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Abstract
Mean-variance portfolio optimization model has been shown to have serious drawbacks. The model 
assumes that assets returns are normally distributed that is not valid for most of the markets and portfolios. 
It also relies on assets’ covariance matrices for the calculation of portfolio’s risk that is open to estimation 
errors. Moreover, these optimization errors are maximized by the method that result in poor out-of-sample 
performances. In order to address these issues, we propose a new portfolio optimization method based 
on minimization of Tsallis entropy, which is valid for any underlying distribution. First, we show that the 
Tsallis entropy can be employed as a risk measure for portfolio analysis. Then we demonstrate the validity 
of the model by comparing its performance with those of mean-variance and minimum-variance portfolios 
using BIST 30 data. The results show that Minimum Tsallis portfolio achieve similar Sharpe Ratios to 
mean-variance and minimum-variance portfolios but is more diversified that indicates a better out-of-
sample performance.
Keywords: Portfolio optimization, entropy, minimum Tsallis portfolio
JEL Classification: G11

Öz
Ortalama-varyans portföy optimizasyon modelinin ciddi dezavantajları olduğu gösterilmiştir. Model, çoğu 
piyasa ve portföy için geçerli olmayan varlık getirilerinin normal dağıldığını varsaymaktadır. Ayrıca model 
portföy riskinin hesaplanmasında tahmin hatalarına açık olan varlık kovaryans matrislerini kullanmaktadır. 
Üstelik, bu optimizasyon hataları, model tarafından maksimize edilerek zayıf örneklem dışı performanslara 
neden olmaktadır. Bu sorunları aşmak için, bu çalışmada, herhangi bir dağılım için geçerli olan Tsallis 
entropisinin minimizasyonuna dayalı yeni bir portföy optimizasyonu modeli önerilmektedir. İlk olarak, 
Tsallis entropisinin portföy analizi için bir risk ölçüsü olarak kullanılabileceği gösterilmektedir. Ardından, 
modelin geçerliliği BIST 30 verileri kullanılarak ortalama-varyans ve minimum-varyans portföyleri ile 
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karşılaştırmalı olarak gösterilmektedir. Sonuçlar Minimum Tsallis portföyün ortalama-varyans ve minimum 
varyans portföylerine benzer Sharpe Ratio değerlerine ulaştığını fakat daha fazla çeşitlendirilmiş olduğunu 
görtermiştir. Bu Minimum Tsallis portföyün örneklem dışı veri ile daha iyi performans gösterebileceğine 
işaret etmektedir.
Keywords: Portföy optimizasyonu, entropi, minimum Tsallis portföyü
JEL Sınıflandırması: G11

1. Introduction

Mean-variance portfolio optimization model assumes a normal distribution of assets returns 
resulting in estimation errors as the real distribution deviates from normality. Moreover, the model 
uses historical data directly to estimate the mean and the variances of the returns as if they were true 
parameters. But statistical theory states that when the number of parameters is greater than two, 
sample mean is not an admissible estimator for the true parameters (Stein, 1956). There has been 
a great deal of research focusing on this issue most of which based on shrinkage estimators. For 
instance, Jorion (1968) used Bayes-Stein shrinkage method for estimating the portfolio means and 
obtained better portfolio performances compared to using historical data directly. Michaud (1989) 
although mentioned the benefits of mean-variance optimization he pointed out that mean-variance 
optimization maximizes estimation errors which results in overweighting (underweighting) assets 
with high (low) estimated returns and low (high) variances. Best & Grauer (1991) showed that small 
changes in the means of individual assets could result in extreme changes in the weights, the means 
and the variances of the portfolios. They also found out that a small increase in one the asset’s mean 
could push half of the assets out of the portfolio, which indicated the importance of the estimation 
errors. Black & Litterman (1992) introduced a model in which investors can include their subjective 
views for estimating excess returns of the assets. Instead of using historical returns investors could 
adjust the weights of the assets referencing to a neutral CAPM (Capital Asset Pricing Model) 
equilibrium point as to reflect their views. Black-Litterman model received a great deal of interest 
since it was published in 1992 both from portfolio investors and researchers. Many researchers have 
proposed different versions of the model so far. One may refer to Walters (2014) for a thorough 
discussion.

