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Abstract. This work focuses on the development of a multivariate function approximating method by using 
cubic Transformational High Dimensional Model Representation (THDMR). The method uses the target 
function’s image under a cubic transformation for High Dimensional Model Representation (HDMR) 
instead of the function’s itself. 
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Introduction 

When a natural event is analyzed, the number of factors affecting the event is higher than calculated. General way to 
overcome this is to eliminate or ignore some of factors which will be less effective. However as the investigated event 
complicates, the number of affecting factors increases. Nowaday computer technology cannot be suitable to the calculation 
limitations on this type of problems.  High Dimensional Model Representation (HDMR) is perhaps the most fruitful solution to 
those multidimensional problems. Various HDMR versions were suggested in order to tackl with different problem types 
encountered. Factorized HDMR is one of them. The main problem with FHDMR is that unlike additivity measures of HDMR, 
multiplicativity measures of FHDMR is unfortunately not well ordered. This led to the Logarithmic HDMR. The main idea 
behind Logarithmic HDMR was to initially transform what is basically a function of multiplicative nature to one that is of 
additive nature. This would enable us to expand the transformed problem using plain HDMR and then transform back the 
individual terms. Previous works was focused on the HDMR constancy optimization under an affine transformation (Yaman, 
2008 and Yaman, Demiralp, 2009), conic transformation (Gündoğar, Baykara, Demiralp, 2010 and Gündoğar, Baykara, 
Demiralp, 2011) and quartic transformation (Şen, 2011). We shall consider in this work a cubic transformation and attempt to 
find optimal parameters for such a transformation leading to a new approximation. 

 
Transformational hıgh dımensıonal model representatıon 
 

Let us consider a function ( )1 2, ,..., Nf x x x  of N   independent variables 1 2, ,..., Nx x x  which has a non-additive structure. A 

transformation T  can be chosen which yields a new multivariate function ( )1,..., Nx xϕ   
 

                                                                  ( ) ( )1 2 1 2, ,... , ,...N NTf x x x x x xϕ≡                                                                                 (1) 
 

If we apply the HDMR expansion to ϕ  we will get 
 

                                                
( ) ( ) ( )1 0 1... 1

1
,..., ... ,...,

N

N N Nx x x x xβ β
β

ϕ ϕ ϕ ϕ
=

= + + +∑ . 
 

Addititivity measures ( )iσ ϕ s can be defined for this expansion in the usual HDMR manner. 
 

                                     ( ) ( ) ( ) ( ) ( )1 1 2

1 1 2
1 2

2 22
0

0 1 0 2 12 2 2
1 , 1

, , ,...
N N

β β β

β β β
β β

ϕ ϕϕ
σ ϕ σ ϕ σ ϕ σ ϕ σ ϕ

ϕ ϕ ϕ= =
<

= = + = +∑ ∑                                      (2) 

 
These measures will be different from those obtained by applying HDMR expansion to the original function f . Obviously the 
difference will be dependent on the specific choice of the transformation T . Since the basic philosophy of HDMR is to be able 
to represent the function with as few and as less variate terms as possible , we would prefer 0σ  and 1σ  to be as close to 1 as 
possible. In this study we choose to deal only with 0σ  and attempt to maximize it.  
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                     Cubic Transformational hıgh dımensıonal model representatıon     
 
      A polynomial can be used as THDMR’s operator for choosing the transformation suggested in (1). Here the degree of the 
polynomial will be taken to be three. The linear combination coefficients of the cubic will be assumed to vary with 
independent variables. They will be regarded as operators dependent on the algebraic operators each of which multiplies its 
operand with a different independent variable. This gives flexibility to the relevant transformation and they can be selected so 
as to approximate the HDMR expansion optimally. 
 
                    ( ) ( ) ( ) ( ) ( ) ( )2 3

1 1 0 1 1 1 2 1 3 1,..., ,..., ,..., ,..., ,..., ,..., .N N N N N NTf x x x x a x x a x x f a x x f a x x fϕ= = + + +  
 

Since only ( )0σ ϕ  will be under consideration, ϕ  will be approximated by the constant component 0ϕ   
 
                                                              2 3

0 1 2 3 0a a f a f a fϕ ϕ= + + + ≈       
 

which gives the approximate equality  
 

                                         

3 32 3 2 3
1

2
3 32 3 2 3

2

2
3 32 3 2 3

3

1 3 1 3
2 2 2 2

1 3 1 3 ,
2 2 2 2

f A A B A A B

f i A A B i A A B

f i A A B i A A B

≈ − + + + − − +

⎛ ⎞ ⎛ ⎞
≈ − + − + + + − + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
≈ − + − + + + − + − − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                              (3) 

where  
 

                                             2 1i = − , 
3

0 0 2 1 2
2 3

3 3 3

21
2 27

a a a a
A

a a a
ϕ⎛ ⎞−

= − +⎜ ⎟
⎝ ⎠

 and 
2

1 2
2

3 3

1
3 3

a a
B

a a
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. 

