Actions and semi-direct products in categories of groups with action

Tamar Datuashvili*1, Tunçar Şahan2

1A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University, 6 Tamarashvii Str., Tbilisi 0177, Georgia
2Department of Mathematics, Aksaray University, Aksaray, Turkey

Abstract

Derived actions in the category of groups with action on itself Gr* are defined and described. This category plays a crucial role in the solution of two problems of Loday stated in the literature. A full subcategory of reduced groups with action rGr* of Gr* is introduced, which is not a category of interest but has some properties, which can be applied in the investigation of action representability in this category; these properties are similar to those, which were used in the construction of universal strict general actors in the category of interest. Semi-direct product constructions are given in Gr* and rGr* and it is proved that an action is a derived action in Gr* (resp. rGr*) if and only if the corresponding semi-direct product is an object of Gr* (resp. rGr*). The results obtained in this paper will be applied in the forthcoming paper on the representability of actions in the category rGr*.

Mathematics Subject Classification (2020). 08A99, 08C05, 22F05

Keywords. Group with action, semi-direct product, action, extension

1. Introduction

Action theories were developed in many algebraic categories like the categories of groups, associative algebras, (pre)crossed modules, non-associative algebras, in particular Lie, Leibniz, alternative algebras and others and, in more general settings of semi-abelian category [1] and category of interest [12, 13]. There were two different approaches to the definition of action, which turned out to be equivalent. In this paper we give a new example of a category, where action theory can be developed. It is a category of groups with action on itself introduced in [5–7], where it played a main role in the solution of two problems of Loday stated in [10, 11]. This category is neither a category of interest, nor a modified category of interest [2]. It is a category of groups with operations, but doesn’t satisfy all conditions stated in [14]. The category Gr* is a category of Ω-groups in the sense of Kurosh [9]. Actions are defined in Gr* as derived actions from split extensions in this category as it is in the category of interest or in any semi-abelian category. We describe derived action conditions in this category and construct a semi-direct product

*Corresponding Author.
Email addresses: tamar.datu@gmail.com (T. Datuashvili), tuncarsahan@gmail.com (T. Şahan)
Received: 26.11.2021; Accepted: 19.07.2022
B \ltimes A$, where $A, B \in \mathbf{Gr^\bullet}$ and B has a derived action on A. We prove that an action of B on A is a derived action if and only if $B \ltimes A \in \mathbf{Gr^\bullet}$ (Theorem 3.2). Then we define a full subcategory $\mathbf{rGr^\bullet}$ in $\mathbf{Gr^\bullet}$, give examples of its objects including a construction of free objects and describe derived actions in $\mathbf{rGr^\bullet}$. Our interest is to investigate the existence of a universal acting object on an object $A \in \mathbf{Gr^\bullet}$ applying the results obtained in [3,4] for categories of interest. Since the category $\mathbf{Gr^\bullet}$ is far from being category of interest we found its subcategory $\mathbf{rGr^\bullet}$, which is not a category of interest, but has interesting properties which are close to those ones used in the construction of a universal strict general actor for any object of a category of interest in [3,4]. We prove necessary and sufficient condition for the action of B on A, $A, B \in \mathbf{rGr^\bullet}$, to be a derived action in terms of the semi-direct product $B \ltimes A$, like we have in $\mathbf{Gr^\bullet}$ (Theorem 4.4). Applying the results of this paper, in [8], we prove that under certain conditions on the object $A \in \mathbf{rGr^\bullet}$, it has representable actions in the sense of [1], i.e. a universal acting object, which represents all actions on A.

2. Preliminary definitions and results

Let G be a group which acts on itself from the right side, i.e. we have a map $\varepsilon: G \times G \to G$ with

$$\varepsilon(g, g' + g'') = \varepsilon(\varepsilon(g, g'), g''),$$
$$\varepsilon(g, 0) = g$$
$$\varepsilon(g' + g'', g) = \varepsilon(g' + g) + \varepsilon(g'' + g)$$

for $g, g', g'' \in G$. Denote $\varepsilon(g, h) = g^h$, for $g, h \in G$.