Because of the difficulty of estimating expected returns some researchers proposed minimum-variance 
instead of mean-variance portfolios (Green & Hollifield, 1992; Chan, Karceski & Lakonishok, 1999; 
Jagannathan & Ma, 2003). This model, which is based on only the risk minimization of portfolios, 
was shown to have better out-of-sample results. Since the estimation of covariance matrix is still 
based on historical return data, some researchers started questioning the minimum-variance model 
too. Ledoit & Wolf (2004) proposed a shrinkage estimator for the covariance matrix, which was based 
on a trade-off between the sample covariance matrix and a highly structured estimator by defining 
a shrinkage constant. They showed that their shrinkage estimator portfolios performed better than 
sample covariance matrix portfolios for most of the cases they studied. Covariance matrix shrinkage 
estimator of Ledoit-Wolf has drawn substantial attention since then and has been employed in 
portfolio analysis and other application areas. Although shrinkage estimators for covariance matrix 
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have provided better out-of-sample results they still don’t account for the non-normality of asset 
returns.

As the variance does not account for all the moments of non-normal distributions, entropy emerged 
as a measure in portfolio analyses. Philippatos & Wilson (1972) found that their entropy-based 
model was consistent with the classical mean-variance portfolio. But they were also convinced 
that a new risk measure, which is free from the distribution of asset returns, was necessary, namely 
entropy. Many researchers have deployed entropy in portfolio analysis thus far, in which different 
entropy measures were used. For example, Smimou, Bector & Jacoby (2007) used maximum entropy 
for the minimum risk portfolio. Bera & Park (2008) deployed cross entropy measure in portfolio 
objective function and used it as a shrinkage estimator to a predefined target portfolio. Usta & Kantar 
(2011) added the entropy measure to the mean-variance-skewness model (MVSM) to generate a 
well-diversified portfolio. Zhang, Liu & Xu (2012) presented possibilistic entropy concept for multi-
period portfolio selection. Xu, Wu, Long & Song (2014) introduced continuous maximum entropy 
for portfolio optimization with transaction costs and dividends. Aksarayli & Pala (2018) used 
entropy together with higher moments for a polynomial goal portfolio optimization. Rotela Junior 
et al. (2017) introduced entropic data envelopment analysis for portfolio optimization. Zhou et al. 
(2019) and Zhang & Li (2019) used entropy and semi-entropy based on credibility measure for multi-
period portfolio selection. All of the proposed methods mentioned use Shannon entropy. On the 
other hand, other forms of entropy for portfolio optimization are rather rare. For instance, Lassance 
& Vrins (2019) employed Rényi entropy in the portfolio objective function and used the parameter 
α of the Rényi entropy for tuning contributions from the central and tail parts of the asset return 
distributions. Batra & Taneja (2020) maximized Rényi and Tsallis entropies in the objective functions 
for a given return value and compared the results with those of Mean-Variance model. Tsallis relative 
entropy was also proposed for portfolio optimization assuming q-Gaussian distribution of stock 
market data recently (Devi, 2019; Trindade et al., 2020).

In this study, we investigate Tsallis entropy as a risk measure for portfolio analysis and propose a 
novel method for portfolio optimization by minimizing the Tsallis entropy without assuming any 
underlying market data distribution. The rest of the paper is organized as follows. Tsallis entropy 
and its relation to variance are presented in section 2. Mean-variance (MV) and minimum-variance 
(Minvar) optimization models, which are used for performance comparison, are briefly described in 
section 3. In section 4, minimum Tsallis portfolio optimization is described. Comparative portfolio 
analysis and results are included and discussed in section 5. Finally, section 6 concludes the study.

