population then increases 

by exploring the optimum solution based on the defined operations of the presented EAs. It continues in 

the exact methodology until the pre-described number of iterations is attained. Table 2 displays the 

distribution parameter values within their recommended range. 

 

Table 2. The GWO and WOA operating parameters 

Item Range Recommended value 

Size of population  [5,50] 50 

Maximum iteration 

numbers 
[50,300] 

100 for Rayleigh, 200 for Weibull and Inverse 

Gaussian, 300 for Burr and Generalized Pareto  

Termination criterion [1xE−4,1xE−6] 1xE−6 

 

Table 3 shows the optimal parameter values per the presented optimization methods and distributions. 

Notably, Rayleigh distribution based on all optimization methods provided very steady parameter values. 

Furthermore, Rayleigh was the only distribution that compatible with GOA. on the other hand, GWO was 
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the only optimization method that compatible with all distributions. WOA was also compatible with all 

distributions except Generalized Pareto. Besides, all optimization methods except GWO failed to approach 

the optimal parameter values with Generalized Pareto. Regarding the running time, Table 4 illustrates the 

elapsed time of the introduced optimization methods in seconds. It can be perceived that Rayleigh based 

on all optimization methods was the faster in convergence than other distributions, but Inverse Gaussian 

was the worst in all cases. 

 

 
(a) 

 
(b) 

Figure 1. Flowcharts of: (a) GOA, (b) GWO 

 

4. ERROR CRITERIA  

 

Many error criteria can be used to describe the performance of any distribution. In this paper, four widely 

used error criteria in addition to the remarkable net fitness test are applied. These criteria measure the grade 

of GOF. The utilized error criteria hereinafter are briefly discussed: 

 

• MAE represents the arithmetic average between the actual (x) and the expected (y) wind speed 

vectors [81]. 

𝑀𝐴𝐸 =
∑ ∣𝑦𝑖−𝑥𝑖∣
𝑁
𝑖=1

𝑁
                                                                                                                                                (40) 

 

where N represents the vector size. 

 

• RMSE is the square root of the average of the square of the differences between the expected and 

the actual wind speed values [82-85]. 
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𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖−𝑥𝑖)

2𝑁

𝑖=1

𝑁
                                                                                                                                                            (41) 

 

 
(c) 

 
(d) 

Figure 1. Flowcharts of: (c) MFO, (d) SSA 

 

 

• The coefficient of regression shows the degree of the linearity between the expected and the actual 

data. It can be calculated by Equation (42) 

 

𝑅2 =
∑ (𝑥𝑖−𝜇𝑖)

2𝑁

𝑖=1
−∑ (𝑥𝑖−𝑦𝑖)

2𝑁

𝑖=1

∑ (𝑥𝑖−𝜇𝑖)
2𝑁

𝑖=1

                                                                                                                      (42) 

 

where 𝜇𝑖 is the ith average of gathered wind speed data. 

 

• Correlation Coefficient describes the correlation degree between two sets. It has three values, -1 

(opposite correlation) and 1 (a perfect positive correlation). However, the zero value indicates that  



1107  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

 

 
Figure 1. Flowcharts of: (e) WOA 

 

Table 3. Distributions parameter values generated by optimization methods 

Distributions 

P
a
ra

m
et

er

s 

Datasets 

2019 2020 

GOA GWO MFO SSA WOA GOA GWO MFO SSA WOA 

Rayleigh 

P1 3.25 3.25 3.25 3.25 3.25 3.46 3.46 3.46 3.46 3.46 

P2 - - - - - - - - - - 

P3 - - - - - - - - - - 

Weibull 

P1 4.17 4.53 4.52 4.17 4.53 4.17 4.78 4.79 4.79 4.79 

P2 852.9 1.84 1.84 442.4 1.84 977.7 1.75 1.75 1.75 1.75 

P3 - - - - - - - - - - 

Inverse 

Gaussian 

P1 4.52 4.20 4.20 4.20 4.23 4.87 4.42 4.42 4.47 4.43 

P2 223.8 15.1 15.14 15.2 14.43 78.35 13.52 13.5 16.4 13.5 

P3 - - - - - - - - - - 

Burr Type 

XII 

P1 4.280 24.2 1000 999.3 5.77 4.20 189.8 1000 997.6 380.3 

P2 270.9 1.91 1.000 1.017 2.45 965.7 1.75 1.000 1.01 1.573 

P3 1000 24.8 290.2 293.2 2.36 734.2 627.4 263.5 262.5 1000 

Generalized 

Pareto 

P1 -1000 -0.42 -183.9 -611.9 -115.6 -1000 -0.513 -65.35 -14.0 -120 

P2 859.62 4.1 918.2 321.4 258.9 957.4 5.06 751.74 155.2 369.3 

P3 3.310 1.212 -0.82 3.645 1.93 3.21 0.896 -7.33 -6.40 1.10 
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Table 4. Elapsed running time in seconds 

Distributions 

Datasets 

2019 2020 

GOA GWO MFO SSA WOA GOA GWO MFO SSA WOA 

Rayleigh 5.794 4.87 3.26 3.26 3.52 14.71 6.07 4.48 4.43 4.8 

Weibull 30.06 14.28 12.91 11.2 11.71 21.94 19.72 16.42 14.9 16.75 

Inverse 

Gaussian 
856.05 477.7 188.9 339.1 190.13 411.5 295 267.2 467.4 243.5 

Burr Type XII 55.97 99.10 29.3 38.6 42.03 67.39 68.7 39.13 53.41 56.7 

Generalized 

Pareto 
23.65 41.61 15.1 15.4 16.40 22.69 25.5 19.46 21.76 19.97 

 

the two datasets are wholly different (no correlation). The correlation coefficient is given by Equation (43) 

[83] 

𝑅 =
1

𝑁−1
∑

(𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

𝜎𝑥𝜎𝑦

𝑁

𝑖=1

                                                                                                                                (43) 

 

where (�̅�, �̅�) and (𝜎𝑥, 𝜎𝑦) denote the average and the standard deviation of the measured and expected wind 

speed vectors, respectively. 