We denote the group operation additively, nevertheless the group is not commutative in general. From the third condition on ε it follows that $0^h = 0$, for any $h \in G$.

If (G', ε') is another group with action then a homomorphism $(G, \varepsilon) \to (G', \varepsilon')$ is a group homomorphism $\varphi: G \to G'$, for which the diagram

$$\begin{array}{ccc}
G \times G & \overset{\varepsilon}{\longrightarrow} & G \\
\varphi \times \varphi \downarrow & & \downarrow \varphi \\
G' \times G' & \overset{\varepsilon'}{\longrightarrow} & G'
\end{array}$$

commutes. In other words, we have

$$\varphi \left(g^h \right) = \varphi(g)^{\varphi(h)} \quad (2.1)$$

for all $g, h \in G$.

Note that action defined above is a split derived action in the sense of [12,13].

According to Kurosh [9] an Ω-group is a group with a system of n-ary algebraic operations $\Omega_{n\geq0}$, which satisfy the condition

$$000 \cdots 0_\omega = 0, \quad (2.2)$$

where 0 is the identity element of G, and 0 on the left side occurs n times if ω is an n-ary operation. In special cases Ω-groups give groups, rings, associative and non-associative algebras like Lie and Leibniz algebras etc. and groups with action on itself as well. In the latter case Ω consists of one binary operation which is an action or Ω consists of only unary operations, which are elements of G, and this operation is an action again. In both cases condition (2.2) is satisfied. Denote the category of groups with action on itself by $\mathbf{Gr^\bullet}$; here the action is considered as a binary operation and morphisms between the objects in $\mathbf{Gr^\bullet}$ are group homomorphisms satisfying condition (2.1).
Example 2.1. [5] Every group with trivial action on itself or with an action by conjugation is an object of Gr^\ast. There are two pairs of adjoint functors between the category of groups and the category Gr^\ast [5].

Example 2.2. [6] For any set X there exists a free group with action $F(X)$ with the basis X in Gr^\ast; one can see the construction in [6].

Example 2.3. Let \mathbb{Z}^\ast be an abelian group of integers which acts on itself in the following way:

$$x^y = (-1)^y x$$

for any $x, y \in \mathbb{Z}$. It is easy to check that $\mathbb{Z}^\ast \in \text{Gr}^\ast$.

Let $G \in \text{Gr}^\ast$.

Definition 2.4. [5] A non-empty subset A of G is called an ideal of G if it satisfies the following conditions

1) A is a normal subgroup of G as a group;
2) $a^g \in A$, for any $a \in A$ and $g \in G$;
3) $-g + g^\ast \in A$, for any $a \in A$ and $g \in G$.

Note that the condition 3 in this definition is equivalent to the condition, that $g^a - g \in A$, since $(-g)^a = -g^a$, for any $a \in A$ and $g \in G$. This definition is equivalent to the definition of an ideal given in [9] for Ω-groups in the case where Ω consists of one binary operation of action, one can see the proof in [5].

3. Actions and semi-direct products in Gr^\ast

Let $A, B \in \text{Gr}^\ast$. An action of B on A by definition is a triple of mappings $\beta = (\beta_+, \beta_-, \beta_\circ): B \times A \to A$, where \ast is a binary operation of action, \ast° is its dual operation in Gr^\ast, i.e. $\beta_+(b, a) = b \cdot a$, $\beta_-(b, a) = a \ast b = a^b$ and $\beta_\circ(b, a) = a^\circ b = b^a$.

In the category of interest or category of groups with operations there is a condition $0 \ast g = g \ast 0 = 0$, for any binary operation $\ast \in \Omega \setminus \{+\}$, any object G in this category and any element $g \in G$. In the category Gr^\ast we have $0^g = 0$, for any $G \in \text{Gr}^\ast$ and any $g \in G$, but $g^0 \neq 0$ in general. Therefore we modify the definition of derived action due to split extensions [12–14], known for the category of groups with operations or category of interest, for the category Gr^\ast. Note that the definition of derived action from the split extension agrees with the definition of action in a semi-abelian category [1].

