The Representation and Finite Sums of the Padovan- p Jacobsthal Numbers

Özgür Erdağa ${ }^{\text {a }}$, Ömür Deveci ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey
${ }^{b}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract

In this paper, we regard the Padovan- p Jacobsthal sequence and then we discuss the connection of the Padovan- p Jacobsthal numbers and Jacobsthal numbers. Furthermore, we give the permanental, determinantal, combinatorial, and exponential representations, and the sums of the Padovan-p Jacobsthal numbers by the aid of the generating function and generating matrix of this sequence.

1. Introduction

The well-known Jacobsthal sequence $\left\{J_{n}\right\}$ is defined by the following recurrence relation:

$$
J_{n}=J_{n-1}+2 J_{n-2}
$$

for $n \geq 2$ in which $J_{0}=0$ and $J_{1}=1$. It is easy to see that the characteristic polynomial of the Jacobsthal sequence is $j(x)=x^{2}-x-2$.

In [2], Aküzüm defined the Padovan- p Jacobsthal sequence $\left\{J_{n}^{p}\right\}$ by the following homogeneous linear recurrence relation for any given $p(3,4,5, \ldots)$ and $n \geq 0$

$$
J_{n+p+4}^{p}=J_{n+p+3}^{p}+3 J_{n+p+2}^{p}-J_{n+p+1}^{p}-2 J_{n+p}^{p}+J_{n+2}^{p}-J_{n+1}^{p}-2 J_{n}^{p}
$$

in which $J_{0}^{p}=\cdots=J_{p+2}^{p}=0$ and $J_{p+3}^{p}=1$.

[^0]Also in [2], she gave the generating matrix of the Padovan- p Jacobsthal sequence $\left\{J_{n}^{p}\right\}$ as follows:

$$
P J_{p}=\left[\begin{array}{cccccccccc}
1 & 3 & -1 & -2 & 0 & \cdots & 0 & 1 & -1 & -2 \\
1 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0
\end{array}\right]_{(p+4) \times(p+4)}
$$

The matrix $P J_{p}$ is entitled a Padovan- p Jacobsthal matrix. By an inductive argument, she obtained that

$$
\left(P J_{p}\right)^{n}=\left[\begin{array}{ccccc}
J_{n+p+3}^{p} & J_{n+p+4}^{p}-J_{n+p+3}^{p} & \operatorname{Pap}(n+p+3)-J_{n+p+3}^{p} & \operatorname{Pap}(n+p+4)-J_{n+p+4}^{p}-J_{n+p+3}^{p} & \\
J_{n+p+2}^{p} & J_{n+p+3}^{p}-J_{n+p+2}^{p} & \operatorname{Pap}(n+p+2)-J_{n+p+2}^{p} & \operatorname{Pap}(n+p+3)-J_{n+p+3}^{p}-J_{n+p+2}^{p} & \\
J_{n+p+1}^{p} & J_{n+p+2}^{p}-J_{n+p+1}^{p} & \operatorname{Pap}(n+p+1)-J_{n+p+1}^{p} & \operatorname{Pap}(n+p+2)-J_{n+p+2}^{p}-J_{n+p+1}^{p} & P J_{p}^{*} \\
\vdots & \vdots & \vdots & \vdots & \\
J_{n+1}^{p} & J_{n+2}^{p}-J_{n+1}^{p} & \operatorname{Pap}(n+1)-J_{n+1}^{p} & \operatorname{Pap}(n+2)-J_{n+2}^{p}-J_{n+1}^{p} & \\
J_{n}^{p} & J_{n+1}^{p}-J_{n}^{p} & \operatorname{Pap}(n)-J_{n}^{p} & \operatorname{Pap}(n+1)-J_{n+1}^{p}-J_{n}^{p} &
\end{array}\right],
$$

where $P \int_{p}^{*}$ is a $(p+4) \times(p)$ matrix as follows:

