ON A NEW SUBCLASS OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS

Ömer DURMAZPINAR

Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey

İlk Kayıt Tarihi: 14.03.2012

Yayına Kabul Tarihi: 27.03.2012

Abstract

We introduce a new subclass $P_p^*(\alpha, \beta, \xi, \Omega, m)$ of analytic and p-valent functions with negative coefficients. Coefficient theorem, distortion theorem and closure theorem of functions belonging to the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ are determined. Also we obtain radius of convexity for $P_p^*(\alpha, \beta, \xi, \Omega, m)$. Integral operators of functions belonging to the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ are studied here. Furthermore the extreme points of $P_p^*(\alpha, \beta, \xi, \Omega, m)$ are also determined.

Keywords: Distortion theorem, exreme points, analytic function, radius of convexity, Salagean operator.

NEGATİF KATSAYILI p-VALENT FONKSİYONLARIN BİR YENİ ALTSINIFI HAKKINDA

Özet

Bu makalede negative katsayılı p-valent analitik fonksiyonların $P_p^*(\alpha, \beta, \xi, \Omega, m)$ ile gösterilen yeni bir sınıfı tanıtıldı. $P_p^*(\alpha, \beta, \xi, \Omega, m)$ sınıfına ait fonksiyonlar için katsayı teoremi, distorsiyon teoremi ve kapanış teoremi belirlendi. Ayrıca $P_p^*(\alpha, \beta, \xi, \Omega, m)$ sınıfı için konvekslik yarıçapı elde edildi. Bundan başka $P_p^*(\alpha, \beta, \xi, \Omega, m)$ sınıfına ait

September 2013 Vol:21 No:3 Kastamonu Education Journal

fonksiyonların integral operatörleri çalışıldı. Bunlara ilave olarak $P_p^*(\alpha, \beta, \xi, \Omega, m)$ sınıfının extreme noktaları belirlendi.

Anahtar kelimeler: Distorsiyon teoremi, extreme noktaları, analitik fonksiyon, konvekslik yarıçapı, Salagean operator.

2000 Mathematics Subject Classification: Primary 30C45.

1. Introduction and Definitions

We recall some basic facts together with terminology and notation that will be needed.

Let *A* be class of functions f(z) of the form $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$ which are analytic in the open unit disk $U = \{z : |z| < 1\}$. For f(z) belong to *A*, Sălăgean [7] has introduced the following operator called the Sălăgean operator:

$$D^{\circ}f(z) = f(z), \quad D^{1}f(z) = Df(z) = zf'(z)$$

$$D^{n}f(z) = D(D^{n-1}f(z)) \quad (n \in \Box = \{1, 2, 3, ...\}).$$

We note that

$$D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k$$
, $n \in \Box_0 = \{0\} \cup \Box$.

Let $S_p(p \in \Box)$ denote the class of functions of the form

$$f(z) = z^{p} + \sum_{n=1}^{\infty} a_{n+p} z^{n+p}$$

that are holomorphic and p-valent in the unit disk |z| < 1.

Also let T_p denote the subclass of S_p consisting of functions that can be expres-

sed in the form

$$f(z) = z^{p} - \sum_{n=1}^{\infty} \left| a_{n+p} \right| z^{n+p}$$
(1.1)

We can write the following equalities for the functions f(z) belonging to the class T_p

$$D^{0} f(z) = f(z),$$

$$D^{1} f(z) = Df(z) = zf'(z) = pz^{p} - \sum_{n=1}^{\infty} (n+p) \left| a_{n+p} \right| z^{n+p},$$

$$D^{2} f(z) = D(Df(z)) = p^{2} z^{p} - \sum_{n=1}^{\infty} (n+p)^{2} \left| a_{n+p} \right| z^{n+p},$$

$$\dots \dots \dots \dots$$

$$D^{\Omega} f(z) = D(D^{\Omega^{-1}} f(z)) = p^{\Omega} z^{p} - \sum_{n=1}^{\infty} (n+p)^{\Omega} \left| a_{n+p} \right| z^{n+p}.$$

A function $f(z) \in T_p$ in $P_p^*(\alpha, \beta, \xi, \Omega, m)$ if and only if

$$\frac{(D^{\Omega}f(z))^{(m)}z^{m-p} - \frac{p^{\Omega}p!}{(p-m)!}}{2\xi \Big[(D^{\Omega}f(z))^{(m)}z^{m-p} - \alpha) \Big] - \Big[(D^{\Omega}f(z))^{(m)}z^{m-p} - \frac{p^{\Omega}p!}{(p-m)!} \Big]} < \beta,$$

 $(p, m \in \Box, \Omega \in \Box_0, p \ge m), |z| < 1, \text{ for } 0 \le \alpha < \frac{p}{2\xi}, 0 < \beta \le 1, \frac{1}{2} < \xi \le 1.$

Particularly, the symbol $(D^{\Omega}f(z))^{(m)}$ was named as the m- th order derivative operator.