Let $A, B \in \text{Gr}^\ast$. An extension of B by A is a sequence

$$0 \longrightarrow A \xrightarrow{i} E \xrightarrow{p} B \longrightarrow 0 \quad (3.1)$$

in which p is surjective and i is the kernel of p. We say that an extension is split if there is a morphism $j: B \to E$, such that $pj = 1_B$. We will identify $i(a)$ with a.

A split extension induces a triple of actions of B on A corresponding to the operation of addition, action and its dual operation in Gr^\ast. From the split extension (3.1) for any $b \in B$ and $a \in A$ we define

$$b \cdot a = j(b) + a - j(b) \quad (3.2)$$

$$b^a = j(b)^a - j(b) \quad (3.3)$$

$$a^b = a^i(b) \quad (3.4)$$

Actions defined by (3.2)-(3.4) will be called derived actions of B on A as it is in the case of groups with operations or category of interest. Note that (3.3) differs from what we have in the noted known cases, since as we have mentioned above $b^0 \neq 0$ in B.

Proposition 3.1. Let $A, B, \in \text{Gr}^\ast$. Derived actions of B on A satisfy the following conditions:
(a) well-known group action conditions for the dot left action:

\[
\begin{align*}
 b \cdot (a_1 + a_2) &= b \cdot a_1 + b \cdot a_2 \\
 (b_1 + b_2) \cdot a &= b_1 \cdot (b_2 \cdot a) \\
 0 \cdot a &= a
\end{align*}
\]

where \(a, a_1, a_2 \in A \) and \(b, b_1, b_2 \in B \).

(b) \(0_A^a = 0_A, 0_B^a = 0_A, 0_B^a = 0_A, a^{0_B} = a \) where \(0_A \) and \(0_B \) denote the zero elements of \(A \) and \(B \) respectively. For any \(a, a' \in A \) and \(b, b' \in B \),

\[
\begin{align*}
 (1_A) \quad (a + a')^b &= a^b + (a')^b, \\
 (2_A) \quad (b + b')^a &= b^a + b \cdot ((b')^a),
\end{align*}
\]

(3.2) follows from the action properties (3.4) and the definition of the derived action corresponding to the action operation and its dual (3.3) and (3.4).

(1A) Let \(a, a' \in A \) and \(b \in B \); then

\[
\begin{align*}
 (a + a')^b &= (a + a')^{j(b)} \\
 &= a^{j(b)} + (a')^{j(b)} \\
 &= a^b + (a')^b
\end{align*}
\]

(2A) Let \(a \in A \) and \(b, b' \in B \); then

\[
\begin{align*}
 (b + b')^a &= (j(b + b'))^a - j(b + b') \\
 &= j(b)^a + j(b')^a - j(b') - j(b) \\
 &= j(b)^a - j(b) + j(b) + j(b')^a - j(b') - j(b) \\
 &= b^a + b \cdot ((b')^a)
\end{align*}
\]

(3A) Let \(a, a' \in A \) and \(b \in B \); then

\[
\begin{align*}
 (b \cdot a)^{a'} + b^{a'} &= (j(b) + a - j(b))^{a'} + j(b)^{a'} - j(b) \\
 &= j(b)^{a'} + a^{a'} - j(b)^{a'} + j(b)^{a'} - j(b) \\
 &= j(b)^{a'} - j(b) + j(b) + a^{a'} - j(b) \\
 &= b^{a'} + b \cdot (a^{a'})
\end{align*}
\]

