

ISSN: 2148-6840

Year: 2021 Volume: 8 Issue: 2

Neighborhoods of Certain Classes of Analytic Functions Defined By Miller-Ross Function

Sercan KAZIMOĞLU¹

1. Introduction

Let A be a class of functions f of the form

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
$$
 (1.1)

that are analytic in the open disk $\,\mathrm{U}\!=\!\{z\!:\!|z|\!<\!1\}.$ Denote by $\,\mathrm{A}\left(n\right)\,$ the class of functions consisting of functions f of the form

$$
f(z) = z - \sum_{n=2}^{\infty} a_n z^n, \quad (a_n \ge 0)
$$
 (1.2)

which are analytic in U..

 $\overline{}$

¹ Kafkas University Faculty of Science and Letters Department of Mathematics-Kars; e-mail[: srcnkzmglu@gmail.com;](mailto:srcnkzmglu@gmail.com) ORCID: 0000-0002-1023-4500

We recall that the convolution (or Hadamard product) of two functions

$$
f(z) = z + \sum_{n=2}^{\infty} a_n z^n
$$
 and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$

is given by

$$
(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n = (g * f)(z), \quad (z \in U).
$$

Note that $f * g \in A$.

Next, following the earlier investigations by (Goodman, 1957), (Ruscheweyh, 1981), (Silverman, 1995), (Altıntaş & Owa, 1996; Altıntaş et al., 2000) and (Srivastava & Bulut, 2012) (see also Aktaş & Orhan, 2015; Çağlar & Orhan, 2017; Çağlar & Orhan, 2019; Çağlar et al., 2020; Darwish et al., 2015; Deniz & Orhan, 2010; Keerthi et al., 2008; Murugusundaramoorthy & Srivastava, 2004; Orhan, 2007), we define the (n, δ) – neighborhood of a function $f \in A(n)$
by
 $N_{n,\delta}(f) = \left\{ g \in A(n) : g(z) = z - \sum_{n=2}^{\infty} b_n z^n \text{ and } \sum_{n=2}^{\infty} n |a_n - b_n| \le \delta \right\}.$ (1.3) by $\sum_{n=1}^{\infty}$

$$
N_{n,\delta}(f) = \left\{ g \in A(n) : g(z) = z - \sum_{n=2}^{\infty} b_n z^n \text{ and } \sum_{n=2}^{\infty} n |a_n - b_n| \le \delta \right\}. \tag{1.3}
$$

For $e(z) = z$, we have

have
\n
$$
\overline{n=2} \qquad \overline{n=2}
$$
\n
$$
\text{have}
$$
\n
$$
N_{n,\delta}(e) = \left\{ g \in A(n) : g(z) = z - \sum_{n=2}^{\infty} b_n z^n \text{ and } \sum_{n=2}^{\infty} n |b_n| \le \delta \right\}.
$$
\n(1.4)

A function $f\in$ A (n) is α – starlike of complex order γ , denoted by $f\in$ S $_{n}^{\ast}(\alpha,\gamma)$ if it satisfies the following condition

$$
\mathfrak{R}\left\{1+\frac{1}{\gamma}\left(\frac{zf'(z)}{f(z)}-1\right)\right\} > \alpha, \quad \left(\gamma \in \mathbb{Z} \setminus \{0\}, \ 0 \le \alpha < 1, \ z \in U\right\}
$$

and a function $f\in$ A (n) is α – convex of complex order $\gamma,$ denoted by $f\in$ $C_{n}^{\ast}\big(\alpha,\gamma\big)$ if it satisfies the following condition

ing condition
\n
$$
\mathfrak{R}\left\{1+\frac{1}{\gamma}\frac{zf''(z)}{f'(z)}\right\} > \alpha, \quad \left(\gamma \in \square \setminus \{0\}, \ 0 \leq \alpha < 1, \ z \in U\right).
$$

The Miller-Ross (Miller & Ross, 1993) function
$$
E_{\nu,c}(z)
$$
, defined by\n
$$
E_{\nu,c}(z) = z^{\nu} \sum_{n=0}^{\infty} \frac{c^n}{\Gamma(\nu+n+1)} z^{n(1+\alpha)}, \quad (\nu > -1, c \ge 0, z \in U). \tag{1.5}
$$