                                            
In this work we will consider only 1f . The other roots may be considered analogically. The aim here is to find convenient 

forms for 0 1 2, ,a a a  and 3a that maximize 0σ  in (2). To this end  0 1 2, ,a a a  and 3a  will be taken in 2L  class. Hence 

orthonormal basis of the Hilbert space ( )NH  will be taken into consideration. Orthonormality will be defined in terms of the 
inner product as 
 

                                              

( ) ( ) ( ) ( )1 1 1, ,... ,... ,... , 1 ,j k N j N k N jk
V

u u dVW x x u x x u x x j kδ= = ≤ ≤ ∞∫           

   
where [ ] [ ]1 1, ... ,N NV a b a b= × ×  represents the hyperprism which is the HDMR construction domain and ( )1,... NW x x  the 
multiplicative weight function used in HDMR. The individual weight functions will be chosen as constants, normalized over 
the corresponding domain and dV  is the product of individual differentials 1... Ndx dx .  
 

                                                                  ( ) ( )1
1 1

1,...
N N

NW x x W x
b aβ β

β β β β= =

= =
−∏ ∏  

 
Although the basis mentioned above has an infinite number of elements, in practice a finite number of elements will  be taken 
into consideration.      
                          

                        ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3
0 1 1 1 2 1 3 1

2 1 1 1

,... , ,... , ,... , ,... .
pm n t

N j j N k k N l l N s s
j k l s

a x x a u a x x a u a x x a u a x x a u
= = = =

= = = =∑ ∑ ∑ ∑                     (4) 

 
With these expressions in hand, the constancy measurer ( )0σ ϕ  will be a function of the parameters ( ) ( )0 1, ,j ka a  ( ) ( )2 3,l sa a   where   
 

                                                                  2 , 1 ,1 , 1 .j m k n l p s t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤   
 
Thus 
 

                                                          

( ) ( ) ( ) ( ) ( ) ( ) ( )( ( ) ( ) )0 0 1 1 2 2 3 3
0 0 2 1 1 1, ,..., , ,..., , ..., , ,..., .m n p ta a a a a a a aσ ϕ σ ϕ=  
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Using (4) ϕ  can be expressed as 
 

                                            
( ) ( ) ( ) ( ) ( )0 1 2 32 3

1
2 1 1 1

,...
pm n t

N j j k k l l s s
j k l s

x x a u a u f a u f a u fϕ
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑ ∑ ∑                                           (5) 

 
To obtain the constant HDMR term 0ϕ both sides of (5) are to be integrated with respect to 1,... Nx x  over V  under the weight 
function W . 
 

                                            

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1
0

2 11 1

2 32 3

1 11 1

N Nm n

j j k k
j kV V

p N Nt

l l s s
l sV V

a dV W x u a dV W x u f

a dV W x u f a dV W x u f

β β β β
β β

β β β β
β β

ϕ
= == =

= == =

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑∏ ∏∫ ∫

∑ ∑∏ ∏∫ ∫
  

 
Defining vectors η  and 
 

                     ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3
2 1 1 1 2 1 1 1,..., , ,..., , ..., , ,..., , ,..., , ,..., , ..., , ,...,

T

m n p t m n p ta a a a a a a aη τ τ τ τ τ τ τ τ τ= =  
 
With the elements of vector τ  defined as 
 

                                    

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1

1 1

2 32 2 3 3

1 1

, , , ,

, , , ,

N N

j j j k k k
V V

N N

l l l s s s
V V

dV W x u u h dV W x u f u f

dV W x u f u f dV W x u f u f

β β β β
β β

β β β β
β β

τ τ

τ τ

= =

= =

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∏ ∏∫ ∫

∏ ∏∫ ∫
                               (6)  

  
where  
 

                                                                   2 , 1 ,1 , 1 .j m k n l p s t≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤     
 
( )1,... Nh x x  appearing in the first inner product in (6) is a function which has the constant value 1 for all xβ  in the hyperprism 

domain [ ]1 1,a b ×  [ ]... ,N Na b× . 0ϕ  can now be written as an inner product 0ϕ ητ= . Since 0ϕ  has a constant value, the square 
of its norm will be equal to the square of the function 0ϕ .     
 