Note that as it will be shown in the proof of Theorem 3.2, all properties noted in (b) except \(a^{0_B} = a \) follow from (1A), (2A) and (1B). Nevertheless we preferred for explicitness to state in the theorem these properties separately.
(4A) Let \(a \in A \) and \(b, b' \in B \); then
\[
(b \cdot a)' = (j(b) + a - j(b))b'
\]
\[
= j(b)j(b') + a^j(b') - j(b)j(b')
\]
\[
= j\left(b'^a\right) + a^j(b') - j\left(b'^a\right)
\]
\[
= b'^a \cdot a^b
\]

(1B) Let \(a, a' \in A \) and \(b \in B \); then
\[
b'^{(a+a')} = j(b)^{(a+a')} - j(b)
\]
\[
= (j(b)^a)^{a'} - j(b)^a + j(b)^a' - j(b)
\]
\[
= (j(b)^a - j(b))^a' + j(b)^a' - j(b)
\]
\[
= (b^a)^{a'} + b^a
\]

(2B) Let \(a \in A \) and \(b, b' \in B \); then
\[
(a^b + b') = a^{j(b) + j(b')}
\]
\[
= (a^b)^{b'}
\]

(3B) Let \(a, a' \in A \) and \(b \in B \); then
\[
\left(a^{(b-a')}\right)^b = \left(a^{j(b) + a' - j(b)}\right)^b
\]
\[
= a^{j(b) + a'}
\]
\[
= \left(a^{j(b)}\right)^{a'}
\]
\[
= \left(a^b\right)^{a'}
\]

(4B) Let \(a, a' \in A \) and \(b, b' \in B \); then
\[
(b^{(b-a')})^b = \left(j(b)^{j(b') + a - j(b')}
ight) - j(b)
\]
\[
= \left(\left(j(b)^{j(b')}\right)^a - j(b)^{j(b')}\right) - j(b)
\]
\[
= \left(j\left(b'
ight)^a\right) - j\left(b'
ight)
\]
\[
= \left(b'^a\right)^a - j\left(b'^a\right)
\]

Given a triple of actions of \(B \) on \(A \) in \(\text{Gr}^* \), we can define operations on the product \(B \times A \) in the following way:
\[
(b, a) + (b', a') = (b + b', a + b \cdot a')
\]
\[
(b, a)(b', a') = (b', a'\cdot b + (b'^a)b')
\]
for any \((b, a), (b', a') \in B \times A\). This kind of universal algebra will be called semi-direct product and denoted by \(B \times A \).

Theorem 3.2. Let \(A, B \in \text{Gr}^* \), if \(\beta = (\beta_+, \beta_*, \beta_v) \) is a triple of actions of \(B \) on \(A \), then the following conditions are equivalent:

1. \(\beta \) is a triple of derived actions of \(B \) on \(A \).
We have

(2) β_+ satisfies group action conditions, β satisfies conditions $(1_A)- (4_A), (1_B)- (4_B)$ and the condition $a^0_1 = a$, for any $a \in A$.

(3) The semi-direct product $B \ltimes A$ is an object in Gr^\ast.

Proof. (1)\Rightarrow(2): by Proposition 3.1.

(2)\Rightarrow(3): First of all we will show that from $(1_A), (2_A)$ and (1_B) follow the conditions of (b) except the one $a^0_{0B} = a$. From (1_A) we have

$$0^b_A = 0_A + 0^b_A = 0_A^b + 0^b_A$$

and then $0^b_A = 0_A$.

From (2_A) we have

$$0^a_B = 0_B + 0^a_B = 0^a_B + 0_B \cdot (0^b_B) = 0^a_B + 0^a_B$$

and then $0^a_B = 0_A$. Note that we will not use this property in the proof of $(2)\Rightarrow(3)$.

From (1_B) we have

$$0^{b^0_A} = 0^{a^0_A + 0_A} = (0^a_A + 0_A)$$

since $a^0_A = a$ for any $a \in A$, we obtain

$$0^{b^0_A} = 0^{b^0_A} + 0^{b^0_A}$$

and then $0^{b^0_A} = 0_A$.