 

• Net Fitness is a great test used to find the average of other error measures. It is essential to rank all 

used distributions and estimation methods according to their accuracy. In this paper, its formula is 

defined in Equation (44) [29] 

 

𝑁𝑒𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 =
∑ ∣𝑀𝐴𝐸𝑖∣
𝑛
𝑖=1 +∑ ∣𝑅𝑀𝑆𝐸𝑖∣

𝑛
𝑖=1 +∑ (1−𝑅𝑖

2)
𝑛

𝑖=1
+∑ (1−𝑅𝑖)

𝑛

𝑖=1

4𝑛
                                                                               (44) 

 
where n is the whole number of error measures. 

 

5. RESULTS AND DISCUSSION 

 

The collected half-hourly wind speed data from the Catalca zone in Turkey for the 2019 and 2020 years at 

10m height are employed to test the performance of the introduced distributions and optimization methods. 

Table 5 depicts the Catalca information. 

 

Table 5. Data of the selected site 

Station 

name 

Site 

name 
State Country 

Latitude 

(O) N 

Longitude 

(O) E 

Altitude 

(m) 
Years 

Ataturk Catalca Istanbul Turkey 40.967  28.817 37 2019-2020 

 

Five optimization algorithms, GOA, GWO, MFO, SSA and WOA were exploited to estimate the parameters 

per distribution. The statistical identifiers like 𝜇, 𝜎, 𝜎2, Minimum (Min), Maximum (Max), Skewness 

(Skew), and Kurtosis (Kurt) in addition to average power density (𝑃𝑎𝑣𝑔) to characterize the pattern of wind 

for the two years are given in Tables 6 and 7. 

 

The average wind speed value is a crucial indication of wind availability at any site. The mean wind speed 

values of the actual data are 4.30 and 4.5 m/s for the 2019 and 2020 datasets, respectively. The standard 

deviation value shows how the speed values differ from the mean. The variance shows the degree of the 

spread between wind speed values from their mean. The minimum actual wind speed was zero, whereas 

the maximum varied between 14.40 and 15.60 m/s. 
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Table 6. Statistical scrutiny for all distributions of the 2019 dataset 

Optimization  Distribution 𝜇 𝜎 𝜎2 Min Max Skew Kurt 
𝑃𝑎𝑣𝑔 

(W/m2) 

- Real 4.307 2.254 5.079 0.000 14.440 0.756 0.505 94.41 

GOA 

Rayleigh 4.329 2.126 4.520 0.367 13.968 0.622 0.276 89.32 

Weibull 4.169 0.006 0.000 4.146 4.182 -0.955 1.421 44.37 

Inverse 

Gaussian 
4.601 0.633 0.400 3.151 7.545 0.473 0.372 63.11 

Burr 4.166 0.018 0.000 4.095 4.207 -0.943 1.384 44.29 

Generalized 

Pareto 
4.170 0.000 0.000 4.169 4.170 -12.43 152.42 44.41 

GWO 

Rayleigh 4.323 2.123 4.507 0.367 13.948 0.622 0.276 88.94 

Weibull 4.285 2.273 5.167 0.290 15.142 0.734 0.501 94.15 

Inverse 

Gaussian 
4.440 2.278 5.188 1.138 21.144 1.583 4.095 107.4 

Burr 4.294 2.266 5.134 0.315 15.856 0.791 0.736 94.63 

Generalized 

Pareto 
4.343 2.152 4.630 1.238 10.843 0.623 -0.425 90.92 

MFO 

Rayleigh 4.323 2.123 4.507 0.367 13.948 0.622 0.276 88.934 

Weibull 4.279 2.266 5.134 0.291 15.089 0.732 0.495 93.567 

Inverse 

Gaussian 
4.440 2.276 5.180 1.139 21.126 1.581 4.090 107.27 

Burr 3.799 3.624 13.131 0.022 32.252 1.959 5.728 182.31 

Generalized 

Pareto 
4.158 0.124 0.015 2.624 4.170 -11.94 143.84 44.13 

SSA 

Rayleigh 4.323 2.123 4.507 0.367 13.948 0.622 0.276 88.94 

Weibull 4.168 0.011 0.000 4.124 4.192 -0.950 1.406 44.34 

Inverse 

Gaussian 
4.440 2.276 5.180 1.139 21.126 1.581 4.090 107.3 

Burr 4.090 3.837 14.724 0.026 33.742 1.912 5.430 218.7 

Generalized 

Pareto 
4.170 0.001 0.000 4.159 4.170 -12.43 152.420 44.41 

WOA 

Rayleigh 4.323 2.123 4.507 0.367 13.95 0.622 0.276 88.93 

Weibull 4.286 2.275 5.174 0.289 15.154 0.735 0.503 94.26 

Inverse 

Gaussian 
4.476 2.359 5.563 1.110 22.00 1.623 4.306 113.7 

Burr 4.404 2.446 5.982 0.514 28.23 1.807 7.356 116.93 

Generalized 

Pareto 
4.160 0.090 0.008 3.098 4.170 -10.66 119.272 44.15 

 

Skewness indicates the degree of deviation from the symmetrical normal distribution. The skewness of the 

actual data of 2019 and 2020 datasets shows that the actual data tend to have a moderate and positively 

skewed shape. Examining the skewness values of Rayleigh and Inverse Gaussian distributions based on 

GOA, it can be noticed that only both followed the skewness pattern of the actual data. However, other 

distributions completely failed. In addition, Generalized Pareto was the most anomaly with negative 

skewness values (negatively skewed). 

 

Kurtosis measures the outliers values of a frequency distribution. Kurtosis has three classes: positive, 

negative, and zero. Zero kurtosis distribution generally follows the Normal distribution; the kurtosis with 

positive values has heavier tails and more peak-heavy than Normal, whereas the kurtosis with negative has 
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lighter tails and a flatter peak than Normal [84]. The actual data of the 2019 and 2020 datasets tend to the 

positive kurtosis pattern with a flat top near the mean rather than a sharp peak. Apparently, the Generalized 

Pareto distribution recorded very high kurtosis values compared to actual data. Consequently, the estimated 

wind pattern radically differs from the actual wind pattern.   