The Miller-Ross function $\,E_{\nu,c}\!\left(z\right)$ does not belong to the class $\,{\rm A}$. Therefore, we consider the $\frac{\Gamma(1+\nu)}{\Gamma(1+\nu)^2} z^{n+1}.$

following normalization for the function
$$
E_{v,c}(z)
$$
:
\n
$$
E_{v,c}(z) = \Gamma(1+v) z^{1-v} E_{v,c}(z) = \sum_{n=0}^{\infty} \frac{c^n \Gamma(1+v)}{\Gamma(\nu+n+1)} z^{n+1}, \quad (z \in U).
$$
\n(1.6)

In terms of Hadamard product and $\text{E}_{_{\nu,c}}(z)$ given by (1.6), a new operator $\varepsilon_{_{\nu,c}}$: A \rightarrow A can be defined as follows:

$$
\varepsilon_{v,c} f(z) = \left(\varepsilon_{v,c} * f\right)(z) = z + \sum_{n=1}^{\infty} \frac{c^n \Gamma(1+v) a_{n+1}}{\Gamma(v+n+1)} z^{n+1}, \quad (z \in U). \tag{1.7}
$$

If $f \in A$ (n) is given by (1.2), then we have

If
$$
f \in A(n)
$$
 is given by (1.2), then we have
\n
$$
\varepsilon_{\nu,c} f(z) = z - \sum_{n=1}^{\infty} \frac{c^n \Gamma(1+\nu) a_{n+1}}{\Gamma(\nu+n+1)} z^{n+1}, \quad (z \in U).
$$
\n(1.8)

Finally, by using the differential operator defined by (1.8), we investigate the subclasses $\operatorname{M}_{v, c}^{\;n}\bigl(\alpha, \gamma\bigr)$ and $\operatorname{R}_{v, c}^{\;n}\bigl(\alpha, \gamma; \vartheta\bigr)$ of $\operatorname{A}\bigl(n\bigr)$ consisting of functions f as the followings:

However, throughout this paper, we restrict our attention to the case real-valued v, c with ν > -1 and $c \ge 0$.

Definition 1.1: The subclass $\mathrm{M}_{\nu,c}^{\,n}(\alpha,\gamma)$ of $\mathrm{A}(n)$ is defined as the class of functions f such that

$$
\left|\frac{1}{\gamma}\left(\frac{z\left[\varepsilon_{\nu,c}f\left(z\right)\right]'}{\varepsilon_{\nu,c}f\left(z\right)}-1\right)\right|<\alpha,\quad\left(z\in U\right),\tag{1.9}
$$

where $\gamma\in\Box\setminus\{0\}$ and $0\!\leq\!\alpha\!<\!1.$

Definition 1.2: Let $\mathrm{R}_{\nu,c}^{\,n}(\alpha,\gamma;\theta)$ denote the subclass of $\mathrm{A}\,(n)$ consisting of f which satisfy the inequality

the inequality

$$
\left|\frac{1}{\gamma}\Big[(1-\vartheta)\Big]\frac{\varepsilon_{\nu,c}f(z)}{z}+\vartheta\Big(\varepsilon_{\nu,c}f(z)\Big)'-1\right|<\alpha,
$$
\n(1.10)

where $\gamma\in\Box\setminus\{0\}$, $0\!\leq\!\alpha\!<\!1$ and $0\!\leq\!\beta\!\leq\!1.$

In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the subclasses M $_{\nu,c}^n(\alpha,\gamma)$ and R $_{\nu,c}^n(\alpha,\gamma;\theta).$

2. Coefficient Inequalities For M $_{\nu, c}^n\big(\alpha, \gamma\big)$ and R $_{\nu, c}^n\big(\alpha, \gamma; \vartheta\big).$