Such type of investigation was carried out by Aouf [1] for $P_p^*(\alpha, \beta)$. We note that $P_1^*(\alpha) \equiv P_1^*(0, \alpha, 1, 0, 1)$ is precisely the class of functions in U studied by

Caplinger [2]. The class $P_1^*(\alpha, 1, \beta, 0, 1) \equiv P_1^*(\alpha, \beta)$ is the class of analytic functions investigated by Juneja-Mogra [4]. Gupta-Jain [3] investigated the family of

analytic univalent functions that have the form $f(z) = z - \sum_{n=2}^{\infty} |a_n| z^n$ and satisfy the condition

$$\left| \frac{f'(z) - 1}{f'(z) + (1 - 2\alpha)} \right| < \beta, \quad (0 \le \alpha < 1, \quad 0 < \beta \le 1)$$

Kulkarni [5] has studied above mentioned properties for the functions having Tay-

lor series expansion of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$.

A function $f \in T_p$ is in $P_p^*(\alpha, \beta, \xi)$ if and only if $\left| \frac{f'(z)z^{1-p} - p}{2\xi(f'(z)z^{1-p} - \alpha) - (f'(z)z^{1-p} - p)} \right| < \beta, |z| < 1, \text{ for } 0 \le \alpha < \frac{p}{2\xi}, \ 0 < \beta \le 1, \ \frac{1}{2} < \xi \le 1.$

The class $P_p^*(\alpha, \beta, \xi)$ investigated by Kulkarni *et al.* [6].

A function
$$f \in T_p$$
 is in $P_p^*(\alpha, \beta, \xi, \Omega)$ if and only if

$$\left| \frac{(D^{\Omega}f(z))'z^{1-p} - p^{\Omega+1}}{2\xi((D^{\Omega}f(z))'z^{1-p} - \alpha) - ((D^{\Omega}f(z))'z^{1-p} - p^{\Omega+1})} \right| < \beta,$$

$$\mathbf{\Omega} \in \mathbb{D}_{0*} |z| < 1, \text{ for } 0 \le \alpha < \frac{p}{2\xi}, \quad 0 < \beta \le 1, \quad \frac{1}{2} < \xi \le 1.$$

The class $P_p^*(\alpha, \beta, \xi, \Omega)$ studied by Orhan *et al.* [8].

In this paper sharp results concerning coefficients, distortion theorem, closure theorem and the radius of convexity for the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ are determined. Furthermore, we give integral operators of functions belonging to the class

 $P_p^*(\alpha,\beta,\xi,\Omega,m).$

We note that $P_p^*(\alpha, \beta, \xi, \Omega, 1) \equiv P_p^*(\alpha, \beta, \xi, \Omega)$. Therefore our class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ is the generalization of $P_p^*(\alpha, \beta, \xi, \Omega, m)$ by Orhan *et al.* [8].

2. Coefficient Theorem

We begin by proving some sharp coefficient inequalities contained in following theorem.

Theorem 1. A function $f(z) = z^p - \sum_{n=1}^{\infty} |a_{n+p}| z^{n+p}$ is in $P_p^*(\alpha, \beta, \xi, \Omega, m)$ if and only if

$$\sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}| \le 2\beta\xi(\frac{p!p^{\Omega}}{(p-m)!} - \alpha).$$

The result is sharp, the extremal function being

$$f(z) = z^{p} - \frac{2\beta\xi(\frac{p!p^{\Omega}}{(p-m)!} - \alpha)}{\frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} z^{n+p}.$$
 (2.1)

