The Period and Rank of the Complex-type Padovan- p Numbers Modulo m

Ömür Deveci ${ }^{\text {a }}$, Özgür Erdağ ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey
${ }^{b}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract

In this paper, we study the complex-type Padovan- p sequence modulo m and then we give some results concerning the periods and ranks of this sequence for any p and m. Furthermore, we produce the cyclic groups using the multiplicative orders of the generating matrix of the complex-type Padovan- p sequence when read modulo m. Finally, we give the relationships between the periods of the complex-type Padovan $-p$ sequence modulo m and the orders of the cyclic groups produced.

1. Introduction

It is well-known that the Padovan sequence $\{P(n)\}$ is defined recursively by the equation:

$$
P(n)=P(n-2)+P(n-3)
$$

for $n \geq 3$, where $P(0)=P(1)=P(2)=1$.
The Padovan p-sequence $\{\operatorname{Pap}(n)\}$ is defined [6] by initial values $\operatorname{Pap}(1)=\operatorname{Pap}(2)=\cdots=\operatorname{Pap}(p)=0$, $\operatorname{Pap}(p+1)=1, \operatorname{Pap}(p+2)=0$ and the following homogeneous linear recurrence relation

$$
\operatorname{Pap}(n+p+2)=\operatorname{Pap}(n+p)+\operatorname{Pap}(n)
$$

for any given $p(p=2,3,4, \ldots)$ and $n \geq 1$. Note that the $(2 n+1)$ th term of the Padovan 2-sequence $\{P a 2(n)\}$, is equal to $n t h$ Fibonacci number.

The complex-type Padovan p-sequence $\left\{P a_{p}^{(i)}(n)\right\}$ is defined [11] as follows:

$$
\begin{equation*}
P a_{p}^{(i)}(n+p+2)=i^{2} \cdot P a_{p}^{(i)}(n+p)+i^{p+2} \cdot P a_{p}^{(i)}(n) \tag{1}
\end{equation*}
$$

for any given $p(p=3,5,7, \ldots)$ and $n \geq 1$, where $P a_{p}^{(i)}(1)=\cdots=P a_{p}^{(i)}(p)=0, P a_{p}^{(i)}(p+1)=1, P a_{p}^{(i)}(p+2)=0$ and $\sqrt{-1}=i$.

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the shortest repeating subsequence is called the period of the sequence. For example,

[^0]the sequence $a, b, c, d, b, c, d, b, c, d, \ldots$ is periodic after the initial element a and has period 3 . A sequence is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence $a, b, c, d, a, b, c, d, a, b, c, d, \ldots$ is simply periodic with period 4 .

The study of the behavior of the linear recurrence sequences under a modulus began with the earlier work of Wall [17] where the periods of the ordinary Fibonacci sequences modulo m were investigated. Recently, the theory extended to some special linear recurrence sequences by several authors; see, for example, $[3,4,12,15,16]$. In the first part of this paper, we consider the complex-type Padovan- p sequence modulo m and then we derive some interesting results concerning the periods and ranks of the complex-type Padovan- p sequence for any p and m.

The relationships between the periods of the linear recurrence sequences modulo m and the cyclic groups which are produced using the multiplicative orders of the generating matrices of these sequences when read modulo m have been studied recently by many authors; see, for example, [1, 2, 5, 7-10, 13, 14, 18]. In the second part, we derive the cyclic groups using the multiplicative orders of the generating matrix of the complex-type Padovan- p numbers when read modulo m. Then, we give the relationships between the periods of the complex-type Padovan- p sequence modulo m and the orders of the cyclic groups produced.

2. The Main Results

If we reduce the complex-type Padovan- p sequence $\left\{P a_{p}^{(i)}(n)\right\}$ by a modulus m, taking least nonnegative residues, then we get the following recurrence sequence:

$$
\left\{P a_{p}^{(i, m)}(n)\right\}=\left\{P a_{p}^{(i, m)}(0), P a_{p}^{(i, m)}(1), \ldots, P a_{p}^{(i, m)}(j), \ldots\right\}
$$

where $P a_{p}^{(i, m)}(j)$ is used to mean the j th element of the complex-type Padovan- p sequence when read modulo m. We note here that the recurrence relations in the sequences $\left\{P a_{p}^{(i, m)}(n)\right\}$ and $\left\{P a_{p}^{(i)}(n)\right\}$ are the same.