$$
P J_{p}^{*}=\left[\begin{array}{cccccc}
\operatorname{Pap}(n+3) & \operatorname{Pap}(n+4) & \cdots & \operatorname{Pap}(n+p) & -J_{n+p+2}^{p}-2 J_{n+p+1}^{p} & -2 J_{n+p+2}^{p} \\
\operatorname{Pap}(n+2) & \operatorname{Pap}(n+3) & \cdots & \operatorname{Pap}(n+p-1) & -J_{n+p+1}^{p}-2 J_{n+p}^{p} & -2 J_{n+p+1}^{p} \\
\operatorname{Pap}(n+1) & \operatorname{Pap}(n+2) & \cdots & \operatorname{Pap}(n+p-2) & -J_{n+p}^{p}-2 J_{n+p-1}^{p} & -2 J_{n+p}^{p} \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
\operatorname{Pap}(n-p+1) & \operatorname{Pap}(n-p+2) & \cdots & \operatorname{Pap}(n-2) & -J_{n}^{p}-2 J_{n-1}^{p} & -2 J_{n}^{p} \\
\operatorname{Pap}(n-p) & \operatorname{Pap}(n-p+1) & \cdots & \operatorname{Pap}(n-3) & -J_{n-1}^{p}-2 J_{n-2}^{p} & -2 J_{n-1}^{p}
\end{array}\right]
$$

for $n \geq p$.
In the literature, many authors studied number theoretic properties such as these obtained from homogeneous linear recurrence relations relevant to this paper; see for example, [5, 7, 8, 14, 15]. In [1, 3, 4, 1013, 16-20, 23], the authors defined some linear recurrence sequences and gave their various properties by matrix methods. In this paper, we investigate the Padovan- p Jacobsthal sequence. Firstly, we discuss connections between the Jacobsthal and Padovan- p Jacobsthal numbers. Furthermore, we derive the permanental and determinantal representations of the Padovan- p Jacobsthal numbers by using certain matrices which are obtained from the generating matrix of this sequence. Finally, we acquire the combinatorial and exponential representations and the sums of the Padovan- p Jacobsthal numbers by the aid of the generating function and the generating matrix of this sequence.

2. Main Results

First, we derive a relationship between the above-described Padovan- p Jacobsthal sequence and Jacobsthal sequence.
Theorem 2.1. Let $J(n)$ and J_{n}^{p} be the nth the Jacobsthal number and Padovan-p Jacobsthal numbers, respectively. Then,

$$
J(n)=J_{n+p+2}^{p}-J_{n+p}^{p}-J_{n}^{p}
$$

for $n \geq 0$ and $p \geq 3$.

Proof. The assertion may be proved by induction method on n. It is clear that $J(0)=J_{p+2}^{p}-J_{p}^{p}-J_{0}^{p}=0$. Assume that the equation holds for $n \geq 1$. Then we must show that the equation holds for $n+1$. Since the characteristic polynomial of the Jacobsthal sequence $\{J(n)\}$, is

$$
j(x)=x^{2}-x-2
$$

we obtain the following relations:

$$
J(n+p+4)=J(n+p+3)+3 J(n+p+2)-J(n+p+1)-2 J(n+p)+J(n+2)-J(n+1)-2 J(n)
$$

for $n \geq 1$. Hence, by a simple calculation, we have the conclusion.
Now we take into account the relationship between the Padovan- p Jacobsthal numbers and the permanents of a certain matrix which is obtained using the Padovan- p Jacobsthal matrix $\left(P J_{p}\right)^{n}$.

Definition 2.2. A $u \times v$ real matrix $M=\left[m_{i, j}\right]$ is called a contractible matrix in the $k^{\text {th }}$ column (resp. row.) if the $k^{\text {th }}$ column (resp. row.) contains exactly two non-zero entries.

Suppose that $x_{1}, x_{2}, \ldots, x_{u}$ are row vectors of the matrix M. If M is contractible in the $k^{\text {th }}$ column such that $m_{i, k} \neq 0, m_{j, k} \neq 0$ and $i \neq j$, then the $(u-1) \times(v-1)$ matrix $M_{i j: k}$ obtained from M by replacing the $i^{\text {th }}$ row with $m_{i, k} x_{j}+m_{j, k} x_{i}$ and deleting the $j^{\text {th }}$ row. The $k^{\text {th }}$ column is called the contraction in the $k^{\text {th }}$ column relative to the $i^{\text {th }}$ row and the $j^{\text {th }}$ row.