$$\begin{aligned} & \text{Proof. Let } \left| z \right| = 1 \text{ . Then} \\ & \left| (D^{\Omega} f(z))^{(m)} z^{m-p} - \frac{p! p^{\Omega}}{(p-m)!} \right| - \beta \left| 2\xi \left[(D^{\Omega} f(z))^{(m)} z^{m-p} - \alpha \right] - \left[(D^{\Omega} f(z))^{(m)} z^{m-p} - \frac{p! p^{\Omega}}{(p-m)!} \right] \right] \\ & = \left| -\sum_{n=1}^{\infty} \frac{(n+p)^{\Omega} (n+p)!}{(n+p-m)!} \left| a_{n+p} \right| z^{n} \right| - \beta \left| 2\xi \left(\frac{p! p^{\Omega}}{(p-m)!} - \alpha \right) - \sum_{n=1}^{\infty} \frac{(2\xi-1)(n+p)^{\Omega} (n+p)!}{(n+p-m)!} \left| a_{n+p} \right| z^{n} \right| \\ & \leq \sum_{n=1}^{\infty} \frac{\left[1 + (2\xi-1)\beta \right] (n+p)^{\Omega} (n+p)!}{(n+p-m)!} \left| a_{n+p} \right| - 2\beta\xi \left(\frac{p! p^{\Omega}}{(p-m)!} - \alpha \right) \le 0 \end{aligned}$$

by hypothesis. Hence, by maximum modulus theorem $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$ For the converse we suppose that

$$\left| \frac{(D^{\Omega}f(z))^{(m)}z^{m-p} - \frac{p!p^{\Omega}}{(p-m)!}}{2\xi \Big[(D^{\Omega}f(z))^{(m)}z^{m-p} - \alpha \Big] - \Big[(D^{\Omega}f(z))^{(m)}z^{m-p} - \frac{p!p^{\Omega}}{(p-m)!} \Big]} \right|$$
$$= \left| \frac{\sum_{n=1}^{\infty} \frac{(n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}|z^{n}}{2\xi (\frac{p^{\Omega}p!}{(p-m)!} - \alpha) - \sum_{n=1}^{\infty} \frac{(2\xi-1)(n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}|z^{n}} \right| < \beta.$$

Since $|\operatorname{Re}(z)| \le |z|$ for all z we have

$$\operatorname{Re}\left\{\frac{\sum_{n=1}^{\infty} \frac{(n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}| z^{n}}{2\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha) - \sum_{n=1}^{\infty} \frac{(2\xi-1)(n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}| z^{n}}\right\} < \beta.$$

We select the values of z on the real axis so that $(D^{\Omega}f(z))^{(m)}z^{m-p}$ is real. Simplifying the denominator in the above expression and letting $z \to 1$ through real values, we obtain

$$\sum_{n=1}^{\infty} \frac{(n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}| z^n \le 2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha) - \sum_{n=1}^{\infty} \frac{\beta(2\xi-1)(n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}| z^n$$

and it result in the required condition.

The result is sharp for the function (2.1).

Corollary 1. Let the function f(z) defined by (1.1) be in the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$. Then

$$a_{n+p} \leq \frac{2\beta\xi \left[\frac{p^{\Omega}p!}{(p-m)!} - \alpha\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}, \quad n = 1, 2, 3, \dots$$

3. Distortion Theorem

Let us start with the following theorem.

Theorem 2. If
$$f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$$
, then for $|z| = r$,
 $r^p - \frac{2\beta\xi \left[\frac{p^{\Omega}p!}{(p-m)!} - \alpha\right]}{\frac{[1+(2\xi-1)\beta](1+p)^{\Omega}(1+p)!}{(1+p-m)!}}r^{p+1} \leq |f(z)| \leq r^p + \frac{2\beta\xi \left[\frac{p^{\Omega}p!}{(p-m)!} - \alpha\right]}{\frac{[1+(2\xi-1)\beta](1+p)^{\Omega}(1+p)!}{(1+p-m)!}}r^{p+1}$ (3.1)

and

$$pr^{p-1} - \frac{2\beta\xi\left[\frac{p^{\Omega}p!}{(p-m)!} - \alpha\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](1+p)^{\Omega}(1+p)!}{(1+p-m)!}}r^{p} \leq \left|f'(z)\right| \leq pr^{p-1} + \frac{2\beta\xi\left[\frac{p^{\Omega}p!}{(p-m)!} - \alpha\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](1+p)^{\Omega}(1+p)!}{(1+p-m)!}}r^{p} \quad (3.2)$$

Proof. In view of Theorem 1, we have

$$\sum_{n=1}^{\infty} \left| a_{n+p} \right| \leq \frac{2\beta \xi \left\lfloor \frac{p^{\Omega} p!}{(p-m)!} \right\rfloor}{\frac{\left[1 + (2\xi - 1)\beta\right](1+p)^{\Omega}(1+p)!}{(1+p-m)!}}.$$

