BULANIK YÖNTEMLERLE YAPILARIN SINIFLANDIRILMASI

Aşkin Demirkol*

ÖZET

Bu çalışmada son yıllarda önemli ve etkin karar alma yöntemlerinden olan bulanık mantık tekniklerinden yararlanarak tasarlanan bulanık sınıflama sisteminin, konut ve iş yeri olarak içinde yaşanan yapıların sınıflanması prosesine uygulanabilirliği araştırılmaktadır. Bulanık sistem çelik konstrüksiyon, ahşap ve betonarme olarak bilinen yapıların sadece dayanıklılık ve güvenlik kriterlerini göz önünde alarak geliştirilmiştir. Tasarlanan bulanık sınıflama yöntemi ile, yapıların deprem ve benzeri etkilere karşılarındaki performansları araştırılmıştır. Bulanık yapılı kriterler ile oluşturulan bulanık sınıflarla, kullanıcılarla doğru bir yaptığı tercih etme konusunda fikir verilebilmesi amaçlanmıştır. Elde edilen sonuçlar bulanık tasarımın, binalardaki deprem riskini dar bir çerçeve de olsa belirleyebildiğini saptamıştır. Tasarım ile kendi içinde de tutarlı sayılabilecek sınıfların, \(\lambda_{sa} \geq 0.7 \) ve \(\lambda_{sa} \geq 0.85 \) kesim değerleriyle oluşturduğu tespit edilmiştir. Birinci kesim değeri ile daha genel, ikincisi ile de daha gerçekçi sınıflamanın yapıldığı görülmüştür.

Anahtar Kelimeler: Bulanık mantık, Bulanık ilişkiler, Bulanık sınıflama, Üyelik dereceleri, Bulanık kesim değeri

SUMMARY

CLASSIFIED OF BUILDINGS WITH FUZZY METHODS

In this study, A fuzzy classification system based on fuzzy logic technics has been developed. To classify buildings according to some realibility and durability criteria. The buildings consist of steel construction, concrete and wood. The fuzzy system analyse the performance of the buildings in question for earthquake and other natural disasters. Finally, Results show that the fuzzy design can determine the risk of earthquake damage in the buildings. On the other hand, consistent classes in the design have been observed for \(\lambda_{sa} \geq 0.7 \) and \(\lambda_{sa} \geq 0.85 \) values. While first cut value determines more general, second one determines more realistic classifying.

Keyword : Fuzzy logic, Fuzzy relations, Fuzzy classification, Membership functions, Fuzzy cut value.

*Sakarya Üniversitesi Mühendislik Mimarlık Fakültesi, Bilgisayar Mühendisliği Bölümü- Esentepe/SAKARYA

31
1. GİRİŞ

2. BULANIK SINIFLAMA

Çalışmada bulanık ilişki, yapılar ve özellikleri ile ilgili olarak aşağıda verilen 7 eleman arasında araştırılmıştır.
1. Çelik Konstrüksiyon İnşaat
2. Ahşap İnşaat
3. Betonarme İnşaat
4. Çok Dayanıklı
5. Az Dayanıklı
6. Çok Güvenli
7. Az Güvenli

Görülebileceği gibi ilk üç eleman yapı tiplerini, kriter olarak düşünülebilecek bulanık yapıdaki son dört eleman ise söz konusu yapılanın bulanık özellikleri ile ilgilidir. Mevcut 7 eleman arasındaki bulanık ilişkiler matrisi, aşağıdaki şekilde oluşturulmuştur.

Tablo 1. Yapı Kriterleri Arasındaki Bulanık İlişkiler

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.89</td>
<td>0.87</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0.51</td>
<td>0.49</td>
<td>0.75</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.55</td>
<td>0.45</td>
<td>0.14</td>
<td>0.86</td>
</tr>
<tr>
<td>4</td>
<td>0.89</td>
<td>0.51</td>
<td>0.55</td>
<td>1</td>
<td>0</td>
<td>0.87</td>
<td>0.13</td>
</tr>
<tr>
<td>5</td>
<td>0.49</td>
<td>0.45</td>
<td>0</td>
<td>1</td>
<td>0.3</td>
<td>0</td>
<td>0.7</td>
</tr>
<tr>
<td>6</td>
<td>0.87</td>
<td>0.86</td>
<td>0.14</td>
<td>0.86</td>
<td>0.3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.25</td>
<td>0.86</td>
<td>0.13</td>
<td>0.7</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Tablodan da görülebileceği gibi, yapılar ve bulanık karakterli kriterleri arasındaki ilişkilerin dereceleri de bulunmaktadır. Bu dereceler, bulanık mantığından kaynaklanan uzman deneyimlerine göre oluşturulmuştur. Tabloya göre oluşturulacak bulanık sınıflamalar genellikle başvurulur,