Theorem 2.1. For any given $p(p=3,5,7, \ldots)$, the sequence $\left\{P a_{p}^{(i, m)}(n)\right\}$ is simply periodic.
Proof. Consider the set

$$
\begin{align*}
C= & \left\{\left(c_{1}, c_{2}, \ldots, c_{p+2}\right) \mid c_{n} \text { 's are complex numbers } a_{n}+i b_{n}\right. \text { where } \tag{2}\\
& \left.a_{n} \text { and } b_{n} \text { are integers such that } 0 \leq a_{n}, b_{n} \leq m-1 \text { and } 1 \leq n \leq p+2\right\} . \tag{3}
\end{align*}
$$

Let the notation $|C|$ indicate the cardinality of the set C. Since the set C is finite, there are $|C|$ distinct $(p+2)$-tuples of the complex-type Padovan- p numbers modulo m. Thus, it is clear that at least one of these $(p+2)$-tuples appears twice in the sequence $\left\{P a_{p}^{(i, m)}(n)\right\}$. Therefore, the subsequence following this $(p+2)$ tuple repeats; that is, $\left\{P a_{p}^{(i, m)}(n)\right\}$ is a periodic sequence. Let us consider $P a_{p}^{(i, m)}(u) \equiv P a_{p}^{(i, m)}(v), P a_{p}^{(i, m)}(u+1) \equiv$ $P a_{p}^{(i, m)}(v+1), \ldots, P a_{p}^{(i, m)}(u+p+2) \equiv P a_{p}^{(i, m)}(v+p+2)$ and $v \geq u$. Then we have $v \equiv u(\bmod (p+2))$. From the recurrence relation in (1), we can write the following recursive equations:

$$
P a_{p}^{(i)}(u)=i^{2-p} \cdot P a_{p}^{(i)}(u+p+2)+i^{3-p} \cdot P a_{p}^{(i)}(u+p)
$$

and

$$
P a_{p}^{(i)}(v)=i^{2-p} \cdot P a_{p}^{(i)}(v+p+2)+i^{3-p} \cdot P a_{p}^{(i)}(v+p) .
$$

So we get $P a_{p}^{(i, m)}(u-1) \equiv P a_{p}^{(i, m)}(v-1), P a_{p}^{(i, m)}(u-2) \equiv P a_{p}^{(i, m)}(v-2), \ldots, P a_{p}^{(i, m)}(2) \equiv P a_{p}^{(i, m)}(v-u+2)$, $P a_{p}^{(i, m)}(1) \equiv P a_{p}^{(i, m)}(v-u+1)$, which implies that the complex-type Padovan- p sequence modulo m is simply periodic.

Let the notation $l P_{p}^{i}(m)$ denote the smallest period of the sequence $\left\{P a_{p}^{(i, m)}(n)\right\}$.
Given an integer matrix $A=\left[a_{i j}\right], A(\operatorname{modm})$ means that all entries of A are modulo m, that is, $A(\operatorname{modm})=$ $\left(a_{i j}(\bmod m)\right)$. Let us consider the set $\langle A\rangle_{m}=\left\{(A)^{n}(\operatorname{modm}) \mid n \geq 0\right\}$. If ($\left.\operatorname{det} A, m\right)=1$, then the set $\langle A\rangle_{m}$ is a cyclic group; if $(\operatorname{det} A, m) \neq 1$, then the set $\langle A\rangle_{m}$ is a semigroup.