                                                                     ( )( )2
0 .T Tϕ ητ ητ ηττ η= = 2ϕ   

 
On the other hand can be expressed in terms of the above defined vector η  and a square matrix C  which can be expressed in 
terms of its blocks as  
 

                                                                       
T

T T

T T T

K L N S
L M P T

C
N P R Y
S T Y Z

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

      

 
where 
   

 
 
 
 
 
 
 
 
 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( )

2 2

4 3

3 4

5

, , 2 , , , , 2 ,1 ,

, , 1 , , , , 2 ,1 ,

, , 1 , , , , 1 ,1 ,

, , 2 ,1 , , , 1 ,1 ,

, , 1 ,1

jk j k jk j k

jk j k jk j k

jk j k jk j k

jk j k jk j k

jk j k

K u u j k m L u fu j m k n

M u f u j k n N u f u j m k p

R u f u j k p P u f u j n k p

S u f u j m k t T u f u j n k t

Y u f u j p k t

= ≤ ≤ = ≤ ≤ ≤ ≤

= ≤ ≤ = ≤ ≤ ≤ ≤

= ≤ ≤ = ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤ = ≤ ≤ ≤ ≤

= ≤ ≤ ≤ ≤ ( )6, , , 1 , .jk j kZ u f u j k t= ≤ ≤
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C  is a symmetric, positive definite matrix. Norm square of ϕ  can be expressed in terms of C  and η  as    
 

                                                                                    
2 .TCϕ η η=   

So the constancy measurer 0σ  becomes   
 

                                                                          
2

0
0 2

T T

TC
ϕ ημμ ησ

η ηϕ
= = .                                                                                        (7) 

 
Our aim is to maximize 0σ  which can be written as a Rayleigh quotient as  
 

                                                                          

1/2 1/ 2

0

T T

T

y C C y
y y
ττσ

− −

=   

 
where 1/2 Ty C η= . However, a Rayleigh quotient takes its maximum value at the maximum eigenvalue of its kernel, in this 
case 1/2 1/2TC Cττ− − . Similarly y  is the eigenvector corresponding to the maximum eigenvalue. An analysis of the kernel will 
give the maximum eigenvalue and the corresponding eigenvector of it. They are respectively,  
 

                                                                           
1 1/2

0 ,TC y Cσ τ τ τ− −= = .  
 
The equation for y  gives us the vector Tη  in (7) that maximizes 0σ  as  
 

                                                                                
1/2 1 .T C y Cη τ− −= =   

 
Utilizing these equalities we can construct a function for 0ϕ . To complete this we can express 0 0 1 2, , ,a a aϕ  and 3a  in terms of 
matrix algebraic entities. 0ϕ  can be written in compact form as  
 

                                                                                 
1

0
T Cϕ ητ τ τ−= = .  

 
We define a vector ξ  with ( )1m n p t+ + + −  elements 2 1 1 1,..., , ,..., , ,..., , ,...,

T

m n p tξ ξ ξ ξ ξ ξ ξ ξ ξ⎡ ⎤= ⎣ ⎦ and express 0 1 2, ,a a a  and 

3a  more compactly as  
 

                                                       
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 3 3

0 1 2 3, , , .a a a aη ξ η ξ η ξ η ξ= = = =   
 
Here the vectors ( ) ( ) ( ) ( )0 1 2 3, , ,η η η η  and ( ) ( )0 1, ,ξ ξ ( ) ( )2 3,ξ ξ  are explicitly defined as  
 

                               
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ] ( ) [ ] ( ) ( ) [ ]

0 0 0 1 1 1 2 2 2 3 3 3
2 1 1 1

0 1 2 3
2 1 1 1

,..., , ,..., , ,..., , ,..., ,

,..., , ,..., , ,..., , ,..., .

m n p t

TT T T
m n p t

a a a a a a a aη η η η

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= = = =⎣ ⎦
  

To proceed we define ( ) ( )1 1m n p t m n p t+ + + − × + + + −  projection matrices 1 2,P P  and 3P  as 
 

                                                            

11 1

1 2 3
1

, ,
m n pm m n

T T T

m m n
P e e P e e P e eβ β β β β β

β β β

+ + −− + −

= = = +

= = =∑ ∑ ∑  

 
Where eβ  is the unit vector in ( )1m n p t+ + + − dimensional space. Utilizing these projection operators 0 1 2, ,a a a  and 3a can 
be approximated as  
 

                                       
( ) ( )

1 1
0 1 1 1 2 2

1 1
2 3 3 3 1 2 3 1 2 3

, ,

,

T T

T T

a P C P a P C P

a P C P a I P P P C I P P P

η ξ τ ξ η ξ τ ξ

η ξ τ ξ η ξ τ ξ

− −

− −

= = = =

= = = − − − = − − −
  

where I  identity matrix. If now these substitutions are introduced into (3) we obtain 
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( )