In [6], Brualdi and Gibson obtained that $\operatorname{per}(M)=\operatorname{per}(N)$ if M is a real matrix of order $\alpha>1$ and N is a contraction of M.

Now we concentrate on finding relationships among the Padovan- p Jacobsthal numbers and the permanents of certain matrices which are obtained by using the generating matrix of this sequence. Let $F_{m, p}^{P a, J}=\left[f_{i, j}^{(p)}\right]$ be the $m \times m$ super-diagonal matrix, defined by

$$
f_{i, j}^{(p)}=\left\{\begin{array}{cc}
3 & \text { if } i=\tau \text { and } j=\tau+1 \text { for } 1 \leq \tau \leq m-1, \\
& \text { if } i=\tau \text { and } j=\tau \text { for } 1 \leq \tau \leq m, \\
1 & i=\tau \text { and } j=\tau+p+1 \text { for } 1 \leq \tau \leq m-p-1 \\
\text { and } \\
& i=\tau+1 \text { and } j=\tau \text { for } 1 \leq \tau \leq m-1, \\
& \text { if } i=\tau \text { and } j=\tau+2 \text { for } 1 \leq \tau \leq m-2 \\
-1 & \text { and } \\
& i=\tau \text { and } j=\tau+p+2 \text { for } 1 \leq \tau \leq m-p-2, \\
& \text { if } i=\tau \text { and } j=\tau+3 \text { for } 1 \leq \tau \leq m-3 \\
-2 & \text { and } \\
& i=\tau \text { and } j=\tau+p+3 \text { for } 1 \leq \tau \leq m-p-3, \\
0 & \text { otherwise. }
\end{array},\right.
$$

for $m \geq p+4$. Then we have the following Theorem.
Theorem 2.3. For $m \geq p+4$,

$$
\operatorname{per} F_{m, p}^{P a, J}=J_{m+p+3}^{p}
$$

Proof. Let us keep in view matrix $F_{m, p}^{P a, J}$ and let the equation be hold for $m \geq p+4$. Then we show that the equation holds for $m+1$. If we expand the $\operatorname{per} F_{m, p}^{P a, J}$ by the Laplace expansion of permanent with respect to the first row, then we obtain

$$
\operatorname{perF} F_{m+1, p}^{P a, J}=\operatorname{perF} F_{m, p}^{P a, J}+3 \operatorname{perF} F_{m-1, p}^{P a, J}-\operatorname{perF}_{m-2, p}^{P a, J}-2 \operatorname{perF} F_{m-3, p}^{P a, J}+\operatorname{per} F_{m-p-1, p}^{P a, J}-\operatorname{perF} F_{m-p-2, p}^{P a, J}-2 \operatorname{per} F_{m-p-3, p}^{P a, J}
$$

Since

$$
\begin{aligned}
& \operatorname{perF} F_{m, p}^{P a, J}=J_{m+p+3}^{p}, \\
& \operatorname{perF} F_{m-1, p}^{P a, J}=J_{m+p+2^{\prime}}^{p} \\
& \operatorname{perF} F_{m-2, p}^{P a, J}=J_{m+p+1}^{p}, \\
& \operatorname{perF} F_{m-3, p}^{P a, J}=J_{m+p}^{p}, \\
& \operatorname{perF}_{m-p-1, p}^{P a, J}=J_{m+2}^{p} \\
& \operatorname{perF}{ }_{m-p-2, p}^{P a, J}=J_{m+1}^{p}
\end{aligned}
$$

and

$$
\operatorname{perF}_{m-p-3, p}^{P a, J}=J_{m}^{p}
$$

we easily obtain that $\operatorname{perF} F_{m+1, p}^{P a, J}=J_{m+p+4}^{p}$. So the proof is complete.
Let $G_{m, p}^{P a, J}=\left[g_{i, j}^{(p)}\right]$ be the $m \times m$ matrix, defined by