In [11], the generating matrix of the complex-type Padovan- p sequence had been given as:

$$
D_{p}=\left[d_{j k}^{(p)}\right]_{(p+2) \times(p+2)}=\left[\begin{array}{ccccccc}
0 & -1 & 0 & \cdots & 0 & 0 & i^{p+2} \\
1 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 & 0
\end{array}\right] .
$$

The matrix D_{p} is said to be the complex-type Padovan- p matrix. Then they had been written the following matrix relation:

$$
\left[\begin{array}{c}
P a_{p}^{(i)}(n+p+2) \\
P a_{p}^{(i)}(n+p+1) \\
\vdots \\
P a_{p}^{(i)}(n+2) \\
P a_{p}^{(i)}(n+1)
\end{array}\right]=D_{p} \cdot\left[\begin{array}{c}
P a_{p}^{(i)}(n+p+1) \\
P a_{p}^{(i)}(n+p) \\
\vdots \\
P a_{p}^{(i)}(n+1) \\
P a_{p}^{(i)}(n)
\end{array}\right]
$$

It can be readily established by mathematical induction that for $n \geq p+1$,

$$
\left(D_{p}\right)^{n}=\left[\begin{array}{cccccc}
P a_{p}^{(i)}(n+p+1) & P a_{p}^{(i)}(n+p+2) & i^{p+2} \cdot P a_{p}^{(i)}(n+1) & i^{p+2} \cdot P a_{p}^{(i)}(n+2) & \cdots & i^{p+2} \cdot P a_{p}^{(i)}(n+p) \tag{4}\\
P a_{p}^{(i)}(n+p) & P a_{p}^{(i)}(n+p+1) & i^{p+2} \cdot P a_{p}^{(i)}(n) & i^{p+2} \cdot P a_{p}^{(i)}(n+1) & \cdots & i^{p+2} \cdot P a_{p}^{(i)}(n+p-1) \\
P a_{p}^{(i)}(n+p-1) & P a_{p}^{(i)}(n+p) & i^{p+2} \cdot P a_{p}^{(i)}(n-1) & i^{p+2} \cdot P a_{p}^{(i)}(n) & \cdots & i^{p+2} \cdot P a_{p}^{(i)}(n+p-2) \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
P a_{p}^{(i)}(n+1) & P a_{p}^{(i)}(n+2) & i^{p+2} \cdot P a_{p}^{(i)}(n-p+1) & i^{p+2} \cdot P a_{p}^{(i)}(n-p+2) & \cdots & i^{p+2} \cdot P a_{p}^{(i)}(n) \\
P a_{p}^{(i)}(n) & P a_{p}^{(i)}(n+1) & i^{p+2} \cdot P a_{p}^{(i)}(n-p) & i^{p+2} \cdot P a_{p}^{(i)}(n-p+1) & \cdots & i^{p+2} \cdot P a_{p}^{(i)}(n-1)
\end{array}\right] .
$$

Since $\operatorname{det} D_{p}=i^{p+2}$, the set $\left\langle D_{p}\right\rangle_{m}$ is a cyclic group for every positive integer $m \geq 2$. From Theorem 2.1 and the equation (??), it is easy to see that $l P_{p}^{i}(m)=\left|\left\langle D_{p}\right\rangle_{m}\right|$ for any given $p(p=3,5,7, \ldots)$.

Clearly,

$$
i^{p+2}=\left\{\begin{array}{cc}
i, & p \equiv-1(\bmod 4) \\
-i, & p \equiv 1(\bmod 4)
\end{array}\right.
$$

Since also det $D_{p}=i^{p+2}$ and $l P_{p}^{i}(m)=\left|\left\langle D_{p}\right\rangle_{m}\right|$,

$$
\left(i^{p+2}\right)^{I P_{p}^{i}(m)}=\left(\operatorname{det} D_{p}\right)^{l P_{p}^{i}(m)}=\operatorname{det} D_{p}^{l P_{p}^{i}(m)} \equiv 1(\bmod m)
$$

From this we see that $4 \mid l P_{p}^{i}(m)$.
The rank of the sequence $\left\{P a_{p}^{(i, m)}(n)\right\}$ is the least positive integer r such that $P a_{p}^{(i, m)}(r+1) \equiv P a_{p}^{(i, m)}(r+2) \equiv$ $P a_{p}^{(i, m)}(r+p) \equiv 0(\operatorname{modm}), P a_{p}^{(i, m)}(r+p+1) \equiv u(\operatorname{modm})(u \in \mathbb{C}), P a_{p}^{(i, m)}(r+p+2) \equiv 0($ modm $)$, and we denote the rank of $\left\{P a_{p}^{(i, m)}(n)\right\}$ by $R P_{p}^{i}(m)$. If $P a_{p}^{(i, m)}(r+p+1) \equiv u(\operatorname{modm})(u \in \mathbb{C})$, then the terms of the sequence
$\left\{P a_{p}^{(i, m)}(n)\right\}$ starting with index $R P_{p}^{i}(m)$, namely $\underbrace{0,0, \ldots, 0}_{p}, u, 0,-u, 0, u, \ldots$, are exactly the initial terms of $\left\{P a_{p}^{(i, m)}(n)\right\}$ multiplied by a factor u.