 

Table 7. Statistical scrutiny for all distributions of the 2020 dataset 

Optimization  Distribution 𝜇 𝜎 𝜎2 Min Max Skew Kurt 
𝑃𝑎𝑣𝑔 

(W/m2) 

- Real 4.470 2.491 6.205 0.000 15.56 0.632 0.218 111.65 

GOA 

Rayleigh 4.576 2.271 5.158 0.610 14.85 0.632 0.239 106.58 

Weibull 4.169 0.005 0.000 4.153 4.180 -0.825 0.768 44.380 

Inverse 

Gaussian 
4.997 1.216 1.478 2.788 11.55 0.793 0.950 90.884 

Burr 4.169 0.005 0.000 4.153 4.181 -0.823 0.766 44.389 

Generalized 

Pareto 
4.170 0.000 0.000 4.170 4.170 -7.872 59.98 44.413 

GWO 

Rayleigh 4.576 2.271 5.158 0.610 14.85 0.632 0.239 106.58 

Weibull 4.520 2.541 6.457 0.441 17.04 0.813 0.625 118.36 

Inverse 

Gaussian 
4.667 2.618 6.853 1.260 24.64 1.695 4.588 139.65 

Burr 4.521 2.541 6.458 0.442 17.08 0.816 0.634 118.45 

Generalized 

Pareto 
4.476 2.361 5.574 0.974 10.665 0.479 -0.714 104.64 

MFO 

Rayleigh 4.576 2.271 5.158 0.610 14.85 0.632 0.239 106.57 

Weibull 4.523 2.537 6.437 0.444 17.01 0.810 0.617 118.28 

Inverse 

Gaussian 
4.667 2.618 6.854 1.260 24.64 1.695 4.588 139.69 

Burr 4.153 4.001 16.010 0.059 35.58 1.943 5.539 242.26 

Generalized 

Pareto 
4.080 0.539 0.290 -0.002 4.170 -6.899 48.204 43.125 

SSA 

Rayleigh 4.576 2.271 5.158 0.610 14.85 0.632 0.239 106.57 

Weibull 4.523 2.537 6.437 0.444 17.01 0.810 0.617 118.27 

Inverse 

Gaussian 
4.702 2.411 5.811 1.409 22.29 1.559 3.874 127.26 

Burr 4.357 4.159 17.297 0.064 36.73 1.917 5.377 273.60 

Generalized 

Pareto 
4.175 1.583 2.505 -4.231 4.720 -3.781 14.666 54.622 

WOA 

Rayleigh 4.576 2.271 5.158 0.610 14.85 0.632 0.239 106.57 

Weibull 4.523 2.537 6.439 0.444 17.01 0.810 0.617 118.28 

Inverse 

Gaussian 
4.668 2.619 6.858 1.260 24.65 1.695 4.590 139.75 

Burr 4.511 2.798 7.831 0.333 19.38 0.975 1.061 134.19 

Generalized 

Pareto 
4.162 0.059 0.003 3.696 4.170 -7.689 57.944 44.174 

 

The actual 𝑃𝑎𝑣𝑔 powers at the location are 94.40 and 111.70 W/m2 at 10 m height for the 2019 and 2020 

datasets, respectively. The 𝑃𝑎𝑣𝑔 is directly proportional to the wind hub height. Investigating Tables 6 and 

7 regarding the 𝑃𝑎𝑣𝑔, it observed that the Rayleigh function with the GOA performed the highest GOF 

with actual data.  
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Table 8. Accuracy measures for 2019 dataset 

Optimization 

method 
Distribution 

Accuracy measure Net 

Fitness 
Rank 

MAE RMSE R2 R 

GOA 

Rayleigh 0.1411 0.1781 0.9938 0.9984 0.0817 1 

Weibull 1.7871 2.2525 0.0008 0.9169 1.2805 4 

Inverse Gaussian 1.3589 1.6514 0.4630 0.9953 0.8880 2 

Burr 1.7778 2.2416 0.0105 0.9179 1.2727 3 

Generalized 

Pareto 
1.7914 2.2576 -0.0037 0.1528 1.4750 5 

GWO 

Rayleigh 0.1411 0.1795 0.9937 0.9984 0.0821 3 

Weibull 0.0695 0.1036 0.9979 0.9990 0.0440 1 

Inverse Gaussian 0.2639 0.4198 0.9653 0.9846 0.1834 5 

Burr 0.0727 0.1056 0.9978 0.9989 0.0454 2 

Generalized 

Pareto 
0.1194 0.2636 0.9863 0.9940 0.1007 4 

MFO 

Rayleigh 0.1411 0.1795 0.9937 0.9984 0.0821 2 

Weibull 0.0694 0.1040 0.9979 0.9990 0.0441 1 

Inverse Gaussian 0.2638 0.4191 0.9654 0.9846 0.1832 3 

Burr 1.2462 1.6359 0.4730 0.9669 0.8606 4 

Generalized 

Pareto 
1.7794 2.2393 0.0125 0.1804 1.4565 5 

SSA 

Rayleigh 0.1411 0.1795 0.9937 0.9984 0.0821 1 

Weibull 1.7831 2.2478 0.0050 0.9173 1.2771 4 

Inverse Gaussian 0.2638 0.4191 0.9654 0.9846 0.1832 2 

Burr 1.2315 1.7581 0.3913 0.9690 0.9073 3 

Generalized 

Pareto 
1.7914 2.2575 -0.0036 0.1531 1.4748 5 

WOA 

Rayleigh 0.1411 0.1795 0.9937 0.9984 0.0821 2 

Weibull 0.0695 0.1037 0.9979 0.9990 0.0441 1 

Inverse Gaussian 0.2657 0.4658 0.9573 0.9833 0.1977 3 

Burr 0.1971 0.5219 0.9464 0.9795 0.1983 4 

Generalized 

Pareto 
1.7812 2.2414 0.0107 0.2062 1.4514 5 

 

On the other hand, in general, Weibull distribution based on GWO, MFO and WOA achieved the best GOF 

with real data. In all cases, Generalized Pareto distribution offered the worst matching with actual data. 