Now we shall prove that the semi-direct product $B \ltimes A \in \text{Gr}^\ast$. Obviously, $B \ltimes A$ is a group as it is in the case of groups. We have to show the following equalities for any $(b, a), (b', a'), (b'', a'') \in B \ltimes A$:

(a) $(b, a)(b', a') + (b'', a'') = (b, a)(b', a') + (b'', a'')$

(b) $(b, a) + (b', a') = (b, a) + (b', a')$

(c) $(b, a)(0_B, 0_A) = (b, a)$.

First we prove the equality in (a).

(a) We have

$$(b, a)(b', a') + (b'', a'') = (b, a)(b + b', a' + b'')$$

Now we shall prove that the semi-direct product $B \ltimes A \in \text{Gr}^\ast$. Obviously, $B \ltimes A$ is a group as it is in the case of groups. We have to show the following equalities for any $(b, a), (b', a'), (b'', a'') \in B \ltimes A$:

(a) $(b, a)(b', a') + (b'', a'') = (b, a)(b', a') + (b'', a'')$

(b) $(b, a) + (b', a') = (b, a) + (b', a')$

(c) $(b, a)(0_B, 0_A) = (b, a)$.

First we prove the equality in (a).

(a) We have

$$(b, a)(b', a') + (b'', a'') = (b, a)(b + b', a' + b'')$$

Now we shall prove that the semi-direct product $B \ltimes A \in \text{Gr}^\ast$. Obviously, $B \ltimes A$ is a group as it is in the case of groups. We have to show the following equalities for any $(b, a), (b', a'), (b'', a'') \in B \ltimes A$:

(a) $(b, a)(b', a') + (b'', a'') = (b, a)(b', a') + (b'', a'')$

(b) $(b, a) + (b', a') = (b, a) + (b', a')$

(c) $(b, a)(0_B, 0_A) = (b, a)$.

First we prove the equality in (a).

(a) We have

$$(b, a)(b', a') + (b'', a'') = (b, a)(b + b', a' + b'')$$

Now we shall prove that the semi-direct product $B \ltimes A \in \text{Gr}^\ast$. Obviously, $B \ltimes A$ is a group as it is in the case of groups. We have to show the following equalities for any $(b, a), (b', a'), (b'', a'') \in B \ltimes A$:

(a) $(b, a)(b', a') + (b'', a'') = (b, a)(b', a') + (b'', a'')$

(b) $(b, a) + (b', a') = (b, a) + (b', a')$

(c) $(b, a)(0_B, 0_A) = (b, a)$.

First we prove the equality in (a).

(a) We have

$$(b, a)(b', a') + (b'', a'') = (b, a)(b + b', a' + b'')$$

Note that we will not use this property in the proof of $(2)\Rightarrow(3)$.
On the other hand
\[
(b, a)^{(b', a')}^{(b'', a'')} = \left(b^{b'}, (a^{a'})^{b''} + (b^{a'})^{b''} \right)^{(b'', a'')}
\]
\[
= \left(b^{b'}, \left(\left(a^{a'} \right)^{b''} + \left(b^{a'} \right)^{b''} \right) \right)^{b''} + \left(b^{b'} \right)^{b''}
\]
\[
= \left(b^{b'}, \left(\left(a^{a'} \right)^{b''} \right) + \left(\left(a^{a'} \right)^{b''} \right) \right)^{b''} + \left(b^{b'} \right)^{b''}
\]
\[
= \left(b^{b'} + b^{b' a''}, \left(a^{a''} \right)^{b''} \right) + \left(b^{b'} \right)^{b''} + \left(b^{b'} a^{a''} \right)^{b''}
\]
\[
= \left(b^{b'} + b^{b' a''}, \left(a^{a''} \right)^{b''} \right) + \left(b^{b'} \right)^{b''} + \left(b^{b'} a^{a''} \right)^{b''}
\]

From which we conclude that condition (a) holds in $B \ltimes A$.