Theorem 2.1: Let $f \in A(n)$. Then $f \in M \frac{n}{\nu,c}(\alpha,\gamma)$

$$
(n). \text{ Then } f \in M_{\nu,c}^n(\alpha, \gamma) \text{ if and only if}
$$
\n
$$
\sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} \Big[n-1+\alpha |\gamma| \Big] a_n \leq \alpha |\gamma| \quad (z \in U)
$$
\n
$$
(2.1)
$$

for $\gamma\in\Box\setminus\{0\}$ and $0\!\leq\!\alpha\!<\!1.$

Proof. Let $f \in A(n)$. Then, by (1.9) we can write
 $\begin{bmatrix} z \in f(z) \end{bmatrix}^{\prime}$

$$
\Re\left\{\frac{z\big[\varepsilon_{\nu,c}f(z)\big]'}{\varepsilon_{\nu,c}f(z)}-1\right\} > -\alpha|\gamma|, \quad (z \in U).
$$
\n(2.2)

Using (1.2) and (1.8), we have,

we have,
\n
$$
\Re\left\{\frac{-\sum_{n=2}^{\infty}\frac{c^{n-1}\Gamma(1+\nu)}{\Gamma(\nu+n)}[n-1]a_nz^n}{z-\sum_{n=2}^{\infty}\frac{c^{n-1}\Gamma(1+\nu)}{\Gamma(\nu+n)}a_nz^n}\right\} > -\alpha|\gamma|, \quad (z \in U).
$$
\n(2.3)

Since (2.3) is true for all $z \in U$, choose values of z on the real axis. Letting $z \rightarrow 1$, through the

real values, the inequality (2.3) yields the desired inequality\n
$$
\sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} \Big[n - 1 + \alpha |\nu| \Big] a_n \leq \alpha |\nu|.
$$

Conversely, supposed that the inequality (2.1) holds true and $|z|=1$, then we obtain
 $\left|\int_{z=0}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{n-1} \left[x-\frac{c^{n-1}}{n-1}\right] dx\right|$

$$
\begin{aligned}\n\left| \frac{z \big[\varepsilon_{\nu,c} f(z) \big]'}{\varepsilon_{\nu,c} f(z)} - 1 \right| &\leq \frac{\left| \sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} [n-1] a_n z^n \right|}{z - \sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} a_n z^n} \\
&\leq \frac{\sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} [n-1] a_n}{1 - \sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} a_n} \\
&\leq a |\gamma|. \n\end{aligned}
$$

Hence, by the maximum modulus theorem, we have $\ f(z)$ \in $\! \mathrm{M}$ $_{\nu,c}^{\ n}(\alpha,\gamma),$ $f(z)$ \in M $_{\nu,c}^{\ n}(\alpha,\gamma)$, which establishes the required result.

Theorem 2.2: Let $f \in A(n)$. Then $f \in R_{\nu,c}^{\,n}(\alpha,\gamma;\theta)$

Then
$$
f \in \mathbb{R}_{\nu,c}^n(\alpha, \gamma; \vartheta)
$$
 if and only if
\n
$$
\sum_{n=2}^{\infty} \frac{c^{n-1} \Gamma(1+\nu)}{\Gamma(\nu+n)} \Big[1 + \vartheta(n-1) \Big] a_n \leq \alpha |\gamma|
$$
\n(2.4)

for $\gamma \in \Box \setminus \{0\}$, $0 \leq \alpha < 1$ and $0 \leq \vartheta \leq 1$.

Proof. We omit the proofs since it is similar to Theorem 2.1.

3. Inclusion Relations Involving N $_{n,\delta}(e)$ of M $_{\nu,c}^n(\alpha,\gamma)$ and R $_{\nu,c}^n(\alpha,\gamma;\theta)$