Rayleigh and Weibull distributions accomplished the best matching for all the statistical descriptor values.   

 

The distribution function with the best match when the deviation between the actual and the expected wind 

speeds approaches a minimum value. Tables 8 and 9 summarize the GOF of the presented five distributions 

employing five optimization methods. For all tables, the bold values refer to the optimal per optimization 

method, whereas the underlined values refer to the best matching. 

 

Examining Tables 8 and 9, it can be observed that Rayleigh distribution based on GOA and SSA 

optimization methods outperformed the other distributions and occupied the first rank. However, Weibull 

distribution based on GWO, MFO and WOA did. Except GWO, Generalized Pareto distribution based on 

other optimization methods presented least matching to real data and generally ranked fifth place. Although, 

Burr distribution is mainly based on three parameters, but it was not able to achieve a good matching.  

 

To clearly determine the accuracy of the most fitness distribution, the rank is estimated based on the net 

fitness measure. Distributions are ranked according to the four GOF criteria as mentioned earlier. As given 

in Table 10, the top-down rank of the five distributions for the 2019 dataset is Weibull, Rayleigh, Inverse 

Gaussian, Burr, and Generalized Pareto. However, for the 2020 dataset, the rank is Weibull, Rayleigh, Burr, 

Inverse Gaussian, and Generalized Pareto. 
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Table 9. Accuracy measures for 2020 dataset 

Optimization 

method 
Distribution 

Accuracy measure Net 

Fitness 
Rank 

MAE RMSE R2 R 

GOA 

Rayleigh 0.2226 0.2707 0.9882 0.9988 0.1266 1 

Weibull 2.0023 2.5045 -0.0109 0.9328 1.3962 4 

Inverse Gaussian 1.1662 1.3861 0.6904 0.9973 0.7162 2 

Burr 2.0022 2.5044 -0.0108 0.9329 1.3962 3 

Generalized Pareto 2.0061 2.5090 -0.0145 0.2244 1.5763 5 

GWO 

Rayleigh 0.2226 0.2707 0.9882 0.9988 0.1266 4 

Weibull 0.1102 0.1800 0.9948 0.9978 0.0744 1 

Inverse Gaussian 0.3935 0.6295 0.9361 0.9738 0.2782 5 

Burr 0.1109 0.1811 0.9947 0.9978 0.0748 2 

Generalized Pareto 0.1203 0.3181 0.9837 0.9928 0.1155 3 

MFO 

Rayleigh 0.2226 0.2707 0.9882 0.9988 0.1266 2 

Weibull 0.1101 0.1784 0.9949 0.9979 0.0739 1 

Inverse Gaussian 0.3934 0.6297 0.9361 0.9738 0.2783 3 

Burr 1.2538 1.7935 0.4816 0.9581 0.9019 4 

Generalized Pareto 1.9164 2.4242 0.0529 0.2869 1.5002 5 

SSA 

Rayleigh 0.2226 0.2707 0.9882 0.9988 0.1266 2 

Weibull 0.1101 0.1784 0.9949 0.9979 0.0739 1 

Inverse Gaussian 0.4100 0.5569 0.9500 0.9792 0.2594 3 

Burr 1.2445 1.9068 0.4140 0.9594 0.9445 4 

Generalized Pareto 1.7372 2.2075 0.2146 0.4976 1.3081 5 

WOA 

Rayleigh 0.2226 0.2707 0.9882 0.9988 0.1266 2 

Weibull 0.1101 0.1785 0.9949 0.9979 0.0740 1 

Inverse Gaussian 0.3934 0.6301 0.9360 0.9738 0.2784 4 

Burr 0.2350 0.4011 0.9741 0.9954 0.1667 3 

Generalized Pareto 1.9978 2.4960 -0.0041 0.2497 1.5621 5 

 

Again, as shown in Table 10, Weibull and Rayleigh distributions achieved the first and second ranks, 

respectively. However, from the computation complexity point of view, the uni-parameter Rayleigh is more 

satisfactory than the Weibull of bi-parameter. The computation time of Weibull was three to five times of 

Rayleigh, as can be observed from Table 3. Even so, Generalized Pareto distribution was the next to Weibull 

in terms of computation time, but it was not able to provide a good matching. According to the obtained 

results in this study, distributions based on different optimization methods provide different degrees of 

matching. Therefore, it can be deduced that there is no unique, globally accepted, best optimization method 

to estimate distribution parameters. 

 

Table 10. Ranking of distributions 

Distribution 
2019 2020 

1st  2nd  3rd  4th  5th  1st  2nd  3rd  4th  5th  

Rayleigh 2 2 1 - - 1 3 - 1 - 

Weibull 3 - - 2 - 4 - - 1 - 

Inverse 

Gaussian 
- 2 2 - 1 - 1 2 1 1 

Burr Type XII - 1 2 2 - - 1 2 2 - 

Generalized 

Pareto 
- - - 1 4 - - 1 - 4 

Best WD RD IGD BD GPD WD RD BD IGD GPD 

 

To interpret the obtained results visually for all datasets, Figure 2 displays the fitted PDFs. Two different-

scale vertical axes are used to represent PDF plots; the left one is for the measured wind data histogram, 

whereas the right is for the other distributions. These vertical axes represent the probability density. In 
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addition, abbreviations in Figure 2: RD, WD, IGD, BD, and GPD denote Rayleigh, Weibull, Inverse 

Gaussian, Burr, and Generalized Pareto distributions, respectively. It is noticed that most of the introduced 

distributions achieved good matching except the Generalized Pareto distribution. 

