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 Bu makalede, normalize edilmiş Miller-Ross yardımıyla tanımlanan negatif katsayılı açık 

U  birim diskinde analitik fonksiyonların yeni bir alt sınıfını tanıtacağız. Bu makalenin 
amacı, tanıtılan bu alt sınıfa ait Miller-Ross fonksiyonu için katsayı eşitsizliklerini, 
indirgeme bağıntılarını ve komşuluk özelliklerini belirlemektir. 
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 In this paper, we introduce a new subclass of analytic functions in the open unit disk U  
with negative coefficients defined by normalized of the Miller-Ross function. The object 
of the present paper is to determine coefficient inequalities, inclusion relations and 
neighborhoods properties for Miller-Ross function belonging to this subclass. 
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1. Introduction  

Let A be a class of functions f of the form  
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                                                                         (1.1)  

that are analytic in the open disk  : 1 .z z U  Denote by  nA  the class of functions 

consisting of functions f  of the form  
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                                                                 (1.2)  

which are analytic in U.. 
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 We recall that the convolution (or Hadamard product) of two functions  
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is given by  

       
2

: : ,    .n

n n

n

f g z z a b z g f z z




      U  

Note that .f g A.  

 Next, following the earlier investigations by (Goodman, 1957), (Ruscheweyh, 1981), 

(Silverman, 1995), (Altıntaş & Owa, 1996; Altıntaş et al., 2000) and (Srivastava & Bulut, 2012) 

(see also Aktaş & Orhan, 2015; Çağlar & Orhan, 2017; Çağlar & Orhan, 2019; Çağlar et al., 2020; 

Darwish et al., 2015; Deniz & Orhan, 2010; Keerthi et al., 2008; Murugusundaramoorthy & 

Srivastava, 2004; Orhan, 2007), we define the  ,n   neighborhood of a function  f nA  

by 
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 N A                           (1.3) 

For   ,e z z  we have  
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 N A                                (1.4) 

A function  f nA  is   starlike of complex order ,  denoted by  ,nf  S  if it satisfies 

the following condition  
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U  

and a function  f nA  is   convex of complex order ,  denoted by  ,nf  C  if it 

satisfies the following condition  
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U  

The Miller-Ross (Miller & Ross, 1993) function  , ,cE z  defined by  
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 U                          (1.5) 

The Miller-Ross function  ,cE z  does not belong to the class A . Therefore, we consider the 

following normalization for the function  ,cE z : 
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E U                      (1.6) 

In terms of Hadamard product and  ,c zE  given by (1.6), a new operator , :c A A  can 

be defined as follows: 
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 U                        (1.7) 

If   f nA  is given by (1.2), then we have  
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 U                                          (1.8) 

Finally, by using the differential operator defined by (1.8), we investigate the subclasses 

 , ,n

c  M  and  , , ;n

c   R  of  nA  consisting of functions f  as the followings: 

However, throughout this paper, we restrict our attention to the case real-valued ,c with 

1   and 0.c      

 

Definition 1.1: The subclass  , ,n

c  M  of  nA  is defined as the class of functions f  such 

that  
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U                                                 (1.9) 

where  \ 0   and 0 1.   

 

Definition 1.2: Let  , , ;n

c   R  denote the subclass of  nA  consisting of f  which satisfy 

the inequality   

                                                 
 

  ,

,

1
1 1 ,

c

c

f z
f z

z






   



                                              (1.10) 

where  \ 0  , 0 1   and 0 1.   

In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood 

properties of the subclasses  , ,n

c  M  and  , , ; .n

c   R  

 

2. Coefficient Inequalities For  , ,n

c  M  and  , , ; .n

c   R  

 

Theorem 2.1: Let  .f nA  Then  , ,n

cf   M  if and only if  
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 U                                        (2.1) 

for  \ 0   and 0 1.   

Proof. Let  .f nA  Then, by (1.9) we can write  
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U                                             (2.2) 
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Using (1.2) and (1.8), we have,  
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U                                   (2.3) 

Since (2.3) is true for all ,zU  choose values of z  on the real axis. Letting 1,z   through the 

real values, the inequality (2.3) yields the desired inequality 
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Conversely, supposed that the inequality (2.1) holds true and 1,z   then we obtain 
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Hence, by the maximum modulus theorem, we have    , , ,n

cf z   M  which establishes 

the required result. 

 

Theorem 2.2: Let  .f nA  Then  , , ;n

cf    R  if and only if  
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                                                    (2.4) 

for  \ 0  , 0 1   and 0 1.   

Proof. We omit the proofs since it is similar to Theorem 2.1. 

 

3. Inclusion Relations Involving  ,n eN  of  , ,n

c  M  and  , , ;n

c   R  

 

Theorem 3.1: If 
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Proof. Let    , , .n

cf z   M  By Theorem 2.1, we have  
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which implies 
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Using (2.1) and (3.2), we get  
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Thus, by the definition given by (1.4),    , ,nf z eN  which completes the proof. 

 

Theorem 3.2: If 
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Proof. For    , , ;n

cf z    R  and making use of the condition (2.4), we obtain 
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Thus, using (2.4) along with (3.4), we also get  
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Hence, 
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which in view of (1.4), completes the proof of theorem. 

 

4. Neighborhood Properties For The Classes  , , ,n

c   M  and  , , , ;n

c    R  

 

Definition 4.1: For 0 1   and ,zU  A function    f z nA  is said to be in the class 

 , , ,n

c   M  if there exists a function    , ,n

cg z   M  such that 
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Analogously, for 0 1   and ,zU  A function    f z nA  is said to be in the class 
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cg z    R  such that the inequality (4.1) 

holds true. 
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which yields the coefficient inequality, 
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and so 
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Thus, by the definition,    , , ,n

cf z    M  for   given by (4.2), which establishes the 

desired result. 

Theorem 4.2: If    , , ;n

cg z    R  and 
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Proof. We omit the proofs since it is similar to Theorem 4.1. 
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