Theorem 3.1: If

$$
\delta = \frac{2\alpha |\gamma|(1+\nu)}{c(1+\alpha|\gamma|)}, \quad (|\gamma|<1), \tag{3.1}
$$

then $\mathrm{M}^{\,n}_{\nu,c}(\alpha,\gamma) \! \subset \! \mathrm{N}_{\,n,\delta}\big(e\big).$ **Proof.** Let $f(z) \in M_{\nu,c}^{\ n}(\alpha, \gamma)$. $f(z)$ \in M $_{\nu,c}^n(\alpha,\gamma)$. By Theorem 2.1, we have

$$
\frac{c}{(1+\nu)}\Big(1+\alpha\big|\gamma\big|\Big)\sum_{n=2}^{\infty}a_n\leq\alpha\big|\gamma\big|,
$$

which implies

$$
\sum_{n=2}^{\infty} a_n \le \frac{\alpha |\gamma|}{\frac{c}{(1+\nu)}(1+\alpha |\gamma|)}.
$$
\n(3.2)

Using (2.1) and (3.2), we get

$$
\begin{aligned}\n\text{ve get} \\
\frac{c}{(1+\nu)} \sum_{n=2}^{\infty} n a_n &\leq \alpha |\gamma| + \frac{c}{(1+\nu)} (1-\alpha |\gamma|) \sum_{n=2}^{\infty} a_n \\
&\leq \frac{2\alpha |\gamma|}{(1+\alpha |\gamma|)} = \delta.\n\end{aligned}
$$

That is,

$$
\sum_{n=2}^{\infty} na_n \leq \frac{2\alpha |\gamma|}{\frac{c}{(1+\nu)}(1+\alpha |\gamma|)} = \delta.
$$

Thus, by the definition given by (1.4), $\,f\big(z\bigl)\in {\rm N}_{_{n,\delta}} \bigl(e\bigr),\,$ which completes the proof.

Theorem 3.2: If

$$
\delta = \frac{2\alpha |\gamma|(1+\nu)}{c(1+\vartheta)}, \quad (|\gamma|<1), \tag{3.3}
$$

then $R_{\nu,c}^{\ n}(\alpha,\gamma;\theta) \! \subset \! {\rm N}_{\ n,\delta}\big(e\big).$

Proof. For $f(z) \in R_{\nu,c}^{\ n}(\alpha, \gamma; \vartheta)$ $f\left(z \right) \!\in \! {\text{R}}_{\nu,c}^{\;n}\left(\alpha,\gamma;\vartheta \right)$ and making use of the condition (2.4), we obtain

$$
\frac{c}{(1+\nu)}(1+\vartheta)\sum_{n=2}^{\infty}a_n\leq\alpha\left|\gamma\right|
$$

so that

$$
\sum_{n=2}^{\infty} a_n \le \frac{\alpha |\gamma|}{\frac{c}{(1+\nu)}(1+9)}.
$$
\n(3.4)

Thus, using (2.4) along with (3.4), we also get
\n
$$
\mathcal{G} \frac{c}{(1+\nu)} \sum_{n=2}^{\infty} n a_n \leq \alpha |\gamma| + (\mathcal{G}-1) \frac{c}{(1+\nu)} \sum_{n=2}^{\infty} a_n
$$
\n
$$
\leq \alpha |\gamma| + \frac{c(\mathcal{G}-1)}{(1+\nu)} \frac{\alpha |\gamma| (1+\nu)}{c(1+\mathcal{G})}
$$
\n
$$
\leq \frac{2\mathcal{G}\alpha |\gamma|}{(1+\mathcal{G})} = \delta.
$$

Hence,

$$
\sum_{n=2}^{\infty} na_n \le \frac{2\alpha |\gamma|}{\frac{c}{(1+\nu)}(1+\vartheta)} = \delta
$$

which in view of (1.4), completes the proof of theorem.

4. Neighborhood Properties For The Classes $\mathrm{M}^{\,n}_{\nu,c}(\alpha,\gamma,\eta)$ and $\mathrm{R}^{\,n}_{\nu,c}(\alpha,\gamma,\eta;\theta)$