Hence

September 2013 Vol:21 No:3 Kastamonu Education Journal

$$|f(z)| \le r^{p} + \sum_{n=1}^{\infty} |a_{n+p}| r^{n+p} \le r^{p} + \frac{2\beta \xi \left[\frac{p^{\Omega} p!}{(p-m)!}\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](1+p)^{\Omega}(1+p)!}{(1+p-m)!}} r^{1+p}$$

and

$$|f(z)| \ge r^{p} - \sum_{n=1}^{\infty} |a_{n+p}| r^{n+p} \ge r^{p} - \frac{2\beta \xi \left[\frac{p^{\Omega} p!}{(p-m)!}\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](1+p)^{\Omega}(1+p)!}{(1+p-m)!}} r^{1+p}.$$

In the same way we have

$$|f'(z)| \le pr^{p-1} + \sum_{n=1}^{\infty} (n+p) |a_{n+p}| r^{n+p-1} \le pr^{p-1} + \frac{2\beta \xi \left[\frac{p^{\Omega} p!}{(p-m)!}\right]}{\frac{[1+(2\xi-1)\beta](1+p)^{\Omega-1}(1+p)!}{(1+p-m)!}} r^{p}$$

and

$$|f'(z)| \ge pr^{p-1} - \sum_{n=1}^{\infty} (n+p) |a_{n+p}| r^{n+p-1} \ge pr^{p-1} - \frac{2\beta \xi \left[\frac{p^{\Omega} p!}{(p-m)!}\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](1+p)^{\Omega - 1}(1+p)!}{(1+p-m)!}} r^{p}$$

This completes the proof of the theorem.

The above bounds are sharp. Equalities are attended for the following function:

$$f(z) = z^{p} - \frac{2\beta\xi \left[\frac{p^{\Omega}p!}{(p-m)!} - \alpha\right]}{\frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} z^{p+1} \qquad z = \pm r.$$
(3.3)

Theorem 3. Let $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$. Then the disk |z| < 1 is mapped on a domain that contain the disk

$$|w| < \frac{\frac{(1+p)^{\Omega}(1+p)!}{(1+p-m)!} + \beta \left\{ \frac{(2\xi-1)(1+p)^{\Omega}(1+p)!}{(1+p-m)!} - 2\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha) \right\}}{\frac{[1+2\xi-1)\beta](1+p)^{\Omega}(1+p)!}{(1+p-m)!}}.$$

The result is sharp with extremal function (3.3).

Proof. The result follows upon letting $r \rightarrow 1$ in (3.1).

Theorem 4. $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$, then f(z) is convex in the disk $|z| < r = r(\alpha, \beta, \xi, \Omega, m)$, where

$$r(\alpha,\beta,\xi,\Omega,m) = \inf_{n \in \mathbb{Z}} \left\{ \frac{\frac{p^2 \left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)(n+p)^2} \right\}^{\frac{1}{n}}, \quad n = 1, 2, 3, \dots$$

the result is sharp, the extremal function being of the form (2.1).

Proof. It is enough to show that

$$\left| \left(1 + \frac{zf''(z)}{f'(z)} - p \right| \le p \quad \text{for} \quad |z| < 1$$

First we note that

$$\left|1 + \frac{zf''(z)}{f'(z)} - p\right| = \left|\frac{zf''(z) + (1 - p)f'(z)}{f'(z)}\right| \le \frac{\sum_{n=1}^{\infty} n(n + p) \left|a_{n+p}\right| \left|z\right|^{n}}{p - \sum_{n=1}^{\infty} (n + p) \left|a_{n+p}\right| \left|z\right|^{n}}$$

Thus, the result follows if

$$\sum_{n=1}^{\infty} n(n+p) |a_{n+p}| |z|^n \le p \left\{ p - \sum_{n=1}^{\infty} (n+p) |a_{n+p}| |z|^n \right\},$$

or, equivalently,

$$\sum_{n=1}^{\infty} \left(\frac{n+p}{p}\right)^2 \left|a_{n+p}\right| \left|z\right|^n \le 1$$

But in view of Theorem 1, we have

$$\sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} |a_{n+p}| \le 2\beta\xi(\frac{p!p^{\Omega}}{(p-m)!} - \alpha).$$

Thus f is convex if

$$\left(\frac{n+p}{p}\right)^{2} \left|z\right|^{n} \leq \frac{\frac{\left[1+(2\xi-1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!}-\alpha)}, \quad n = 1, 2, 3, \dots$$

$$|z| \leq \left\{ \frac{p^2 \left[1 + (2\xi - 1)\beta \right] (n+p)^{\Omega} (n+p)!}{(n+p-m)!} \right\}^{\frac{1}{n}}, \quad n = 1, 2, 3, \dots$$

which completes the proof of our theorem.