 

 
 

(a) (b) 

  

(c) (d) 

 
 

(e) (f) 

  
(g) (h) 
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(i) (j) 

 

Figure 2. The PDF curves of used distributions when using (a) GOA-2019, (b) GWO-2019, (c) MFO-

2019, (d) SSA-2019, (e) WOA-2019, (f) GOA-2020, (g) GWO-2020, (h) MFO-2020, (i) SSA-2020 and (j) 

WOA-2020 

 

Many invaluable conclusions and findings are derived from this comprehensive analysis as follows: 

 

• One of the most critical findings is that the wind regime distribution varies from location to 

location. Therefore, different distributions should be used to describe the wind distribution pattern 

accurately. In other words, a particular distribution can accomplish the best GOF at a specific 

location but not at another. 

 

• The second leading finding is the selection of optimization method which depends on the 

characteristics of wind data pattern, convergence, and computation complexity. For instance, 

Rayleigh distribution based on GOA and SSA optimization methods achieved the best matching 

while Weibull distribution based on GWO, MFO, and WOA did. Consequently, the trade-off 

between various optimization methods is an indispensable requisite. 

     

• The third crucial finding is the applied error criteria. For example, some error criteria may provide 

the top matching for a particular distribution but not for another. Consequently, it is indispensable 

to apply different error measures. Then, the net fitness calculation is essential to determine the best-

rank distribution accurately. 

     

• The fourth important finding is parameter numbers per the distribution. In many cases, the 

distribution functions with higher parameters may better estimate wind patterns. However, the 

computation burdens significantly increase. For example, based on GWO, the bi-parameter Weibull 

function provided slightly better matching than the mono-parameter Rayleigh function. Although, 

the computation time of Weibull distribution parameters selection was about three-five times more 

than the Rayleigh distribution. 

     

• The fifth important finding is that the scale parameter of some distributions can indicate the wind 

potentiality at the analyzed site since the scale parameter of these distributions can shape the annual 

mean wind speed profile. In this study, the Weibull scale parameter can be utilized to predict the 

annual average wind speed. 

 

• The sixth crucial finding is the skewness and kurtosis statistical descriptors that are also essential 

to describe the wind regime since they can display the whole wind distribution pattern. In this study, 

skewness and kurtosis values are positive; therefore, the wind pattern takes the shape of positively 

skewed and leptokurtic. Thus, the selection of the appropriate distribution can be recognized.   

 

6. CONCLUSION 

 

Selecting convenient distributions for determining the wind speed distribution is crucial for many studies 

like feasibility studies, wind turbines, and farm design. Therefore, this paper presents five different 
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distributions to describe wind speed distribution. The best parameter values per distribution were assessed 

employing GOA, GWO, MFO, SSA, and WOA optimization algorithms. The statistical characteristics of 

the examined location were studied and compared via many statistical descriptors. Besides, the GOF of 

each distribution based on four different error metrics was measured and compared. In addition, net fitness 

was computed to determine the distribution with the best matching. The half-hourly recent wind data from 

the Catalca site in Istanbul were employed to conduct this analysis. Rayleigh distribution based on GOA 

and SSA outperformed the other distributions. However, Weibull distribution based on GWO, MFO, and 

WOA did. Besides, Inverse Gaussian and Burr distributions achieved the third and fourth ranks 

interchangeably for the 2019 and 2020 datasets. Ultimately, the used distribution function, estimation 

method, and error measure are essential factors in making an accurate decision of the top matching for wind 

pattern at any site. Finally, this paper provides essential methods to assess the wind potential at any location. 

 

ACKNOWLEDGMENTS 

The author would like to thank Ali ORHAN and Rabia KILIC for their efforts in collecting the raw data 

for this study. 

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the authors. 

 

REFERENCES 

 

[1] Wadi, M., Elmasry, W., “Statistical analysis of wind energy potential using different estimation 

methods for Weibull parameters: a case study”, Electrical Engineering, 103(6): 2573-2594, 

(2021). 

 

[2]      Wadi, M., Elmasry, W., “Different Statistical Distributions and Genetic Algorithms”,  

International Conference on Electric Power Engineering–Palestine (ICEPE)-IEEE, 1–7, (2021). 

 

[3] Shi, J., Erdem, E., “Estimation of wind energy potential and prediction of wind power”,  In Wind 

Energy Engineering, Academic Press, 25-49, (2017).  

 
[4] Pishgar, S., Keyhani, A., and Sefeedpari, P., “Wind speed and power density analysis based on 

Weibull and Rayleigh10distributions (a case study: Firouzkooh county of Iran”, Renewable and 

Sustainable Energy Reviews, 42: 313–322, (2015). 

 

[5] Morgan, E.C., Lackner, M., Vogel R.M., and Baise, L.G., “Probability distributions for offshore 

wind speeds”, Energy Conversion and Management, 52(1): 15–26, (2011). 

 

[6] Crutcher, H.L., Baer, L., “Computations from elliptical wind distribution statistics”, Journal of 

Applied Meteorology and Climatology, 1(4): 522–530, (1962). 

 

[7] Dutta, S., Genton, M.G., “A non-Gaussian multivariate distribution with all lower-dimensional 

Gaussians and related families”, Journal of Multivariate Analysis, 132: 82–93, (2014). 

 

[8] Yuan, K., Zhang, K., Zheng, Y., Li, D., Wang, Y., and Yang, Z., “Irregular distribution of wind 

power prediction”, Journal of Modern Power Systems and Clean Energy, 6(6): 1172–1180, 

(2018). 

 

[9] 

 

Garcia, A., Torres, J., Prieto, E., and De Francisco, A., “Fitting wind speed distributions:  a case 

study”, Solar Energy, 2062(2): 139–144, (1998). 

 

[10] 

 

Scerri, E., Farrugia, R., “Wind data evaluation in the Maltese Islands”, Renewable Energy, 7(1):  

109–114, (1996). 

 



1116  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

[11] 

 

Ahsanullah, M., Alzaatreh, A., “Some Characterizations of the Log-Logistic Distribution”, 

Stochastics and Quality Control, 33(1): 23–29, (2018). 