Definition 4.1: For $0 \le \eta < 1$ and $z \in U$, A function $f(z) \in A(n)$ is said to be in the class $\operatorname{M}_{\nu, c}^{\;n}\bigl(\alpha,\gamma,\eta\bigr)$ if there exists a function $\,{g\left(z\right)}\!\in\!\operatorname{M}_{\nu, c}^{\;n}\!\left(\alpha,\gamma\right)$ $g(z)$ \in M $_{\nu ,c}^n(\alpha ,\gamma)$ such that

$$
\left|\frac{f(z)}{g(z)}-1\right|<1-\eta.\tag{4.1}
$$

Analogously, for $0 \le \eta < 1$ and $z \in U$, A function $f(z) \in A(n)$ is said to be in the class $R_{\nu,c}^{n}\bigl(\alpha,\gamma,\eta;\beta\bigr)$ if there exists a function $g\bigl(z\bigr)\!\in\! R_{\nu,c}^{n}\bigl(\alpha,\gamma;\beta\bigr)$ $g(z) \in \mathbb{R}_{\nu,c}^{n} (\alpha, \gamma; \vartheta)$ such that the inequality (4.1) holds true.

Theorem 4.1: If $g(z) \in M_{\nu,c}^{\,n}(\alpha, \gamma)$ $g(z)$ \in M $_{\nu ,c}^n(\alpha ,\gamma)$ and

$$
\eta = 1 - \frac{\delta c (1 + \alpha |\gamma|)}{2 \left[c \left(1 + \alpha |\gamma| \right) - \alpha |\gamma| (1 + \nu) \right]}
$$
(4.2)

then $N_{n,\delta}(g)$ \subset $M_{\nu,c}^{\,n}(\alpha,\gamma,\eta).$ **Proof.** Let $f(z) \in N_{n,\delta}(g)$. Then,

$$
\sum_{n,\sigma}^{\infty} |I| \leq S
$$

$$
\sum_{n=2}^{\infty} n |a_n - b_n| \le \delta,
$$
\n(4.3)

which yields the coefficient inequality,

$$
\sum_{n=2}^{\infty} |a_n - b_n| \leq \frac{\delta}{2}, \quad (n \in \square).
$$

Since $g(z) \in M_{\nu,c}^{\,n}(\alpha,\gamma)$ $g\left(z\right)\!\in\!{\rm M}^{\,\,n}_{\,\nu,c}\!\left(\alpha,\gamma\right)\,$ by (3.2), we have

$$
\sum_{n=2}^{\infty} b_n \leq \frac{\alpha |\gamma|}{\frac{c}{(1+\nu)}(1+\alpha |\gamma|)},\tag{4.4}
$$

and so

$$
\left| \frac{f(z)}{g(z)} - 1 \right| \n\le \frac{\sum_{n=2}^{\infty} |a_n - b_n|}{1 - \sum_{n=2}^{\infty} b_n} \n\le \frac{c}{2} \frac{(1+v)}{(1+v)(1+\alpha|y|)-\alpha|y|} \n= 1-\eta.
$$
\n
$$
f(z) \in M_{v,c}^n(\alpha, \gamma, \eta) \text{ for } \eta \text{ given by (4.2),}
$$
\n
$$
= 1-\eta.
$$
\n
$$
f(z) \in M_{v,c}^n(\alpha, \gamma, \eta) \text{ for } \eta \text{ given by (4.2),}
$$
\n
$$
= \frac{\delta c(1+\vartheta)}{2[c(1+\vartheta)-\kappa|\gamma|(1+\nu)]},
$$
\n
$$
\eta; \vartheta).
$$
\nsince it is similar to Theorem 4.1.\n\nstortion bounds for a new subclass of analytic function\nin a University of Basov. *Mathematics, Informatics, P.*leiphorhoods of certain analytic functions with negative\nin gishorhoods of certain analytic functions with negative\n
$$
h. let, 13, 63-67.
$$
\n
$$
h. be the probability of the same number of the same number.
$$
\n
$$
h. let, 13, 63-67.
$$
\n
$$
i. In L. (2000). Neighbour's theorem, 63-67.
$$
\n
$$
i. In L. (2011). The solution of the equation
$$
i \sin \beta
$$
 is the same,
$$
i \sin \beta
$$
 is the same,
$$
i \sin \beta
$$
 is the same,
$$
i \sin \beta
$$
$$

Thus, by the definition, $f(z) \in M_{\nu,c}^{\,n}(\alpha,\gamma,\eta)$ $f(z)$ \in M $_{\nu,c}^n(\alpha,\gamma,\eta)$ for η given by (4.2), which establishes the desired result.