2. Tsallis Entropy

Tsallis entropy (Tsallis, 1988) is a generalized form of Shannon entropy, which is defined as

described. Comparative portfolio analysis and results are included and discussed in section 5. 

Finally, section 6 concludes the study. 
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𝑞𝑞 − 1 , 𝑓𝑓𝑓𝑓𝑓𝑓   𝑞𝑞 > 0  𝑎𝑎𝑎𝑎𝑎𝑎  𝑞𝑞 ≠ 1                                                                           (1) 

where, 

𝑝𝑝𝑖𝑖 = Probability of discrete events, 

𝑞𝑞 ∈  ℝ = Generalization constant.  

Tsallis entropy can be shown to diverge to Shannon entropy as 𝑞𝑞 → 1 by using L’Hospital’s 

rule; 

lim
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The maximum value of Tsallis entropy is obtained when all the event probabilities are equal, 

pi = 1
K , through the equation (1) as 

 1 − 𝐾𝐾1−𝑞𝑞

𝑞𝑞 − 1                                                                                                                                                  (3) 

2.1. Tsallis entropy as a portfolio risk measure 

Although Tsallis entropy, like other forms of entropy, does not assume any underlying 

distribution for the portfolio optimization, Tsallis entropies and the corresponding variances are 

presented for normal and Binomial distribution in order to demonstrate the relation between 

them. 

For normal distribution 𝓝𝓝(𝝁𝝁, 𝝈𝝈𝟐𝟐), Tsallis entropy can be derived as (Appendix A) 

√𝑞𝑞 − (𝜎𝜎√2𝜋𝜋)1−𝑞𝑞

√𝑞𝑞(𝑞𝑞 − 1)
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As the equation (4) indicates variance and Tsallis entropy are positively correlated for normal 

distribution. Tsallis entropies for q=0.7 and q=1.5 are sketched in Figure 1. The figure 
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where,

I= Indicator function,

T = Number of observations in time,
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demonstrates that Tsallis entropy with parameter can be employed as a risk measure in portfolio 

analysis.  

As an example of discrete case, Tsallis entropy for binomial distribution (𝑛𝑛
𝑥𝑥) 𝑝𝑝𝑥𝑥(1 − 𝑝𝑝)𝑛𝑛−𝑥𝑥 

with variance 𝑛𝑛 𝑝𝑝 (1 − 𝑝𝑝) can be deduced, assuming large values of 𝑛𝑛, as 

√𝑞𝑞 − (√2𝜋𝜋𝑛𝑛𝑝𝑝(1 − 𝑝𝑝))1−𝑞𝑞

√𝑞𝑞(𝑞𝑞 − 1)
                                                                                                                  (5) 

which also demonstrates the relation between Tsallis entropy and the variance. 

   
Figure 1: Tsallis Entropy vs Standard Deviation for Normal Distribution  
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 from equation (9) into the equation (8). The short selling and the budget 
constraints are valid for this portfolio too.

5. Comparison Analysis and Results

The minimum Tsallis portfolio method is applied to BIST 30 stocks and the results are compared 
with those mean-variance, minimum-variance portfolios. BIST 30 stocks data, which is downloaded 
from Yahoo finance website (2021), is used for analysis. The data comprises 510 daily returns of 30 
stocks between 01.01.2019 and 31.12.2020.

Since mean-variance and minimum-variance portfolio optimization methods assume the normality 
of asset returns, a Shapiro-Wilk normality test is used for checking the normality of the stock returns. 
Table1 lists the average returns, variances and Shapiro-Wilk scores and the corresponding p values 
of the BIST 30 stocks for the analysis period. All of the stocks have p values close to zero meaning 
returns are not normally distributed that contradicts the assumption of mean-variance portfolio 
model.