 

[12] 

 

Yilmaz, V., Celik, H. E., “A statistical approach to estimate the wind speed distribution: the case 

of Gelibolu region”, Dogus Universitesi Dergisi, 9(1): 122-132, (2011). 

 

[13] 

 

Alavi, O., Mohammadi, K., and Mostafaeipour, A., “Evaluating the suitability of wind speed 

probability distribution models: A case of study of east and southeast parts of Iran”, Energy 

Conversion and Management, 119: 101–108, (2016). 

 

[14] 

 

Mert, I., Karakus, C., “A statistical analysis of wind speed data using Burr, generalized gamma, 

and Weibull distributions in Antakya, Turkey”, Turkish Journal of Electrical Engineering & 

Computer Sciences, 23(6): 1571-1586, (2015). 

 

[15] 

 

Rajabi, M., Modarres, R., “Extreme value frequency analysis of wind data from Isfahan, Iran”, 

Journal of Wind Engineering and Industrial Aerodynamics, 96(1): 78–82, (2008). 

 

[16] 

 

El-Shanshoury, G.I., Ramadan, A., “Estimation of extreme value analysis of wind speed in the 

North-Western coast of Egypt”, Arab Journal of Nuclear Sciences and Applications, 45: 265–

274, (2012). 

 

[17] 

 

Nagatsuka, H., Balakrishnan, N., “A method for estimating parameters and quantiles of the three-

parameter inverse Gaussian distribution based on statistics invariant to unknown location”, 

Journal of Statistical Computation and Simulation, 84(11): 2361–2377, (2014). 

 

[18] 

 

Alayat, M.M., Kassem, Y., and Camur H., “Assessment of wind energy potential as a power 

generation source: A case study of eight selected locations in Northern Cyprus”, Energies, 

11(10): 2697, (2018). 

 

[19] 

 

Lee, D., Baldick, R., “Probabilistic wind power forecasting based on the laplace distribution and 

golden search”, IEEE/PES Transmission and Distribution Conference and Exposition, 1–5, 

(2016). 

 

[20] 

 

Wallner, M., “A half-normal distribution scheme for generating functions”, European Journal of 

Combinatorics, 187: 103138, (2020). 

 

[21] 

 

Gomez, Y.M., Vidal, I., “A generalization of the half-normal distribution”, Applied 

Mathematics-A Journal of Chinese Universities, 31(4), 409-424, (2016). 

 

[22] 

 

Ayuketang, A.N., Joseph, E., “Generalized extreme value distribution models for the assessment 

of seasonal wind energy potential of Debuncha, Cameroon”, Journal of Renewable Energy, 

(2016). 

 

[23] 

 

Sarkar, A., Deep, S., Datta, D., Vijaywargiya, A., Roy, R., and Phanikanth, V., “Weibull and 

Generalized Extreme Value Distributions for Wind Speed Data Analysis of Some Locations in 

India”, KSCE Journal of Civil Engineering, 823(8): 3476–3492, (2019). 

 
[24] 

 

Singh, V.P., Guo, H., “Parameter estimation for 3-parameter generalized Pareto distribution by 

the principle of maximum entropy (POME)”, Hydrological Sciences Journal, 40(2): 165–181, 

(1995). 

 
[25] 

 

D’Amico, G., Petroni, F., and Prattico, F., “Wind speed prediction for wind farm applications 

by extreme value theory and copulas”, Journal of Wind Engineering and Industrial 

Aerodynamics, 145: 229–236, (2015). 

 



1117  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

[26] 

 

Zhang, J., Chen, T., and Xu, L., “Wind power fluctuation characteristics of wind farms”, In 

Atlantis Press, 24: 1478-1481, (2015). 

 
[27] 

 

Sohoni, V., Gupta, S., and Nema, R., “A comparative analysis of wind speed probability 

distributions for wind power assessment of four sites”, Turkish Journal of Electrical Engineering 

& Computer Sciences, 24(6): 4724–4735, (2016). 

 
[28] 

 

Wadi, M., Elmasry, W., Shobole, A., Tur, M.R., Bayindir, R., and Shahinzadeh, H., “ Wind 

Energy Potential Approximation with Various Metaheuristic Optimization Techniques 

Deployment”, 7th International Conference on Signal Processing and Intelligent Systems 

(ICSPIS)-IEEE, 1-6, (2021). 

 
[29] 

 

Akinci, T.C., Nogay, H.S., “Wind speed correlation between neighboring measuring stations”, 

Arabian Journal for Science and Engineering, 37(4): 1007-1019, (2012). 

 
[30] 

 

Jung, C., Schindler, D., “Global comparison of the goodness-of-fit of wind speed distributions”, 

Energy Conversion and Management, 133: 216–234, (2017). 

 
[31] Saxena, B.K., Rao, K.V.S., “Comparison of Weibull parameters computation methods and 

analytical estimation of wind turbine capacity factor using polynomial power curve model: case 

study of a wind farm”, Renewables:Wind, Water, and Solar, 2(1): 1–11, (2015). 

 
[32] 

 

Pobocikova, I., Sedliackova, Z., and Michalkova, M., “Application of four probability 

distributions for wind speed modeling”, Procedia Engineering, 192: 713-718, (2017). 

 
[33] 

 

Drobinski, P., Coulais, C., and Jourdier, B., “Surface wind-speed statistics modelling: 

Alternatives to the Weibull distribution and performance evaluation”, Boundary-Layer 

Meteorology, 157(1): 97–123, (2015). 

 
[34] 

 

Abolpour, B., Abolpour, B., Bakhshi, H., and Yaghobi, M., “An Appropriate Extreme Value 

Distribution for the Annual Extreme Gust Winds Speed”, Journal of Fundamentals of Renewable 

Energy and Applications, 7(1): 2-4, (2017). 

 
[35] 

 

Quan, Y., Wang, F., and Gu, M., “A method for estimation of extreme values of wind pressure 

on buildings based on the generalized extreme-value theory”, Mathematical Problems in 

Engineering, (2014). 