\[a \leq \lambda_{\text{kes}} ; \ (a \neq 0) \]

koşuluna göre yapılmıştır (Demirkol, 1999). Göz önünde bulundurulacak sınıfların en az iki elemanlı ve kendi aralarında tutarlı olması kabul edilmiştir. İlk elemanın 1,2,3 değerlerinden birisi olması durumunda, sonraki elemanlar söz konusu değerleri tanımlar nitelikte olacaktır. Eğer oluşan sınıf A ise;

A[ilk eleman \((1,2,3 = \text{yazı tipleri}), \) diğer elemanlar \((4,5,6,7 = \text{yapıların özelliği}) \)]

şeklinde olacaktır.

1. **YAPILARIN BULANIK SINIFLANDIRILMASI**

Tablo 1'e göre yapılacak tutarlı sınıflamaların iki kesim değeri için oluşturduğu saptanmıştır.

\[\lambda_{\text{kes}} \geq 0.85 \text{ İçin Sınıflama} \]

\[\lambda_{\text{kes}} = \begin{cases} 0 & \text{\(\lambda_{\text{kes}} < 0.85 \) } \\ 1 & \text{\(\lambda_{\text{kes}} \geq 0.85 \) } \end{cases} \]

Koşullarına göre oluşturululan bulanık ilişkiler tablosu aşağıdaki şekilde gerçekleşmiştir.

Tablo 2. \(\lambda_{\text{kes}} \geq 0.85 \text{ İçin Yapı Kriterlerinin Bulanık Sınıflandırılması}

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Bu tabloya göre dört genel sınıf oluşmuştur.

Tablo 3. \(\lambda_{\text{kes}} \geq 0.85 \text{ İçin Oluşan Bulanik Sınıflar}

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Bulanık</th>
<th>Sınıf</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{\text{kes}} \geq 0.85)</td>
<td></td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.4,6</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>D</td>
<td></td>
</tr>
</tbody>
</table>

Oluşan C ve D sınıfları tek başlarına bir anlam göstermediklerinden elimine edilmiştir. Böylece aralarında tutarlı sayılabilecek sınıf sayısı ikiye inmiştir.
Tablo 4. \(\lambda_{ks} \geq 0.85 \) İçin Oluşan Anlamlı Sınıflar

\[
\begin{array}{|c|c|c|}
\hline
\lambda_{ks} \geq 0.85 & \text{Bulanan Sınıf} & \text{Sınıf} & \text{Açıklama} \\
\hline
1,4,6 & A & Çelik yapı = çok dayanıklı, çok güvenli \\
3,7 & B & Betonarme = az güvenli \\
\hline
\end{array}
\]

Oluşan yeni tabloda göre A sınıfi; çelik konstruksiyon tipinde inşaya sahiptir. Ve böyle bir yapının depreme göre çok dayanıklı ve çok güvenli olduğu belirtilmektedir.

Oluşan B sınıf ise, betonarme tipinde bir inşaya sahip olup, depreme göre az güvenli niteliktedir.

Sonuçta, \(\lambda_{ks} \geq 0.85 \) değeriine göre bulanık kriterlerle yapılan sınıflamanın kendi aralarında da tutarlı iki sınıf (A, B) oluşturduğu görülmuştur. Edilen bilgiler, yapılacak tercihi kolaylaştıracak özelliktedir.

32. \(\lambda_{ks} \geq 0.7 \) İçin Sınıflama

\[
\lambda_{ks} = \begin{cases}
0.7 & 1 \\
<0.7 & 0
\end{cases}
\]

Koşullarına göre oluşturululan bulanık ilişkiler tablosu aşağıdaki şekilde gerçekleştirilmiştir.