$$
g_{i, j}^{(p)}=\left\{\begin{array}{cc}
3 & \text { if } i=\tau \text { and } j=\tau+1 \text { for } 1 \leq \tau \leq m-2, \\
& \text { if } i=\tau \text { and } j=\tau \text { for } 1 \leq \tau \leq m, \\
1 & i=\tau \text { and } j=\tau+p+1 \text { for } 1 \leq \tau \leq m-p-2 \\
\text { and } \\
& i=\tau+1 \text { and } j=\tau \text { for } 1 \leq \tau \leq m-2, \\
& \text { if } i=\tau \text { and } j=\tau+2 \text { for } 1 \leq \tau \leq m-3 \\
-1 & \text { and } \\
& \begin{array}{c}
i=\tau \text { and } j=\tau+p+2 \text { for } 1 \leq \tau \leq m-p-3, \\
\text { if } i=\tau \text { and } j=\tau+3 \text { for } 1 \leq \tau \leq m-4
\end{array} \\
-2 & \text { and } \\
& i=\tau \text { and } j=\tau+p+3 \text { for } 1 \leq \tau \leq m-p-3, \\
0 & \text { otherwise. }
\end{array}\right.
$$

for $m \geq p+4$. Then we have the following Theorem.

Theorem 2.4. For $m \geq p+4$,

$$
\operatorname{per} G_{m, p}^{P a, J}=J_{m+p+2}^{p} .
$$

Proof. Let us keep in view matrix $G_{m, p}^{P a, J}$ and let the equation be hold for $m \geq p+4$. Then we show that the equation holds for $m+1$. If we expand the $\operatorname{per} G_{m, p}^{P a, J}$ by the Laplace expansion of permanent with respect to the first row, then we obtain

$$
\operatorname{per} G_{m+1, p}^{P a, J}=\operatorname{per} G_{m, p}^{P a, J}+3 \operatorname{per} G_{m-1, p}^{P a, J}-\operatorname{per} G_{m-2, p}^{P a, J}-2 \operatorname{per} G_{m-3, p}^{P a, J}+\operatorname{per} G_{m-p-1, p}^{P a, J}-\operatorname{per} G_{m-p-2, p}^{P a, J}-2 \operatorname{per} G_{m-p-3, p}^{P a, J} .
$$

Since

$$
\begin{gathered}
\operatorname{per} G_{m, p}^{P a, J}=J_{m+p+2^{\prime}}^{p} \\
\operatorname{per} G_{m-1, p}^{P a, J}=J_{m+p+1^{\prime}}^{p} \\
\operatorname{per} G_{m-2, p}^{P a, J}=J_{m+p \prime}^{p} \\
\operatorname{per} G_{m-3, p}^{P a, J}=J_{m+p-1^{\prime}}^{p}
\end{gathered}
$$

$$
\begin{aligned}
\operatorname{per} G_{m-p-1, p}^{P a, J} & =J_{m+1^{\prime}}^{p} \\
\operatorname{per} G_{m-p-2, p}^{P a, J} & =J_{m}^{p}
\end{aligned}
$$

and

$$
\operatorname{per} G_{m-p-3, p}^{P a, J}=J_{m-1^{\prime}}^{p}
$$

we easily obtain that $\operatorname{per} G_{m+1, p}^{P a, J}=J_{m+p+3}^{p}$. So the proof is complete.
Suppose that $H_{m, p}^{P a, J}=\left[h_{i, j}^{(p)}\right]$ be the $m \times m$ matrix, defined by

$$
H_{m, p}^{P a, J}=\left[\right]
$$

for $m>p+4$, then we have the following results:
Theorem 2.5. For $m>p+4$,

$$
\operatorname{per} H_{m, p}^{P a, J}=\sum_{i=0}^{m+p+1} J_{i}^{p} .
$$

Proof. If we extend per $H_{m, p}^{P a, J}$ with respect to the first row, we write

$$
\operatorname{per} H_{m, p}^{P a, J}=\operatorname{per} H_{m-1, p}^{P a, J}+\operatorname{per} G_{m-1, p}^{P a, J} .
$$

Thence, by the results and an inductive argument, the proof is easily seen.
A matrix M is called convertible if there is an $n \times n(1,-1)$-matrix K such that $\operatorname{per} M=\operatorname{det}(M \circ K)$, where $M \circ K$ denotes the Hadamard product of M and K.