Theorem 4.2: If $g(z) \in \mathbb{R}_{\nu,c}^{n} (\alpha, \gamma; \vartheta)$ $g(z)$ \in R $_{\nu,c}^n(\alpha,\gamma;\theta)$ and

$$
\eta = 1 - \frac{\delta c (1+\beta)}{2 \left[c \left(1+\beta\right) - \kappa \left| \gamma \right| \left(1+\nu\right) \right]},\tag{4.5}
$$

then $N_{n,\delta}(g) \negthinspace \subset \negthinspace R_{\nu,c}^{\,n} \big(\alpha,\!\gamma,\!\eta;\vartheta \big) .$

Proof. We omit the proofs since it is similar to Theorem 4.1.

REFERENCES

- Aktaş, İ., & Orhan, H. (2015). Distortion bounds for a new subclass of analytic functions and their partial sums. Bulletin of the Transilvania University of Brasov. *Mathematics, Informatics, Physics, Series III*, 8(2), 1-12.
- Altıntaş, O., & Owa, S. (1996). Neighborhoods of certain analytic functions with negative coefficients. *Int. J. Math. and Math. Sci.,* 19, 797-800.
- Altıntaş, O., Özkan, E., & Srivastava, H. M. (2000). Neighborhoods of a class of analytic functions with negative coefficients. *Appl. Math. Let.,* 13, 63-67.
- Çağlar, M., Deniz, E., & Kazımoğlu, S. (2020). Neighborhoods of certain classes of analytic functions defined by normalized function $az^2J''_g(z)+bzJ'_g(z)+cJ_g(z)$. Turkish Journal of Science, 5 (3), 226-232.
- Çağlar, M., Orhan, M. (2017). On neighborhood and partial sums problem for generalized Sakaguchi type function. *Al. I. Cuza Din Iasi (S.N) Matematica*, LXIII, f.1, 17–28.
- Çağlar, M., Orhan, M. (2019). (θ,μ,τ) Neighborhood for analytic functions involving modified sigmoid function. *Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat*., 68(2), 2161-2169.
- Darwish, H. E., Lashin, A. Y., & Hassan, B. F. (2015). Neighborhood properties of generalized Bessel function. *Global Journal of Science Frontier Research* (F), 15(9), 21-26.
- Deniz, E., & Orhan, H. (2010). Some properties of certain subclasses of analytic functions with negative coefficients by using generalized Ruscheweyh derivative operator. *Czechoslovak Math. J.,* 60(135), 699- 713.
- Goodman, A. W. (1957). Univalent functions and nonanalytic curves. *Proc. Amer. Math. Soc*., 8, 598-601.
- Keerthi, B. S., Gangadharan, A., & Srivastava, H. M. (2008). Neighborhoods of certain subclasses of analytic functions of complex order with negative coefficients. *Math. Comput. Model*., 47, 271-277.
- Miller, K. S., & Ross, B. (1993). *An introduction to the fractional calculus and fractional differential equations.* Wiley.
- Murugusundaramoorthy, G., & Srivastava, H. M. (2004). Neighborhoods of certain classes of analytic functions of complex order. *J. Inequal. Pure Appl. Math*., 5(2), Art. 24. 8 pp.
- Orhan, H. (2007). On neighborhoods of analytic functions de_ned by using hadamard product. *Novi Sad J. Math.,* 37(1), 17-25.
- Ruscheweyh, S. (1981). Neighborhoods of univalent functions. *Proc. Amer. Math. Soc.,* 81(4), 521-527.
- Silverman, H. (1995). Neighborhoods of a classes of analytic function. *Far East J. Math. Sci.,* 3(2), 175-183.
- Srivastava, H. M., & Bulut, S. (2012). Neighborhood properties of certain classes of multivalently analytic functions associated with the convolution structure. *Appl. Math. Comput*., 218, 6511-6518.