4. Closure Theorem

We shall prove the folloving result for the closure of functions in the class $P_p^*(\alpha,\beta,\xi,\Omega,m)$

Theorem 5. If
$$f(z) = z^p - \sum_{n=1}^{\infty} |a_{n+p}| z^{n+p}$$
 and $g(z) = z^p - \sum_{n=1}^{\infty} |b_{n+p}| z^{n+p}$

are in the $P_p^*(\alpha, \beta, \xi, \Omega, m)$, then $h(z) = z^p - \frac{1}{2} \sum_{n=1}^{\infty} |a_{n+p} + b_{n+p}| z^{n+p}$ is also in $P_p^*(\alpha, \beta, \xi, \Omega, m)$.

Proof. f and g both being members of $P_p^*(\alpha, \beta, \xi, \Omega, m)$, we have in accordance with Theorem 1

$$\sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} \left|a_{n+p}\right| \le 2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)$$
(4.1)

and

$$\sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} \left| b_{n+p} \right| \le 2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)$$
(4.2)

To show that h is a member of $P_p^*(\alpha, \beta, \xi, \Omega, m)$ it is enough to show that

$$\frac{1}{2}\sum_{n=1}^{\infty}\frac{\left[1+(2\xi-1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}\left|a_{n+p}+b_{n+p}\right| \le 2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!}-\alpha)$$

This is exactly an immediate consequence of (4.1) and (4.2).

5. Integral Operators

In this section, we prove the following.

Theorem 6. Let the function f(z) defined (1.1) be in the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ and let *c* be real number such that c > -p. Then the function F(z) defined by

$$F(z) = \frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) dt$$
(5.1)

also belongs to the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$.

Proof. From the representation of F(z), it follows that

$$F(z) = z^p - \sum_{n=1}^{\infty} b_{n+p} z^{n+p}$$

where

$$b_{n+p} = \left(\frac{c+p}{c+p+n}\right)a_{n+p}$$

Therefore,

$$\sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} |b_{n+p}|$$
$$= \sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} \left(\frac{c+p}{c+p+n}\right) a_{n+p}$$
$$\leq \sum_{n=1}^{\infty} \frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!} a_{n+p} \leq 2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)$$

Since $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$. Hence by Theorem 1, $F(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$.

6. Extreme points for $P_p^*(\alpha,\beta,\xi,\Omega,m)$

We shall now determine te extreme points of $P_p^*(\alpha, \beta, \xi, \Omega, m)$.

Theorem 7. Let $f_p(z) = z^p$ and

$$f_{n+p}(z) = z^{p} - \frac{2\beta\xi(\frac{p^{\alpha}p!}{(p-m)!} - \alpha)}{\frac{[1 + (2\xi - 1)\beta](n+p)^{\alpha}(n+p)!}{(n+p-m)!}} z^{n+p}, \quad n = 1, 2, 3, \dots$$

Then $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$ if and only if it can be expressed in the form

$$f(z) = \sum_{n=0}^{\infty} \lambda_{n+p} f_{n+p}(z)$$
 where $\lambda_{n+p} \ge 0$ and $\sum_{n=0}^{\infty} \lambda_{n+p} = 1$.

Proof. Suppose that
$$f(z) = \sum_{n=0}^{\infty} \lambda_{n+p} f_{n+p}(z) = \lambda_p f_p(z) + \sum_{n=1}^{\infty} \lambda_{n+p} f_{n+p}(z)$$

$$= \lambda_p z^p + \sum_{n=1}^{\infty} \lambda_{n+p} \left\{ z^p - \frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{[1 + (2\xi - 1)\beta](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} z^{n+p} \right\}$$

$$=\lambda_{p}z^{p} + \sum_{n=1}^{\infty}\lambda_{n+p}z^{p} - \sum_{n=1}^{\infty}\lambda_{n+p}\frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{[1 + (2\xi - 1)\beta](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}z^{n+p}$$

$$=\left(\sum_{n=0}^{\infty}\lambda_{n+p}\right)z^{p}-\sum_{n=1}^{\infty}\lambda_{n+p}\frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!}-\alpha)}{\frac{\left[1+(2\xi-1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}z^{n+p}$$

$$= z^{p} - \sum_{n=1}^{\infty} \lambda_{n+p} \frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{[1 + (2\xi - 1)\beta](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} z^{n+p}$$