( )

( )

( )
1 1

1
1

1 2 3

1 1
1 1 3 2

1
11

11 2 3

1 1
3 2

1 21
1 2 3

31
3

31
1 2 3

1
4

1
2

2

27

T T

T

T T
T T

TT

T T

T

T

T

C P C
C I P P P

C P C PC P C
C I PC I P P P

C P C P
f

C I P P P

C P

C I P P P

τ ξ τ τ
τ ξ

τ ξτ ξτ ξ τ τ
ττ ξ

τ ξτ ξ

τ ξ

τ ξ

τ ξ

− −

−

− −
− −

−−

− −

−

−

−

−
−

− − −
⎛ ⎞
⎜ ⎟−⎜ ⎟− − −⎜ ⎟− − −
⎜ ⎟
⎜ ⎟≈ − + +⎜ ⎟
⎡ ⎤− − −⎜ ⎟⎣ ⎦

⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟

⎜ ⎟⎡ ⎤− − −⎣ ⎦⎝ ⎠

( )

( )

( )

( )

2

2

2 3

31
3

31
3 1 2 3

31
2

1
1 2 3

21
3

21
1 2 3

2

27

1
27

3

T

T

T

T

T

T

P P

C P

C I P P P

C P
C I P P P

C P

C I P P P

ξ

τ ξ

τ ξ

τ ξ
τ ξ

τ ξ

τ ξ

−

−

−

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎡ ⎤−⎜ ⎟⎣ ⎦

⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟

⎜ ⎟⎡ ⎤− − −⎣ ⎦⎝ ⎠

⎛ ⎞
−⎜ ⎟− − −⎜ ⎟

+ ⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦

⎜ ⎟⎜ ⎟⎡ ⎤− − −⎣ ⎦⎝ ⎠

 

 

                         

( )

( )

( )

( )
1 1

1
1

1 2 3

1 1
1 1 3 2

1
11

1 21 2 3

1 1
3 2

21
1 2 3

31
3

31
1 2 3

1
4

1
2

2

27

T T

T

T T
T T

TT

T T

T

T

T

C P C
C I P P P

C P C PC P C
C I P PC I P P P

C P C P

C I P P P

C P

C I P P P

τ ξ τ τ
τ ξ

τ ξτ ξτ ξ τ τ
ττ ξ

τ ξτ ξ

τ ξ

τ ξ

τ ξ

− −

−

− −
− −

−−

− −

−

−

−

−
−

− − −
⎛ ⎞
⎜ ⎟−⎜ ⎟− − −⎜ ⎟− − −
⎜ ⎟
⎜ ⎟+ − + −⎜ ⎟
⎡ ⎤− − −⎜ ⎟⎣ ⎦

⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟

⎜ ⎟⎡ ⎤− − −⎣ ⎦⎝ ⎠

( )

( )

( )

( )

( )

2

2

3

31
3

31
3 1 2 3

31
2

1
1 2 3

21
3

21
1 2 3

1
3

1
1 2 3

2

27

1
27

3

,
3

T

T

T

T

T

T

T

T

P

C P

C I P P P

C P
C I P P P

C P

C I P P P

C P
C I P P P

ξ

τ ξ

τ ξ

τ ξ
τ ξ

τ ξ

τ ξ

τ ξ
τ ξ

−

−

−

−

−

−

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟+⎜ ⎟
⎡ ⎤−⎜ ⎟⎣ ⎦

⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦⎜ ⎟

⎜ ⎟⎡ ⎤− − −⎣ ⎦⎝ ⎠

⎛ ⎞
−⎜ ⎟− − −⎜ ⎟

+ ⎜ ⎟
⎡ ⎤⎜ ⎟⎣ ⎦

⎜ ⎟⎜ ⎟⎡ ⎤− − −⎣ ⎦⎝ ⎠

−
− − −

 

 
To simplify this expression we can use a spectral decomposition of 1C −  as  
 

                                                                        

1
1

1

1m n p t
TC β β

β β

ϕ ϕ
λ

+ + + −
−

=

= ∑
 

 
where βλ  is an eigenvalue of  C  and βϕ  is an eigenvector corresponding to the eigenvalue Bλ . A good approximation will be 

to use the minimal eigenpairs of  C as 1 1
min min min

TC λ ϕ ϕ− −= . 
 
Conclusıon 
 
In this study we inserted certain flexibilities into the approximation. Because we want to improve its quality. Hence we applied 
HDMR on the image of the original function under a third degree transformation. The coefficients of the transformation are 
chosen to make the error of HDMR approximation as small as possible and this increases the efficiency of the method. 
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