Now we give relationships among the Padovan- p Jacobsthal numbers and the determinants of certain matrices which are obtained by using the matrices $F_{m, p}^{P a, J}, G_{m, p}^{P a, J}$ and $H_{m, p}^{P a, J}$. Let $m>p+4$ and let R be the $m \times m$ Hadamard matrix, defined by

$$
R=\left[\begin{array}{rrrrrr}
1 & 1 & 1 & \cdots & 1 & 1 \\
-1 & 1 & 1 & \cdots & 1 & 1 \\
1 & -1 & 1 & \cdots & 1 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & -1 & 1 & 1 \\
1 & \cdots & 1 & 1 & -1 & 1
\end{array}\right]
$$

Corollary 2.6. For $m>p+4$,

$$
\begin{aligned}
& \operatorname{det}\left(F_{m, p}^{P a, J} \circ R\right)=J_{m+p+3^{\prime}}^{p} \\
& \operatorname{det}\left(G_{m, p}^{P a, J} \circ R\right)=J_{m+p+2}^{p}
\end{aligned}
$$

and

$$
\operatorname{det}\left(H_{m, p}^{P a, J} \circ R\right)=\sum_{i=0}^{m+p+1} J_{i}^{p} .
$$

Proof. Since $\operatorname{per} F_{m, p}^{P a, J}=\operatorname{det}\left(F_{m, p}^{P a, J} \circ R\right), \operatorname{per} G_{m, p}^{P a, J}=\operatorname{det}\left(G_{m, p}^{P a, J} \circ R\right)$ and $\operatorname{per} H_{m, p}^{P a, J}=\operatorname{det}\left(H_{m, p}^{P a, J} \circ R\right)$ for $m>p+4, b y$ Theorem 2.3, Theorem 2.4 and Theorem 2.5, we have the conclusion.

Let $K\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ be a $v \times v$ companion matrix as follows:

$$
K\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\left[\begin{array}{cccc}
k_{1} & k_{2} & \cdots & k_{v} \\
1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right]
$$

For more details on the companion type matrices, see [21, 22].
Theorem 2.7. (Chen and Louck [9]) The (i, j) entry $k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ in the matrix $K^{n}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ is given by the following formula:

$$
\begin{equation*}
k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\sum_{\left(t_{1}, t_{2}, \ldots, t_{v}\right)} \frac{t_{j}+t_{j+1}+\cdots+t_{v}}{t_{1}+t_{2}+\cdots+t_{v}} \times\binom{ t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}} k_{1}^{t_{1}} \cdots k_{v}^{t_{v}} \tag{1}
\end{equation*}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+v t_{v}=n-i+j,\binom{t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}}=\frac{\left(t_{1}+\cdots+t_{v}\right)!}{t_{1}!\cdots t_{v}!}$ is a multinomial coefficient, and the coefficients in (1) are defined to be 1 if $n=i-j$.

Then we can give combinatorial representations for the Padovan- p Jacobsthal numbers by the following Corollary.

Corollary 2.8. Let J_{n}^{p} be the nth the Padovan- p Jacobsthal number for $n \geq p$. Then i.

$$
J_{n}^{p}=\sum_{\left(t_{1}, t_{2}, \ldots, t_{p+4}\right)}\binom{t_{1}+t_{2}+\cdots+t_{p+4}}{t_{1}, t_{2}, \cdots, t_{p+4}} 3^{t_{2}}(-1)^{t_{3}+t_{p+3}}(-2)^{t_{4}+t_{p+4}}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(p+4) t_{p+4}=n-p-3$.
ii.

$$
F_{n}^{P a, p}=-\frac{1}{2} \sum_{\left(t_{1}, t_{2}, \ldots, t_{4}\right)} \frac{t_{p+4}}{t_{1}+t_{2}+\cdots+t_{p+4}} \times\binom{ t_{1}+t_{2}+\cdots+t_{p+4}}{t_{1}, t_{2}, \cdots, t_{p+4}} 3^{t_{2}}(-1)^{t_{3}+t_{p+3}}(-2)^{t_{4}+t_{p+4}}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(p+4) t_{p+4}=n+1$.
Proof. If we take $i=p+4, j=1$ for the case i. and $i=p+3, j=p+4$ for the case ii. in Theorem 2.7, then we can directly see the conclusions from $\left(P J_{p}\right)^{n}$.