Let the notation I denote the identity matrix of size $(p+2)$. The exponents n for which $\left(D_{p}\right)^{n} \equiv I(\operatorname{modm})$ form a simple aritmetic progression. Then we have

$$
\left(D_{p}\right)^{n} \equiv I(\bmod m) \Longleftrightarrow l P_{p}^{i}(m) \mid n .
$$

Similarly, the exponents n for which $\left(D_{p}\right)^{n} \equiv \operatorname{lI}$ (modm) for some $c \in \mathbb{C}$ form a simple aritmetic progression, and hence

$$
\left(D_{p}\right)^{n} \equiv \operatorname{cI}(\bmod m) \Longleftrightarrow R P_{p}^{i}(m) \mid n
$$

Consequently, we can see that $R P_{p}^{i}(m)$ divides $l P_{p}^{i}(m)$ for any given $p(p=3,5,7, \ldots)$ and $m \geq 3$.
The order of the sequence $\left\{P a_{p}^{(i, m)}(n)\right\},(m \geq 3)$ is defined by $\frac{I P p_{p}^{p}(m)}{R p_{p}^{(}(m)}$ and we denote it by $O P_{p}^{i}(m)$. Let $\left(D_{p}\right)^{R P_{p}^{i}(m)} \equiv c I(\operatorname{modm})(c \in \mathbb{C})$, then $\operatorname{ord}_{m}(c)$ is the least positive value of λ such that $\left(D_{p}\right)^{\lambda R p_{p}^{\prime}(m)} \equiv I($ modm $)$. So it is confirm that $\operatorname{ord}_{m}(c)$ is the least positive integer λ with $l P_{p}^{i}(m) \mid \lambda R P_{p}^{i}(m)$ for $m \geq 3$. As a direct consequence of this we see that the smallest such λ is $O P_{p}^{i}(m)$ for $m \geq 3$. Therefore, we obtain $O P_{p}^{i}(m)=$ $\operatorname{ord}_{m}(c),(m \geq 3)$ when $\left(D_{p}\right)^{R P_{p}^{i}(m)} \equiv \operatorname{cI}(m o d m)$. As a result, we may easily deduce that $O P_{p}^{i}(m)$ is always a positive integer, and that $O P_{p}^{i}(m)=\operatorname{ord}_{m}\left(P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p+1\right)\right)$ for $m \geq 3$, the multiplicative order of $P a_{p}^{(i, m)}\left(R P_{p}^{i}(m)+p+1\right)$.

Example 2.2. The sequence $\left\{P a_{3}^{(i, 2)}(n)\right\}$ is as follows:

$$
\left\{\begin{array}{c}
0,0,0,1,0,1,0,1, i, 1,0,1, i, 0,0,0, i, 1, i, 1, i \\
0,0,1, i, 0, i, 0,0,1,0,0,0,0, i, 0, i, 0, i, 1, i, 0 \\
i, 1,0,0,0,1, i, 1, i, 1,0,0, i, 1,0,1,0,0, i, 0 \\
0,0,0,1,0,1,0,1, i, \ldots
\end{array}\right\}
$$

Thus it is verified that $l P_{3}^{i}(2)=62, R P_{3}^{i}(2)=31$ and $O P_{3}^{i}(2)=2$.
Example 2.3. The sequence $\left\{P_{3}^{(i, 4)}(n)\right\}$ is as follows:

$$
\left\{\begin{array}{c}
0,0,0,1,0,3,0,1, i, 3,2 i, 1,3 i, 2,0,0, i, 1, i, 3,3 i, 0,2 i, 3, i, 2,3 i, 0,0,3,2 i, \\
2,2 i, 2, i, 0, i, 2, i, 1,3 i, 2,3 i, 1,2 i, 0,0,1, i, 1,3 i, 3,2 i, 0,3 i, 1,0,1,0,0, i, 0 \\
0,0,0,3,0,1,2 i, 3,3 i, 1,2 i, 3, i, 2,0,0,3 i, 3,3 i, 1, i, 0,2 i, 1,3 i, 2, i, 0,0,1,2 i, \\
2,2 i, 2,3 i, 0,3 i, 2,3 i, 3, i, 2, i, 3,2 i, 0,0,3,3 i, 3, i, 1,2 i, 0, i, 3,0,3,0,0,3 i, 0 \\
0,0,0,1,0,3,0,1, i, \ldots
\end{array}\right\}
$$