Table 1: Daily statistics of BIST 30 stocks between 01.01.2019 and 31.12.2020
Return Variance Shapiro-Wilk  p

AKBNK 0.00031295 0.0005585 0.96466 9.913e-10
ARCLK 0.00140151 0.00052125 0.94293 4.276e-13
ASELS 0.00086152 0.00057858 0.94424 6.413e-13
BIMAS 0.00123693 0.00034048 0.95783 6.622e-11
EREGL 0.00240071 0.00052393 0.96123 2.453e-10
EKGYO 0.00079957 0.00060103 0.96827 4.745e-09
EREGL 0.00220841 0.00046709 0.94895 2.909e-12
FROTO 0.00201054 0.00060645 0.96601 1.761e-09
GARAN 0.00052107 0.0006421 0.95965 1.325e-10
GUBRF 0.00655461 0.00113117 0.95941 1.206e-10
HALKB -0.000432 0.00051438 0.97087 1.565e-08
ISCTR 0.00085179 0.0005306 0.96973 9.194e-09
KCHOL 0.00084328 0.00041301 0.95694 4.762e-11
KOZAA 0.0015171 0.00080653 0.96484 1.068e-09
KOZAL 0.00128268 0.00052841 0.953 1.152e-11
KRDMD 0.00214944 0.00076295 0.9713 1.913e-08
PETKM 0.00084153 0.00055125 0.94493 7.968e-13
PGSUS 0.00229864 0.00134869 0.95323 1.25e-11
SAHOL 0.00098925 0.00045497 0.96771 3.697e-09
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SASA 0.00245712 0.00095186 0.89453 2.2e-16
SISE 0.00058479 0.00056345 0.94913 3.089e-12
TAVHL 8.3603E-05 0.00061716 0.95845 8.365e-11
TCELL 0.00079637 0.00040775 0.95752 5.901e-11
THYAO -0.0004315 0.00063712 0.94462 7.214e-13
TKFEN -0.0001208 0.00054452 0.98954 0.001074
TTKOM 0.00168902 0.00066316 0.96818 4.561e-09
TUPRS 8.1811E-05 0.00046087 0.96367 6.583e-10
VAKBN 0.00039484 0.0006405 0.97013 1.106e-08
VESTL 0.00262026 0.00097148 0.92166 1.242e-15
YKBNK 0.00128464 0.00058623 0.96818 4.546e-09

5.1 Comparison Methodology and Performance Measures

Minimum Tsallis, Mean-variance, and Minvar portfolios are formed according to optimization 
problems given in equations (6), (7), and (8) for different 
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5.1 Comparison Methodology and Performance Measures 
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problems given in equations (6), (7), and (8) for different 𝜇𝜇0  (daily average return of the 

portfolio) values using nonlinear programming solver function fmincon of MATLAB. The 
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𝜎𝜎𝑝𝑝
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where, 

𝜋𝜋𝑖𝑖 = Weights of the assets in the portfolio.  

Diversity index values ranges between 0 and 1. Values close to zero mean that the portfolio 

weights are concentrated in a few assets and values close to 1 correspond to well diversified 

portfolios.  

Table 2: Performance comparisons of Minimum Tsallis (q=0.7), Minvar and MV portfolios 

 𝝁𝝁𝟎𝟎 𝝈𝝈𝒑𝒑 Sharpe Ratio Diversity 
Min. Tsallis (q=0.7) 

0.002 
0.0161187 0.1240795 0.95438142 

Minvar 0.0129809 0.1540725 0.83828333 
MV 0.01298285 0.1540494 0.83747097 

Min. Tsallis (q=0.7) 
0.003 

0.01756294 0.1708142 0.90425764 
Minvar 0.01503576 0.1995243 0.80475265 

MV 0.01503592 0.1995223 0.80531343 
Min. Tsallis (q=0.7) 