Now we check condition (b).

\[
((b, a) + (b', a'))^{(b'', a'')} = (b + b', a + b \cdot a')^{(b'', a'')}
\]
\[
= \left(b + b', (a + b' a'')^{b''} + (b + b' a'')^{b''} \right)
\]
\[
= \left(b^{b''} + b^{b' a''}, \left(a^{a''} \right)^{b''} \right) + \left(b^{b'} \right)^{b''} + \left(b^{b'} a^{a''} \right)^{b''}
\]
\[
= \left(b^{b''} + b^{b' a''}, \left(a^{a''} \right)^{b''} \right) + \left(b^{b'} \right)^{b''} + \left(b^{b'} a^{a''} \right)^{b''}
\]

Here we apply condition (3A). We have the following equalities.

\[
(b, a)^{(b'', a'')} + (b', a')^{(b'', a'')} = \left(b^{b''}, \left(a^{a''} \right)^{b''} + \left(b^{a''} \right)^{b''} \right) + \left(b^{b''}, \left(a^{a''} \right)^{b''} + \left(b^{a''} \right)^{b''} \right)
\]
\[
= \left(b^{b''} + b^{b'} a'' \right) + \left(b^{b''} \right)^{b''} + \left(b^{b'} \right)^{b''} + \left(b^{b'} a^{a''} \right)^{b''}
\]
\[
= \left(b^{b''} + b^{b'} a'' \right) + \left(b^{b''} \right)^{b''} + \left(b^{b'} \right)^{b''} + \left(b^{b'} a^{a''} \right)^{b''}
\]

Applying condition (4A) we obtain
\[
b \cdot \left(a^{a''} \right)^{b''} = b^{b''} \cdot \left(a^{a''} \right)^{b''}
\]
and
\[
b \cdot \left(b^{a''} \right)^{b''} = b^{b''} \cdot \left(b^{a''} \right)^{b''}
\]
which proves that we have condition (b).

Finally, we check condition (c).

\[
\text{(c) Here, if we apply the equalities}
\]
\[
\left(a^{0_A} \right)^{0_B} = a^{0_B} = a
\]
\[
\text{and}
\]
\[
\left(b^{0_A} \right)^{0_B} = 0_A^{0_B} = 0_A,
\]

then we get
\[
(b, a)^{0_B, 0_A} = \left(b^{0_B}, \left(a^{0_A} \right)^{0_B} + \left(b^{0_A} \right)^{0_B} \right) = (b, a).
\]

$(3) \Rightarrow (1)$: Suppose $B \ltimes A \in \text{Gr}^*$, then we have a split extension
\[
0 \longrightarrow A \overset{i}{\longrightarrow} B \ltimes A \overset{j}{\longrightarrow} B \longrightarrow 0 (3.7)
\]
where \(p(b, a) = b, i(a) = (0, a) \) and \(j(b) = (b, 0) \). Define derived actions from this extension in a usual way.

\[
\begin{align*}
 b \cdot a &= j(b) + a - j(b) \\
 &= (b, 0) + (0, a) - (b, 0) \\
 &= (b, b \cdot a),
\end{align*}
\]

therefore the derived action corresponding to the addition operation coincides with the given action.

Action corresponding to the action operation, denoted by \(\ast \), is defined by

\[
\begin{align*}
 a \ast b &= (0_B, a)(b, 0) \\
 &= (0_B b, (a^0_A) b + (0_B^0_A b)) \\
 &= (0, a b).
\end{align*}
\]

As we see this action also coincides with the given action.

For the dual to \(\ast \) operation, i.e. dual action we have

\[
\begin{align*}
 a \ast b &= (b, 0_A)(0_B, a) \\
 &= (b, b^a) - (b, 0_A) \\
 &= (b - b, b^a + b \cdot 0_A) \\
 &= (0_B, b^a).
\end{align*}
\]

Therefore this action also coincides with the given action of \(B \) on \(A \), which proves that the given action of \(B \) on \(A \) is a derived action, which concludes the proof of the theorem.

For the examples of derived actions in the category \(\text{Gr}^* \) see Section 4, Lemma 4.5 and Corollary 4.6.