Thus it is verified that $l P_{3}^{i}(4)=124, R P_{3}^{i}(4)=62$ and $O P_{3}^{i}(4)=2$.
Theorem 2.4. Let ρ be a prime. Then we have the following results for any given $p(p=3,5,7, \ldots)$:
i. If t is the smallest positive integer such that $l P_{p}^{i}\left(\rho^{t+1}\right) \neq l P_{p}^{i}\left(\rho^{t}\right)$, then $l P_{p}^{i}\left(\rho^{t+1}\right)=\rho l P_{p}^{i}\left(\rho^{t}\right)$.
ii. If t is the smallest positive integer such that $R P_{p}^{i}\left(\rho^{t+1}\right) \neq R P_{p}^{i}\left(\rho^{t}\right)$, then $R P_{p}^{i}\left(\rho^{t+1}\right)=\rho R P_{p}^{i}\left(\rho^{t}\right)$.

Proof. i. Let n be a positive integer such that $\left(D_{p}\right)^{I P_{p}^{i}\left(\rho^{n+1}\right)} \equiv I\left(\bmod \rho^{n+1}\right)$. Then we can easily derive $\left(D_{p}\right)^{l P_{p}^{i}\left(\rho^{n+1}\right)} \equiv I\left(\bmod \rho^{n}\right)$, which implies that $l P_{p}^{i}\left(\rho^{n+1}\right)$ is divided by $l P_{p}^{i}\left(\rho^{n}\right)$. On the other hand, we may
write $\left(D_{p}\right)^{I p_{p}^{i}\left(\rho^{n}\right)}=I+\left(\left(d_{j k}^{(p)}\right)^{n} \cdot \rho^{n}\right)$. Thus, we get the following matrix equation by using binomial expansion

$$
\left(D_{p}\right)^{\rho \cdot I P_{p}^{i}\left(\rho^{n}\right)}=\left(I+\left(\left(d_{j k}^{(p)}\right)^{n} \cdot \rho^{n}\right)\right)^{\rho}=\sum_{k=0}^{\rho}\binom{\rho}{k}\left(\left(d_{j k}^{(p)}\right)^{n} \cdot \rho^{n}\right)^{k} \equiv I\left(\bmod \rho^{n+1}\right),
$$

which yields that $\rho \cdot l P_{p}^{i}\left(\rho^{n}\right)$ is divided by $l P_{p}^{i}\left(\rho^{n+1}\right)$. Hence, $l P_{p}^{i}\left(\rho^{n+1}\right)=l P_{p}^{i}\left(\rho^{n}\right)$ or $l P_{p}^{i}\left(\rho^{n+1}\right)=\rho \cdot l P_{p}^{i}\left(\rho^{n}\right)$, and the latter holds if and only if there is a $\left(d_{j k}^{(p)}\right)^{n}$ which is not divisible by ρ. Due to fact that we assume t is the smallest positive integer such that $l P_{p}^{i}\left(\rho^{t+1}\right) \neq l P_{p}^{i}\left(\rho^{t}\right)$, there is an $\left(d_{j k}^{(p)}\right)^{n}$ which is not divisible by ρ. This shows that $l P_{p}^{i}\left(\rho^{t+1}\right)=\rho l P_{p}^{i}\left(\rho^{t}\right)$.
ii. The proof is similar to the above and is omitted.

Theorem 2.5. Let m_{1} and m_{2} be positive integers with $m_{1}, m_{2} \geq 2$, then $R P_{p}^{i}\left(l c m\left[m_{1}, m_{2}\right]\right)=\operatorname{lcm}\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]$ and $l P_{p}^{i}\left(l c m\left[m_{1}, m_{2}\right]\right)=l c m\left[l P_{p}^{i}\left(m_{1}\right), l P_{p}^{i}\left(m_{2}\right)\right]$ for any $\operatorname{given} p(p=3,5,7, \ldots)$.