0.004 
0.02037463 0.1963226 0.78857881 

Minvar 0.0189039 0.2115965 0.72974023 
MV 0.01890499 0.2115844 0.73023654 

Min. Tsallis (q=0.7) 
0.005 

0.02490222 0.2007853 0.57792719 
Minvar 0.02398681 0.2084479 0.53370747 

MV 0.02398681 0.2084479 0.53358763 
Min. Tsallis (q=0.7) 

0.006 
0.03025009 0.1983465 0.24805598 

Minvar 0.02991839 0.2005455 0.22547719 
MV 0.03025009 0.1983465 0.22547724 

 

As seen from Table 2, standard deviations, Sharpe ratios have very close values for three types 

of portfolios. Mean-Variance and Minvar portfolio values are inherently almost equal since 

they are two different of interpretations of the same optimization problem. However, diversity 

index values show that Minimum Tsallis portfolios are better diversified for all values of 

predefined portfolio expected return 𝜇𝜇0. This indicates that for similar values of expected return 

and risk, Minimum Tsallis portfolios are supposed to show better out-of-sample performances 

for they do not overweight (at least not as much as MV and MinVar portfolios do) the assets 

depending on the historical values. 

Performance measure for Minimum Tsallis portfolio was calculated for q=0.7. Different values 

for q between 0 and 1, did not yield remarkable changes in portfolio composition. Hence 
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Diversity index values ranges between 0 and 1. Values close to zero mean that the portfolio weights 
are concentrated in a few assets and values close to 1 correspond to well diversified portfolios.
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MV 0.01503592 0.1995223 0.80531343
Min. Tsallis (q=0.7)

0.004
0.02037463 0.1963226 0.78857881

Minvar 0.0189039 0.2115965 0.72974023
MV 0.01890499 0.2115844 0.73023654
Min. Tsallis (q=0.7)

0.005
0.02490222 0.2007853 0.57792719

Minvar 0.02398681 0.2084479 0.53370747
MV 0.02398681 0.2084479 0.53358763
Min. Tsallis (q=0.7)

0.006
0.03025009 0.1983465 0.24805598

Minvar 0.02991839 0.2005455 0.22547719
MV 0.03025009 0.1983465 0.22547724

As seen from Table 2, standard deviations, Sharpe ratios have very close values for three types of 
portfolios. Mean-Variance and Minvar portfolio values are inherently almost equal since they are 
two different of interpretations of the same optimization problem. However, diversity index values 
show that Minimum Tsallis portfolios are better diversified for all values of predefined portfolio 
expected return 

ASELS 0.00086152 0.00057858 0.94424 6.413e-13 
BIMAS 0.00123693 0.00034048 0.95783 6.622e-11 
EREGL 0.00240071 0.00052393 0.96123 2.453e-10 
EKGYO 0.00079957 0.00060103 0.96827 4.745e-09 
EREGL 0.00220841 0.00046709 0.94895 2.909e-12 
FROTO 0.00201054 0.00060645 0.96601 1.761e-09 
GARAN 0.00052107 0.0006421 0.95965 1.325e-10 
GUBRF 0.00655461 0.00113117 0.95941 1.206e-10 
HALKB -0.000432 0.00051438 0.97087 1.565e-08 
ISCTR 0.00085179 0.0005306 0.96973 9.194e-09 

KCHOL 0.00084328 0.00041301 0.95694 4.762e-11 
KOZAA 0.0015171 0.00080653 0.96484 1.068e-09 
KOZAL 0.00128268 0.00052841 0.953 1.152e-11 
KRDMD 0.00214944 0.00076295 0.9713 1.913e-08 
PETKM 0.00084153 0.00055125 0.94493 7.968e-13 
PGSUS 0.00229864 0.00134869 0.95323 1.25e-11 
SAHOL 0.00098925 0.00045497 0.96771 3.697e-09 
SASA 0.00245712 0.00095186 0.89453 2.2e-16 
SISE 0.00058479 0.00056345 0.94913 3.089e-12 