4. The subcategory \(\text{rGr}^* \rightarrow \text{Gr}^* \)

Consider the objects \(A \in \text{Gr}^* \) which satisfy two conditions:

1. \(x^y + z = z + x^y, \ y \neq 0 \) and
2. \(x^{(y^r)} = x^y, \)

for any \(x, y, z \in A \). This kind of objects will be called reduced groups with action, and the corresponding full subcategory of \(\text{Gr}^* \) will be denoted by \(\text{rGr}^* \).

Derived actions are defined in \(\text{rGr}^* \) in analogous way as it is in \(\text{Gr}^* \).

Example 4.1. For any set \(X \) let \(F(X) \) be a free group with action with the basis \(X \) in \(\text{Gr}^* \) (see Example 2.2 in Section 2). Let \(R \) be a congruence relation on \(F(X) \) generated by the relations

\[
x^y + z \sim z + x^y
\]

for any \(y \neq 0 \) and

\[
x^{(y^r)} \sim x^y
\]

for any \(x, y, z \in F(X) \). Then the quotient object \(F(X)/R \) by the \(R \) obviously is an object of \(\text{rGr}^* \) and it is a free object in \(\text{rGr}^* \) with the basis \(X \).

Example 4.2. An easy checking shows that the object \(\mathbb{Z}^* \) in Example 2.3 in Section 2 is an object of \(\text{rGr}^* \).
Example 4.3. Any abelian group with trivial action on itself is an object of \(\text{rGr}^* \).

Theorem 4.4. Let \(A, B \in \text{rGr}^* \) and \(\beta = (\beta_+, \beta_\ast, \beta_\circ) : B \times A \to A \) be a triple of actions of \(B \) on \(A \) in \(\text{rGr}^* \). Then the following conditions are equivalent:

1. \(\beta \) is a triple of derived actions in \(\text{rGr}^* \).
2. \(\beta \) satisfies condition (2) of Theorem 3.2 and the following conditions

\[
\begin{align*}
 b \cdot a' &= a'' \quad \text{for} \quad a'' \neq 0 \\
 b \cdot a &= a'' \quad \text{for} \quad a'' \neq 0 \\
 b^b \cdot a &= a' \quad \text{for} \quad a' \neq 0 \\
 b^{(a')} &= b^a \\
 b^{(a'')} &= b^{a''}
\end{align*}
\]

(4.1)

for any \(a, a' \in A, b, b' \in B \). Note that under the conditions (4.1), (3_A) and (4_A) have simpler forms.

3. The semi-direct product \(B \ltimes A \) is an object in \(\text{rGr}^* \).

Proof. (1)\(\Rightarrow \) (2): We will check only the conditions \(a^{(b')} = a, b^{(a'')} = 0 \) and \(b^{(a')} = b^a \).

Other conditions are obvious.

(i) \(a^{(b')} = a \cdot j(b)^{a'} - j(b) = a \cdot j(b) - j(b) = a - a = 0 \);

(ii) \(b^{(a'')} = j(b) \cdot (a'') - j(b) = j(b) \cdot j(b') - j(b) = j(b) \cdot 0 - j(b) = 0 \);

(iii) \(b^{(a')} = j(b) \cdot (a') - j(b) = j(b)^a - j(b) = b^a \).

(2)\(\Rightarrow \) (3): By Theorem 3.2 we need to prove only that

\[
(b, a)^{(b', a')} + (b'', a'') = (b', a') + (b, a)^{(b', a')}
\]

and

\[
(b, a)^{(b', a')(a'', a'')} = (b, a)^{(b', a')}
\]

for any \((b, a), (b', a'), (b'', a'') \in B \ltimes A \). We have

\[
(b, a)^{(b', a')} + (b'', a'') = \left(b^{b'}, \left(a^{a'} \right)^{b'} + \left(b^{a'} \right)^{b'} \right) + (b'', a'')
\]

\[
= \left(b^{b'} + b'', \left(a^{a'} \right)^{b'} + \left(b^{a'} \right)^{b'} + b'' \cdot a'' \right)
\]

\[
= \left(b^{b'} + b'', \left(a^{a'} \right)^{b'} + \left(b^{a'} \right)^{b'} + a'' \right)
\]