Proof. Let us consider the ranks $R P_{p}^{i}\left(m_{1}\right)$ and $R P_{p}^{i}\left(m_{2}\right)$. Suppose that $l c m\left[m_{1}, m_{2}\right]=m$. Then we may write

$$
\begin{gathered}
P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{1}\right)+1\right) \equiv P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{1}\right)+2\right) \equiv \cdots \equiv P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{1}\right)+p\right) \equiv 0(\text { modm }), \\
P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{1}\right)+p+1\right) \equiv u_{1}(\text { modm }), P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{1}\right)+p+2\right) \equiv 0(\text { modm }), \\
P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{2}\right)+1\right) \equiv P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{2}\right)+2\right) \equiv \cdots \equiv P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{2}\right)+p\right) \equiv 0(\text { modm }), \\
P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{2}\right)+p+1\right) \equiv u_{2}(\text { modm }), P a_{p}^{(i)}\left(R P_{p}^{i}\left(m_{2}\right)+p+2\right) \equiv 0(\text { modm })
\end{gathered}
$$

and

$$
\begin{gathered}
P a_{p}^{(i)}\left(R P_{p}^{i}(m)+1\right) \equiv P a_{p}^{(i)}\left(R P_{p}^{i}(m)+2\right) \equiv \cdots \equiv P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p\right) \equiv 0(\text { mod } m), \\
P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p+1\right) \equiv u(\text { modm }), P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p+2\right) \equiv 0(\text { modm })
\end{gathered}
$$

where u_{1}, u_{2} and u are complex numbers. Using the least common multiple operation this implies that

$$
\begin{gathered}
P a_{p}^{(i)}\left(R P_{p}^{i}(m)+1\right) \equiv P a_{p}^{(i)}\left(R P_{p}^{i}(m)+2\right) \equiv \cdots \equiv P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p\right) \equiv 0\left(\text { modm }_{j}\right), \\
P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p+1\right) \equiv u\left(\operatorname{modm}_{j}\right), P a_{p}^{(i)}\left(R P_{p}^{i}(m)+p+2\right) \equiv 0\left(\text { modm }_{j}\right)
\end{gathered}
$$

for $j=1,2$. So we get $R P_{p}^{i}\left(m_{1}\right) \mid R P_{p}^{i}(m)$ and $R P_{p}^{i}\left(m_{2}\right) \mid R P_{p}^{i}(m)$, which means that $R P_{p}^{i}\left(l c m\left[m_{1}, m_{2}\right]\right)$ is divided by $l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]$. We also know that

$$
\begin{aligned}
& P a_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+1\right) \equiv \operatorname{Pa} a_{p}^{(i)}\left(\operatorname{lcm}\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+2\right) \equiv \cdots \equiv \operatorname{Pa}_{p}^{(i)}\left(\operatorname{lcm}\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+p\right) \equiv 0\left(\operatorname{modm}_{j}\right), \\
& P a_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+p+1\right) \equiv u_{j}\left(\operatorname{modm}_{j}\right), \operatorname{Pa} a_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+p+2\right) \equiv 0\left(\operatorname{modm}_{j}\right)
\end{aligned}
$$

for $j=1,2$. Then we can write

$$
\begin{aligned}
& P a_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+1\right) \equiv \operatorname{Pa} a_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+2\right) \equiv \cdots \equiv \operatorname{Pa}_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+p\right) \equiv 0(m o d m), \\
& P a_{p}^{(i)}\left(l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+p+1\right) \equiv u(\operatorname{modm}), \operatorname{Pa} a_{p}^{(i)}\left(\operatorname{lcm}\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]+p+2\right) \equiv 0(\operatorname{modm}),
\end{aligned}
$$

which yields that $l c m\left[R P_{p}^{i}\left(m_{1}\right), R P_{p}^{i}\left(m_{2}\right)\right]$ is divided by $R P_{p}^{i}\left(l c m\left[m_{1}, m_{2}\right]\right)$. So we have the conclusion.
There is a similar proof for the periods $l P_{p}^{i}\left(m_{1}\right)$ and $l P_{p}^{i}\left(m_{2}\right)$.