TAVHL 8.3603E-05 0.00061716 0.95845 8.365e-11 
TCELL 0.00079637 0.00040775 0.95752 5.901e-11 
THYAO -0.0004315 0.00063712 0.94462 7.214e-13 
TKFEN -0.0001208 0.00054452 0.98954 0.001074 
TTKOM 0.00168902 0.00066316 0.96818 4.561e-09 
TUPRS 8.1811E-05 0.00046087 0.96367 6.583e-10 
VAKBN 0.00039484 0.0006405 0.97013 1.106e-08 
VESTL 0.00262026 0.00097148 0.92166 1.242e-15 
YKBNK 0.00128464 0.00058623 0.96818 4.546e-09 

 

5.1 Comparison Methodology and Performance Measures 

Minimum Tsallis, Mean-variance, and Minvar portfolios are formed according to optimization 

problems given in equations (6), (7), and (8) for different 𝜇𝜇0  (daily average return of the 

portfolio) values using nonlinear programming solver function fmincon of MATLAB. The 

results are given Table 2. The table lists the portfolio’s risk (𝜎𝜎𝑝𝑝 , standard deviation of the 

portfolio assets), Sharpe ratios and diversity indexes of the portfolios. Sharpe ratio is one of the 

widely used portfolio measures and given by 

Sharpe Ratio =   
𝜇𝜇𝑝𝑝
𝜎𝜎𝑝𝑝

                                                                                                                            (10) 

where, 

 𝜇𝜇𝑝𝑝 = Portfolio’s return, 

 𝜎𝜎𝑝𝑝 = Portfolio’s standard deviation. 

. This indicates that for similar values of expected return and risk, Minimum 
Tsallis portfolios are supposed to show better out-of-sample performances for they do not overweight 
(at least not as much as MV and MinVar portfolios do) the assets depending on the historical values.

Performance measure for Minimum Tsallis portfolio was calculated for q=0.7. Different values for q 
between 0 and 1, did not yield remarkable changes in portfolio composition. Hence optimizing the 
parameter q for different markets and data is not applicable. This may be considered as a limitation 
of the model.

6. Conclusion

Mean-variance and minimum variance portfolio optimization models have been criticized for 
the following drawbacks since they emerged. First, these models assume that asset returns, which 
constitute the portfolio, are normally distributed. Second, these models overweight some assets that 
results in very poor out-of-sample portfolio performances. Third, both models require the calculation 
of covariance matrices for the portfolio risk. This causes severe estimation errors especially when the 
number of assets in the portfolio is large. Many variations of these models and different approaches 
have been proposed to overcome these drawbacks so far. Minimum Tsallis portfolio, which we 
proposed in this study, also addressed these drawbacks. We first showed that Tsallis entropy can be 
used as risk measure for portfolio analysis. Since Tsallis entropy does not assume any underlying 
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distribution for the asset returns, first of the drawbacks is intrinsically addressed. We showed that 

although the Sharpe ratios are comparable with those of mean-variance and minimum variance 

portfolios, minimum Tsallis portfolios are better diversified and hence more likely to have better out-

of-sample performances. Minimum Tsallis entropy portfolio model does not require the calculation 

of covariance matrices for portfolio risk and is not prone to estimation errors unlike mean-variance 

and minimum-variance portfolio models. Consequently, minimum Tsallis portfolio proved itself 

to be a simple but a robust portfolio optimization model. Moreover, minimum Tsallis portfolio is 

easy to comprehend and calculate. Hence, it is a practical tool for ordinary investors as well as for 

finance professionals and academics. Although the out-of-sample performance of a minimum Tsallis 

portfolio is expected to be better compared to mean-variance and minimum variance portfolios 

since it is more diversified, further research should be conducted to prove it empirically. Another 

research subject would be a comparison analysis against other portfolio models, which are based on 

other entropy measures.
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Appendix A
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Integral part of the above equation sums up to 1 for a normal distribution with a mean  𝝁𝝁 and 
standard deviation 𝝈𝝈′, then 
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