On the other hand

\[
(b'', a'') + (b, a)^{(b', a')} = \left(b'', a'' \right) + \left(b^{b'}, \left(a^{a'} \right)^{b'} + \left(b^{a'} \right)^{b'} \right)
\]

\[
= \left(b'' + b^{b'}, a'' + b'' \cdot \left(a^{a'} \right)^{b'} + b'' \cdot \left(b^{a'} \right)^{b'} \right)
\]

\[
= \left(b^{b'} + b'', a'' + \left(a^{a'} \right)^{b'} + \left(b^{a'} \right)^{b'} \right)
\]

\[
= \left(b^{b'} + b'', \left(a^{a'} \right)^{b'} + \left(b^{a'} \right)^{b'} + a'' \right)
\]
which proves the first identity. For the second identity we have

\[(b, a)\left((b', a')^{(b'' a'')}\right) = (b, a)\left(b^{b''} (a'' a')^{b''} + (b'' a')^{b''}\right)\]

\[= \left(b^{b''} \left(a\left((a'' a')^{b''}\right) + (b'' a')^{b''}\right) \right) + \left(b\left((a'' a')^{b''} + (b'' a')^{b''}\right)\right)\]

\[= \left(b^{b''}, (a^0 a')^{b''} + \left(b\left((a'' a')^{b''}\right)\right)^{b''}\right)\]

\[= \left(b^{b''} + (a^0 a')^{b''} + \left(b\left((a'' a')^{b''}\right)\right)^{b''}\right)\]

\[= \left(b^{b''} + (a^0 a')^{b''}\right)\]

\[= (b, a)^{(b', a')}\]

which proves the second identity. Here we applied that \(b\left((b'' a')^{b''}\right) = 0\), which follows from (4.1), where we have \(b^{b''} = 0\), for any \(a \in A\), in particular for \(a = a''\) in our case, and the fact that \(0^{b'} = 0\) (3.1 (b)).

(3)\(\Rightarrow\)(1): The proof is the same as of the one in Theorem 3.2 and therefore we omit.

\[\square\]

Lemma 4.5. Let \(A \in \text{Gr}^\bullet\) (resp. \(A \in \text{rGr}^\bullet\)). An action of \(A\) on itself defined by \(a \cdot a' = a + a' - a, a' \cdot a = a'' a = a'' a\) and \(a' \cdot a = a'' - a\), for \(a, a' \in A\), is a derived action in \(\text{Gr}^\bullet\) (resp. \(\text{rGr}^\bullet\)).

Proof. Easy but careful checking of the conditions given in Theorem 3.2 (resp. Theorem 4.4).

\[\square\]

Note, that an action of \(A\) on itself defined by \(a \cdot a' = a + a' - a, a'^0 a = a'^0 a\) and \(a'' a' = a'' a\), for \(a, a' \in A\), is not a derived action in \(\text{Gr}^\bullet\) and therefore in \(\text{rGr}^\bullet\). It is obvious that conditions (2\(_A\)) and (1\(_B\)) are not satisfied.

Corollary 4.6. Let \(A \in \text{Gr}^\bullet\) (resp. \(A \in \text{rGr}^\bullet\)) and let \(I \subset A\) be an ideal of \(A\). Then the action of \(A\) on \(I\) defined by \(a \cdot i = a + i - a, i^0 a = i^0 a\) and \(a'^i = a'^i - a, i \in I\), \(a \in A\) is a derived action in \(A \in \text{Gr}^\bullet\) (resp. in \(A \in \text{rGr}^\bullet\)).

Lemma 4.5 and Corollary 4.6 give examples of derived actions in the categories \(\text{Gr}^\bullet\) and \(\text{rGr}^\bullet\).
References