The generating function of the Padovan- p Jacobsthal sequence $\left\{J_{n}^{p}\right\}$ is obtained as follows:

$$
g(x)=\frac{x^{p+3}}{1-x-3 x^{2}+x^{3}+2 x^{4}-x^{p+2}+x^{p+3}+2 x^{p+4}}
$$

where $p \geq 3$.
Then, with the following theorem, we can deliver an exponential representation for the Padovan- p Jacobsthal numbers by the aid of the generating function.

Theorem 2.9. Let $g(x)$ be generating function of the Padovan-p Jacobsthal numbers. The following exponential representation for the Padovan-p Jacobsthal numbers as follows::

$$
g(x)=x^{p+3} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^{i}}{i}\left(1+3 x-x^{2}-2 x^{3}+x^{p+1}-x^{p+2}-2 x^{p+3}\right)^{i}\right),
$$

where $p \geq 3$.

Proof. Since

$$
\ln g(x)=\ln x^{p+3}-\ln \left(1-x-3 x^{2}+x^{3}+2 x^{4}-x^{p+2}+x^{p+3}+2 x^{p+4}\right)
$$

and

$$
\begin{aligned}
-\ln \left(1-x-3 x^{2}+x^{3}+2 x^{4}-x^{p+2}+x^{p+3}+2 x^{p+4}\right)= & -\left[-x\left(1+3 x-x^{2}-2 x^{3}+x^{p+1}-x^{p+2}-2 x^{p+3}\right)-\right. \\
& \frac{1}{2} x^{2}\left(1+3 x-x^{2}-2 x^{3}+x^{p+1}-x^{p+2}-2 x^{p+3}\right)^{2}-\cdots \\
& \left.-\frac{1}{i} x^{i}\left(1+3 x-x^{2}-2 x^{3}+x^{p+1}-x^{p+2}-2 x^{p+3}\right)^{i}-\cdots\right]
\end{aligned}
$$

it is clear that

$$
g(x)=x^{p+3} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^{i}}{i}\left(1+3 x-x^{2}-2 x^{3}+x^{p+1}-x^{p+2}-2 x^{p+3}\right)^{i}\right)
$$

by a simple calculation, we obtain the conclusion.

Now we consider the sums of the Padovan $-p$ Jacobsthal numbers. Let

$$
T_{n}=\sum_{i=0}^{n} J_{i}^{p}
$$

for $n \geq p$ and $p \geq 3$, and let $K_{p}^{P a, J}$ and $\left(K_{p}^{P a, J}\right)^{n}$ be the $(p+5) \times(p+5)$ matrix such that

$$
K_{p}^{P a, J}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & & & & & \\
0 & & & & & \\
\vdots & & & P J_{p} & & \\
0 & & & & & \\
0 & & & & &
\end{array}\right]
$$

If we use induction on n, then we obtain

$$
\left(K_{p}^{P a, I}\right)^{\alpha}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
T_{n+p+2} & & & & \\
T_{n+p+1} & & & & \\
\vdots & & & P J_{p} & & \\
T_{n} & & & & & \\
T_{n-1} & & & &
\end{array}\right]
$$

3. Conclusion

We considered a sequence called the Padovan- p Jacobsthal sequence, which is obtained using polynomials characteristic of the Padovan p-sequence and the Jacobsthal sequence. Furthermore, using the generating matrix of the Padovan- p Jacobsthal sequence, we obtained some new structural properties of the Padovan- p Jacobsthal numbers such as the generating functions, the permanental, combinatorial, determinantal, and exponential representations and the finite sums.