3. Conclusion

We have examined the complex-type Padovan- p sequence modulo m and then we give some results concerning the periods and ranks of this sequence for any p and m. In addition, we have considered the complex-type Padovan- p matrix and we obtained cyclic groups by taking the multiplicative order of this matrix according to m. Finally, we have reached that the periods of the complex-type Padovan- p sequence according to modulo m are equal to the order the cyclic groups obtained.

References

[1] Akuzum Y, Deveci O. The Hadamard-type k-step Fibonacci sequences in groups. Communications in Algebra. 48(7), 2020, 2844-2856.
[2] Aydin H, Dikici R. General Fibonacci sequences in finite groups. Fibonacci Quarterly. 36(3), 1998, 216-221.
[3] Cagman A, Polat K. On a Diophantine equation related to the difference of two Pell numbers. Contributions to Mathematics. 3, 2021,37-42.
[4] Cagman A. Repdigits as Product of Fibonacci and Pell numbers. Turkish Journal of Science. 6(1), 2021, 31-35.
[5] Campbell CM, Doostie H, Robertson EF. Fibonacci length of generating pairs in groups. In: Bergum, G. E., ed. Applications of Fibonacci Numbers. Vol. 3. Springer, Dordrecht: Kluwer Academic Publishers, 1990, pp. 27-35.
[6] Deveci O, Karaduman E. On the Padovan p-numbers. Hacettepe Journal of Mathematics and Statistics. 46(4), 2017, 579-592.
[7] Deveci O, Akuzum Y, Karaduman E. The Pell-Padovan p-Sequences and Its Applications. Utilitas Mathematica. 98, 2015, 327-347.
[8] Deveci O, Akuzum Y. The Cyclic Groups and The Semigroups via MacWilliams and Chebyshev Matrices. Journal of Mathematics Research. 6(2), 2014, 55-58.
[9] Deveci O, Shannon AG. The complex-type k-Fibonacci sequences and their applications. Communications in Algebra. 49(3), 2021, 1352-1367.
[10] Doostie H, Hashemi M. Fibonacci lengths involving the Wall number $K(n)$. Journal of Applied Mathematics and Computing. 20(1-2), 2006, 171-180.
[11] Erdag O, Halıcı S, Deveci O. The Complex-Type Padovan- p Sequences. Mathematica Moravica. in press
[12] Falcon S, Plaza A. k-Fibonacci sequences modulo m. Chaos, Solitons and Fractals. 41(1), 2009, 497-504.
[13] Karaduman E, Aydın H. k-nacci sequences in some special groups of finite order. Mathematical and Computer Modelling. 50(1-2), 2009, 53-58
[14] Knox SW. Fibonacci sequences in finite groups, Fibonacci Quarterly. 30(2), 1992, 116-120.
[15] Lu K, Wang J. k-step Fibonacci sequence modulo m. Utilitas Mathematica. 71, 2006, 169-177.
[16] Ozkan E, Aydin H, Dikici R. 3-step Fibonacci series modulo m. Applied Mathematics and Computation. 143(1), 2003, $165-172$.
[17] Wall DD. Fibonacci series modulo m, American Mathematical Monthly. 67(6), 1960, 525-532.
[18] Wilcox HJ. Fibonacci sequences of period n in Groups. Fibonacci Quarterly. 24(4), 1986, 356-361.

[^0]: Corresponding author: ÖE mail address: ozgur_erdag@hotmail.com ORCID:https://orcid.org/0000-0001-8071-6794, ÖD ORCID:https://orcid.org/0000-0001-5870-5298

 Received: 1 December 2021; Accepted: 25 December 2021; Published: 30 December 2021
 Keywords. (The complex-type Padovan- p sequence, Modulo, Period, Rank.)
 2010 Mathematics Subject Classification. 39B32, 11B50, 11C20, 20 F05.
 Cited this article as: Deveci Ö. , Erdağ Ö. The Period and Rank of the Complex-type Padovan- p Numbers Modulo m, Turkish Journal of Science. 2021, 6(3), 156-161.