Tablo 5. \(\lambda_{ks} \geq 0.7 \) İçin Yapı Kriterlerinin Bulanık Sınıflandırılması

\[
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
2 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
3 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
4 & 1 & 0 & 0 & 1 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
6 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
7 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
\hline
\end{array}
\]

Tablo 6. \(\lambda_{ks} \geq 0.7 \) İçin Oluşan Bulanık Sınıflar

\[
\begin{array}{|c|c|}
\hline
\text{Bulanan Sınıf} & \text{Sınıf} \\
\hline
1,4,6 & A \\
2,6 & B \\
3,7 & C \\
5,7 & D \\
1,2,4,6 & E \\
3,5,7 & F \\
\hline
\end{array}
\]

Tablo incelendiğinde oluşan 6 sınıfın, kendi aralarında da tutarlı olabilecek özelliklere sahip olduğu görülmüştür.

Tablo 7. \(\lambda_{ks} \geq 0.7 \) İçin Oluşan Anlamlı Sınıflar

\[
\begin{array}{|c|c|}
\hline
\text{Bulanan Sınıf} & \text{Sınıf} & \text{Açıklama} \\
\hline
1,4,6 & A & Çelik yapı = çok dayanıklı, çok güvenli \\
2,6 & B & Ahşap yapı = çok güvenli \\
3,7 & C & Betonarme = az güvenli \\
5,7 & D & Az dayanıklı = az güvenli \\
1,2,4,6 & E & Çelik ve Ahşap yapı = çok dayanıklı, çok güvenli \\
3,5,7 & F & Betonarme = az dayanıklı, az güvenli \\
\hline
\end{array}
\]

Oluşan sınıfların;

A **Sınıfının**, Çelik konstrüksiyon tipinde, yaşam kalitesi olarak depreme karşı çok dayanıklı ve çok güvenli,

B **Sınıfının**, Ahşap tipinde, yaşam kalitesi olarak depreme karşı çok güvenli,

C **Sınıfının**, Betonarme tipinde, yaşam kalitesi olarak depreme karşı az güvenli,

D **Sınıfının**, Çelik konstrüksiyon tipinde, yaşam kalitesi olarak depreme karşı az dayanıklı yapının aynı zamanda az güvenli,
E Sınıfının, A sınıfına ek olarak Çelik konstrüksiyonun yanında ahşap tipinde, yaşam kalitesi olarak depreme karşı çok dayanıklı yapının aynı zamanda çok güvenli,

F Sınıfının, D sınıfına ek olarak Betonorme tipindeki yapının, yaşam kalitesi olarak depreme karşı az dayanıklı ve az güvenli,

olarak yorumlanabilecekleri görülmektedir. Her bir sınıfın kendi içinde çelişmediği, aksine tutarlı olduklarını fark edilmektedir.

4. SONUÇ

Depreme karşı yaşam kalitesini belirleyebilmek amacıyla araştırılma tasarlanan bulanık sınıflama metodu için \(\lambda_{kes} \geq 0.7 \) ve \(\lambda_{kes} \geq 0.85 \) kesim değerleri anlamlı bulunmuştur. Söz konusu değerlere uygulayabilmek için üç bina tipi ve onları tanımlayabilecek dört bulanık kriter arasında bulanık ilişkiler matrisi \(7 \times 7 \) şeklinde oluşturulmuştur. Böyle bir bulanık ilişkiler tablosuna önce \(\lambda_{kes} \geq 0.7 \) değeri uygulanmış ve iki anlamlı sınıf elde edilmiştir;

Oluşan ilk sınıf, çelik konstrüksiyon tipi ile ilgilidir. Böyle bir inşaya sahip yapının deprem riskine karşı çok dayanıklı ve çok güvenli olduğu sonucu elde edilmiştir.

Oluşan ikinci sınıf, betonarme tipi ile ilgilidir. Böyle bir inşaya sahip yapının deprem riskine karşı az güvenli olduğu sonucu elde edilmiştir.

Sonuçta \(\lambda_{kes} \geq 0.7 \) ile yapılan bulanık sınıflamada, deprem riskine karşı çelik konstrüksiyon tipin tercih edilebilir özelliklere sahip olduğu sonucuna varılmaktadır.
KAYNAKLAR