Thus

.

$$\sum_{n=1}^{\infty} \lambda_{n+p} \left(\frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{[1+(2\xi-1)\beta](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} \right) \left(\frac{\frac{[1+(2\xi-1)\beta](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)} \right)$$

$$\sum_{n=1}^{\infty} \lambda_{n+p} = \sum_{n=0}^{\infty} \lambda_{n+p} - \lambda_p = 1 - \lambda_p \le 1$$

so by Theorem 1, $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$.

Conversely, suppose $f(z) \in P_p^*(\alpha, \beta, \xi, \Omega, m)$. Since

$$a_{n+p} \leq \frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}, \quad (n = 1, 2, 3, ...),$$

we may set

$$\lambda_{n+p} = \frac{\frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}}{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}a_{n+p}$$

and

$$\lambda_p = 1 - \sum_{n=1}^{\infty} \lambda_{n+p}$$

Then

$$f(z) = z^{p} - \sum_{n=1}^{\infty} a_{n+p} z^{n+p} = z^{p} - \sum_{n=1}^{\infty} \lambda_{n+p} \frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{[1 + (2\xi - 1)\beta](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} z^{n+p}$$

$$= z^{p} - \sum_{n=1}^{\infty} \lambda_{n+p} (z^{p} - f_{n+p}(z)) = z^{p} - \sum_{n=1}^{\infty} \lambda_{n+p} z^{p} + \sum_{n=1}^{\infty} \lambda_{n+p} f_{n+p}(z)$$

= $(1 - \sum_{n=1}^{\infty} \lambda_{n+p}) z^{p} + \sum_{n=1}^{\infty} \lambda_{n+p} f_{n+p}(z)$
= $\lambda_{p} z^{p} + \sum_{n=1}^{\infty} \lambda_{n+p} f_{n+p}(z)$
= $\sum_{n=0}^{\infty} \lambda_{n+p} f_{n+p}(z) = \lambda_{p} f_{p}(z) + \sum_{n=1}^{\infty} \lambda_{n+p} f_{n+p}(z).$

This status is completes proof of theorem.

Corollary 2. The extreme points of $P_p^*(\alpha, \beta, \xi, \Omega, m)$ are given by $f_p(z) = z^p$ and

$$f_{n+p}(z) = z^{p} - \frac{2\beta\xi(\frac{p^{\Omega}p!}{(p-m)!} - \alpha)}{\frac{\left[1 + (2\xi - 1)\beta\right](n+p)^{\Omega}(n+p)!}{(n+p-m)!}} z^{n+p}, \quad n = 1, 2, 3, \dots$$

Remark. If we take m = 1 and $\Omega = 0$ in the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ then we have the results by Kulkarni *et al.* [6].

Remark. If we take m = 1 in the class $P_p^*(\alpha, \beta, \xi, \Omega, m)$ then we have the results by Orhan *et al.* [8].

7. References

- M. K. Aouf, Certain classes of *p* valent functions with negative coefficients II, Indian J. Pure Appl. Math. 19 (8), (1988), 761-767.
- [2]. T. R. Caplinger, On certain classes of analytic functions, Ph. D. Thesis University of Mississipi, (1972).
- [3]. V. P. Gupta, P. K. Jain, On certain classes of univalent functions with negative coefficients, Bull. Aust. Math. Soc. 15, (1976), 467-473.
- [4]. O. P. Juneja, M. L. Mogra, radius of convexity for certain classes of univalent analytic functions, Pasific Journal Math. 78, (1978), 359-368.
- [5]. S. R. Kulkarni, Some problems connected with univalent functions, Ph. D. Dissertation

Shivaji University Kolhapur (1981).

- [6]. S. R. Kulkarni, M. K. Aouf, S. B. Joshi, On a subfamily of p-valent functions with negative coefficients, Math. Bech. 46 (1994), 71-75.
- [7]. G. S. Sălăgean, Subclass of univalent functions, Lecture Notes in Math. (springer-Verlag) 1013, (1983), 362-372.
- [8]. H. Orhan and H. Kiziltunç, A generalization on subfamily of p valent functions with negative coefficients, Appl. Math. Comp. 155 (2004) 521-530.