 
[36] 

 

Zhao, X., Zhang, Z., Cheng, W., and Zhang, P., “A new parameter estimator for the Generalized 

Pareto distribution under the peaks over threshold framework”, Mathematics, 7(5): 406, (2019). 

 
[37] 

 

Wadi, M., Baysal, M., and Shobole, A., “Reliability and Sensitivity Analysis for Closed-Ring 

Distribution Power Systems”, Electric Power Components and Systems, 49(6-7): 696-714, 

(2022). 

 
[38] 

 

Krishnamoorthy, R., Udhayakumar, K., Raju, K., Elavarasan, R.M., and Mihet-Popa, L., “An 

Assessment of Onshore and Offshore Wind Energy Potential in India Using Moth Flame 

Optimization”, Energies, 13(12): 1–41, (2020). 

 
[39] 

 

Zhang, L., Li, Q., Guo, Y., Yang, Z., and Zhang L., “An investigation of wind direction and 

speed in a featured wind farm using joint probability distribution methods”, Sustainability, 

10(12): 4338, (2018). 

 
[40] 

 

Ahsanullah, M., Alzaatreh, A., “Parameter estimation for the log-logistic distribution based on 

order statistics”, REVSTAT Statistical Journal, 16(4): 429–443, (2018). 



1118  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

 
[41] 

 

Lin, L., Ang, A.H., Fan, W., and Xia, D., “A probability-based analysis of wind speed 

distribution and related structural1response in southeast China”, Structure and Infrastructure 

Engineering, 15(1): 14–26, (2019). 

 

[42] 

 

Markose, S., Alentorn, A., “The generalized extreme value distribution, implied tail index, and 

option pricing”, The Journal of Derivatives, 18(3): 35–60, (2011). 

 
[43] 

 

Kang, S., Song, J., “Parameter and quantile estimation for the generalized Pareto distribution in 

peaks over threshold framework”, Journal of the Korean Statistical Society, 46: 487–501, (2017). 

 
[44] 

 

Brabson, B., Palutikof, J., “Tests of the generalized Pareto distribution for predicting extreme 

wind speeds”, Journal of Applied Meteorology, 39(9): 1627–1640, (2000). 

 
[45] 

 

Holmes, J., Moriarty, W., “Application of the generalized Pareto distribution to extreme value 

analysis in wind engineering”, Journal of Wind Engineering and Industrial Aerodynamics, 83(1-

3): 1–10, (1999). 

 
[46] 

 

Steinkohl, C., Davis, R.A., and Kluppelberg, C., “Extreme value analysis of multivariate high-

frequency wind speed data”, Journal of Statistical Theory and Practice, 7(1): 73-94, (2013). 

 
[47] 

 

Ersoz, S., Akinci, T.C., Nogay, H.S., and Dogan, G., “Determination of wind energy potential 

in Kirklareli-Turkey”, International Journal of Green Energy, 10(1): 103-116, (2013). 

 
[48] 

 

Sohoni, V., Gupta, S., and Nema, R., “A comparative analysis of wind speed probability 

distributions for wind power assessment of four sites”, Turkish Journal of Electrical Engineering 

& Computer Sciences, 24(6): 4724–4735, (2016). 

 
[49] 

 

Arikan, Y., Arslan, O.P., and Cam, E., “The analysis of wind data with rayleigh distribution and 

optimum turbine and cost analysis in Elmadag, Turkey”, Istanbul University-Journal of 

Electrical and Electronics Engineering, (2015). 

 
[50] 

 

Bidaoui, H., El -Abbassi, I., El-Bouardi, A., and Darcherif, A., “Wind speed data analysis using 

Weibull and Rayleigh distribution functions, case study: five cities northern Morocco”, Procedia 

Manufacturing, 32: 786–793, (2019). 

 
[51] 

 

Maleki-Jebely, F., Zare, K., and Deiri, E., “Efficient estimation of the PDF and the CDF of the 

inverse Rayleigh distribution”, Journal of Statistical Computation and Simulation, 88(1): 75–88, 

(2018). 

 
[52] 

 

Kumar, M.B.H., Balasubramaniyan, S., Padmanaban, S., and Holm-Nielsen, J.B., “Wind Energy 

Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: 

A Case Study of Tirumala Region in India”, Energies, 12(11): 2158, (2019). 

 
[53] 

 

Justus, C., Hargraves, W., Mikhail, A., and Graber, D., “Methods for estimating wind speed 

frequency distributions”, Journal of Applied Meteorology, 17(3): 350–353, (1978). 

 

[54] 

 

Khan, M.S., Pasha, G., and Pasha, A.H., “Theoretical analysis of inverse Weibull distribution”, 

WSEAS Transactions on Mathematics, 7(2): 30–38, (2008). 

 
[55] 

 

Dokur, E., Kurban, M., and Ceyhan, S., “Wind speed modelling using inverse weibull 

distrubition: a case study for Bilecik, Turkey”, International Journal of Energy Applications and 

Technologies, 3(2): 55–59, (2016). 

 



1119  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

[56] 

 

Seshadri, V., “The inverse Gaussian distribution: some properties and characterizations”, 

Canadian Journal of Statistics, 11(2): 131–136, (1983). 

 
[57] 

 

Pant, M.D., Headrick, T.C., “A Method for Simulating Burr Type III and Type XII Distributions 

through Moments and Correlations”, International Scholarly Research Notices, (2013). 

 
[58] 

 

Tsogt, K., Zandraabal, T., and Lin, C., “Diameter and height distributions of natural even-aged 

pine forests (Pinus sylvestris) in Western Khentey, Mongolia”, Taiwan Journal of Forest 

Science, 28(1): 29–41, (2013).  

 
[59] 

 

Ismail, N.H.B., Khalid, Z.B.M., “EM algorithm in estimating the 2-and 3-parameter Burr Type 

III distributions”, American Institute of Physics, 1605(1): 881–887, (2014). 