References

[1] Akuzum Y. The Hadamard-type Padovan- p Sequences, Turkish Journal of Science. 5(2), 2020, 102-109.
[2] Akuzum Y. The Padovan-p Jacobsthal Numbers and Binet Formulas. 3. International Baku Scientific Research Congress. 15-16 October 2021, Baku Eurasia University, Baku, Azerbaijan.
[3] Akuzum Y, Deveci O, Shannon AG. On the Pell p-circulant Sequences. Notes on Number Theory and Discrete Mathematics. 23(2), 2017, 91-103.
[4] Akuzum Y, Deveci O. The Arrowhead-Jacobsthal Sequences. Mathematica Montisnigri. Vol-LI, 2021, 31-44.
[5] Bradie B. Extension and refinements of some properties of sums involving Pell number. Missouri Journal of Mathematical Sciences. 22(1), 2010, 37-43.
[6] Brualdi RA, Gibson PM. Convex polyhedra of doubly stochastic matrices I: applications of permanent function. Journal of Combinatorial Theory, Series A. 22(2), 1977, 194-230.
[7] Cagman A. Explicit Solutions of Powers of Three as Sums of Three Pell Numbers Based on Baker's Type Inequalities. Turkish Journal of Inequalities. 5(1), 2021, 93-103.
[8] Cagman A, Polat K. On a Diophantine equation related to the difference of two Pell numbers. Contributions to Mathematics. 3, 2021,37-42.
[9] Chen WYC, Louck JD. The combinatorial power of the companion matrix. Linear Algebra and its Applications. 232, 1996, 261-278.
[10] Deveci O. On the connections among Fibonacci, Pell, Jacobsthal and Padovan numbers. Notes on Number Theory and Discrete Mathematics. 27(2), 2021, 111-128.
[11] Deveci O, Karaduman E. On the Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics. 46(4), 2017, 579-592.
[12] Deveci O, Adiguzel Z, Akuzum Y. On the Jacobsthal-circulant-Hurwitz Numbers. Maejo International Journal of Science and Technology. 14(1), 2020, 56-67.
[13] Erdag O, Deveci O. On The Connections Between Padovan Numbers and Padovan p-Numbers. International Journal of Open Problems in Computer Science and Mathematics. 13(4), 2020, 33-47.
[14] Horadam A. Jacobsthal representations numbers. Fibonacci Quarterly. 34(1), 1996, 40-54.
[15] Horadam A. Applications of modified Pell numbers to representations. Ulam Quarterly. 3(1), 1994, 34-53.
[16] Kalman D. Generalized Fibonacci numbers by matrix methods. Fibonacci Quarterly. 20(1), 1982, 73-76.
[17] Kilic E. The Binet fomula, sums and representations of generalized Fibonacci p-numbers. European Journal of Combinatorics. 29(3), 2008, 701-711.
[18] Kilic E. The generalized Pell (p, i)-numbers and their Binet formulas, combinatorial representations, sums. Chaos, Solitons and Fractals. 40(4), 2009, 2047-2063.
[19] Kilic E, Tasci D. The generalized Binet formula, representation and sums of the generalized order-k Pell numbers. Taiwanese Journal of Mathematics. 10(6), 2006, 1661-1670.
[20] Koken F, Bozkurt D. On the Jacobsthal numbers by matrix methods. International Journal of Contemporary Mathematical Sciences. 3(13), 2008, 605-614.
[21] Lancaster P, Tismenetsky M. The theory of matrices: with applications. Elsevier. 1985.
[22] Lidl R, Niederreiter H. Introduction to finite fields and their applications. Cambridge UP. 1986.
[23] Shannon AG, Erdag O, Deveci O. On the Connections Between Pell Numbers and Fibonacci p-Numbers. Notes on Number Theory and Discrete Mathematics. 27(1), 2021, 148-160.

[^0]: Corresponding author: ÖE mail address: ozgur_erdag@hotmail.com ORCID:https://orcid.org/0000-0001-8071-6794, ÖD ORCID:https://orcid.org/0000-0001-5870-5298

 Received: 25 November 2021; Accepted: 21 December 2021; Published: 30 December 2021
 Keywords. (Padovan- p Jacobsthal number, Matrix, Representation, Sum.)
 2010 Mathematics Subject Classification. 11K31; 11C20, 15A15
 Cited this article as: Erdağ Ö, Deveci Ö. The Representation and Finite Sums of the Padovan- p Jacobsthal Numbers, Turkish Journal of Science. 2021, 6(3), 134-141.