 
[60] 

 

Kumar, D., “The Burr type XII distribution with some statistical properties”, Journal of Data 

Science, 15(3): 509-533, (2017). 

 
[61] 

 

Kim, C., Kim, W., “Estimation of the parameters of burr type III distribution based on dual 

generalized order statistics”, The Scientific World Journal, (2014). 

 
[62] 

 

Wadi, M., Baysal, M., and Shobole, A., “Comparison between open-ring and closed-ring grids 

reliability”, 4th International Conference on Electrical and Electronic Engineering (ICEEE), 

290-294, (2017). 

 
[63] 

 

Van-Montfort M., Witter, J., “The generalized Pareto distribution applied to rainfall depths”, 

Hydrological Sciences Journal, 31(2): 151–162, (1986). 

 
[64] 

 

Lenz, R., “Generalized Pareto distributions application to autofocus in automated microscopy”, 

IEEE Journal of Selected Topics in Signal Processing, 10(1): 92–98, (2015). 

 
[65] 

 

Brabson, B., Palutikof, J., “Tests of the generalized Pareto distribution for predicting extreme 

wind speeds”, Journal of Applied Meteorology, 39(9): 1627–1640, (2000). 

 
[66] 

 

El-Din, M., Sadek, A., and Sharawy, A.M., “Characterization of the generalized Pareto 

distribution by general progressively Type-II right censored order statistics”, Journal of the 

Egyptian Mathematical Society, 25(4): 369-374, (2017). 

 
[67] 

 

Guha, D., Roy, P.K., and Banerjee, S., “Load frequency control of large scale power system 

using quasi-oppositional grey wolf optimization algorithm”, Engineering Science and 

Technology, an International Journal, 19(4): 1693–1713, (2016). 

 
[68] 

 

Saremi, S., Mirjalili, S., and Lewis, A., “Grasshopper optimisation algorithm: theory and 

application”, Advances in Engineering Software, 105: 30–47, (2017). 

 
[69] 

 

Neve, A.G., Kakandikar, G.M., and Kulkarni, O., “Application of grasshopper optimization 

algorithm for constrained and unconstrained test functions”, International Journal of Swarm 

Intelligence and Evolutionary Computation, 186(3): 1–7, (2017). 

 
[70] 

 

Ghulanavar, R., Dama, K.K., and Jagadeesh, A., “Diagnosis of faulty gears by modified AlexNet 

and improved grasshopper optimization algorithm (IGOA)”, Journal of Mechanical Science and 

Technology, 34(10): 4173–4182, (2020). 

 

[71] 

 

Mirjalili, S., Mirjalili, S.M., and Lewis, A., “Grey wolf optimizer”, Advances in Engineering 

Software, 69: 46–61, (2014). 

 



1120  Mohammed WADI, Wisam ELMASRY/ GU J Sci, 36(3): 1096-1120 (2023) 

 
 

[72] 

 

Mirjalili, S., “Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm”, 

Knowledge-based Systems, 89: 228–249, (2015). 

 
[73] 

 

Talaat, M., Alsayyari, A.S., Farahat, M.A., and Said, T., “Moth-flame algorithm for accurate 

simulation of a non-uniform electric field in the presence of dielectric barrier”, IEEE Access, 7: 

3836–3847, (2018). 

 
[74] 

 

Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., and Mirjalili, S.M., “Salp 

Swarm Algorithm: A bio-inspired optimizer for engineering design problems”, Advances in 

Engineering Software, 114: 163–191, (2017). 

 
[75] 

 

Mirjalili, S., Lewis, A., “The whale optimization algorithm”, Advances in Engineering Software, 

95: 51–67, (2016). 

 
[76] 

 

VC, V.R., “Optimal renewable resources placement in distribution networks by combined power 

loss index and whale optimization algorithms”, Journal of Electrical Systems and Information 

Technology, 5(2): 175–191, (2018). 

 
[77] 

 

Wadi, M., Kekezoglu, B., Baysal, M., Tur, M.R., and Shobolec, A., “Feasibility Study of Wind 

Energy Potential in Turkey: Case Study of Catalca District in Istanbul”, 2nd International 

Conference on Smart Grid and Renewable Energy (SGRE)-IEEE, 1-6, (2019). 

 
[78] 

 

Elmasry, W., Wadi, M., “EDLA-EFDS: A Novel Ensemble Deep Learning Approach For 

Electrical Fault Detection Systems”, Electric Power Systems Research, 207: 107834, (2022). 

 
[79] 

 

Wadi, M., “Fault detection in power grids based on improved supervised machine learning 

binary classification”, Journal of Electrical Engineering, 72(5): 315-322, (2021). 

 
[80] 

 

Wadi, M., Elmasry, W., “An anomaly-based technique for fault detection in power system 

networks”, International Conference on Electric Power Engineering–Palestine (ICEPE-P)-IEEE, 

1-6, (2021). 

 
[81] 

 

Willmott, C.J., Matsuura, K., “Advantages of the mean absolute error (MAE) over the root mean 

square error (RMSE) in assessing average model performance”, Climate Research, 30(1): 79–

82, (2005). 

 
[82] 

 

Hyndman, R.J., Koehler, A.B., “Another look at measures of forecast accuracy”, International 

Journal of Forecasting, 4222(4): 679–688, (2006). 

 
[83] 

 

Gul, M., Tai, N., Huang, W., Nadeem, M.H., and Yu, M., “Evaluation of Wind Energy Potential 

Using an Optimum Approach based on Maximum Distance Metric”, Sustainability, 12(5): 1999, 

(2020). 
 

[84] 

 

Wadi, M., “Five different distributions and metaheuristics to model wind speed distribution”, 

Journal of Thermal Engineering, 7(14): 1898-1920, (2021). 

 
[85] 

 

Elmasry, W., Wadi, M., “Enhanced Anomaly-Based Fault Detection System in Electrical Power 

Grids”, International Transactions on Electrical Energy Systems, (2022). 
 

 

 

 

 


