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Abstract: The present study focuses the effects of Reynolds number Re and 
magnetic Reynolds number Rm on the transient behavior of the MHD flow. The 
incompressible, electrically conducting and viscous fluid flows through a long pipe 
subjected to magnetic field B0(t)=B0f(t). B0 is the intensity and f(t) is the time 
varying function of the magnetic field which is chosen as polynomial, 
trigonometric, exponential and logarithmic function to illustrate the problem 
parameters effects. The Re and Rm effects on the behavior of the flow at transient 
levels are studied with these functions by taking Hartmann number Ha value as 20. 
The unsteady MHD equations in coupled form are treated by using the dual 
reciprocity boundary element method (DRBEM). The study reveals that, when Re 
or Rm increases the time level where the flow elongates is postponed to a further 
time level. Moreover, the increase in Re flattens the flow as in the increase of 
Hartmann number. However, the increase in Rm increases the flow magnitude. The 
transient flow and induced current contours are demonstrated for several Re and 
Rm values. After the flow elongates, the flow and induced current lines preserve the 
behavior for polynomial, exponential and logarithmic type f(t) while trigonometric 
type f(t) causes the flow to show periodic behavior. 

  
  

Problem Parametrelerinin MHD Kanal Akışının Zamana Bağlı Davranışına Etkileri 
 
 

Anahtar Kelimeler 
Drbem, 
Mhd akış,  
Zamana bağlı manyetik alan 

 

Öz: Bu çalışma, problem parametreleri olarak ifade edilen Reynolds Re ve 
manyetik Reynolds Rm sayılarının zamana bağımlı MHD akış üzerindeki etkilerini 
incelemektedir. Dışarıdan uygulanan manyetik alan etkisiyle akan sıvı viskoz, 
sıkıştırılamaz ve elektriği iletmektedir. Bu manyetik alan B0(t)=B0f(t) ile 
gösterilmiştir. Eşitlikteki B0 manyetik alan şiddeti ve f(t) ise zamana bağlı bir 
fonksiyondur. Çalışmada f(t) fonksiyonu polinom, üstel, logaritmik ve 
trigonometrik fonksiyonlar tipinde seçilip problem parametrelerinin akış 
davranışına etkileri farklı zaman seviyelerinde sunulmuştur. Kuple olarak bulunan 
MHD akış denklemleri, kanal kesitinde karşılıklı sınır elemanı metodu kullanılarak 
çözülmüştür. Re veya Rm sayılarındaki artışın akış elongasyonunu daha ileri bir 
zaman seviyesine ötelediği görülmüştür. Ayrıca, Rm sayısı büyürken akışın 
şiddetinin büyüdüğü fakat Re sayısı büyürken akışın düzleştiği görülmüştür. 
Polinom, üstel ve logaritmik tipinde seçilen f(t) fonksiyonları için akış elongasyonu 
gerçekleştikten sonra, akış ve indüklenen akım bütün farklı Re ve Rm sayıları için 
aynı davranışı göstermiştir. Fakat trigonometrik fonksiyon tipinde seçilen f(t) 
fonksiyonu akış elongasyonunun belirli bir süreyle yinelenmesini sağlamıştır. 

  
 
1. Introduction 
 
The magnetohydrodynamic (MHD) duct flows have 
important applications in different branches of 
engineering, science and biology as electrolytes, 
blood flow measurements, MHD generators, etc. 
Considering the fluid mechanics and electrodynamics 

equations together, the analytical solution to the 
MHD flow is inaccessible except the special cases (i.e. 
insulated or conducting duct walls) and simple 
geometry of the flow region. Therefore, some 
numerical approaches are developed for an 
approximate solution of MHD flow problems. The 
steady MHD flow through a channel having different 
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wall conductivities has been studied by using the 
constant and linear BEMs in [1]. The steady MHD 
flow equations have been treated by finite element 
method (FEM) in terms of velocity and induced 
current profiles in [2]. A solution for convection-
diffusion type equations in coupled form has been 
derived in [3] and it is used to solve MHD flow 
problems with different wall conductivities. Finite 
volume method (FVM) and spectral element 
technique have been implemented to solve unsteady 
MHD flow problems in [4]. The numerical solutions 
have been conducted for several Hartmann number 
values with different wall conductivities and the 
magnetic field has different orientations. In all above 
mentioned studies, the concern is to use different 
numerical methods to achieve more accurate results, 
however, the use of uniform applied magnetic field 
for Re and Rm as 1 is in common. Then, time-
dependent applied magnetic field is introduced in [5]. 
Then, Bandaru, et al. [6] have used the procedure of 
finite difference in time-boundary element in space 
for their solution of unsteady MHD flow.  Previously, 
we have concentrated on the influence applied 
magnetic field depending on time, B0(t)=B0f(t), on the 
flow behavior by taking several definitions of time-
varied function f(t), but by setting Re = Rm =1 in [7]. It 
has been seen that for each considered function f(t), 
the flow elongates at a certain time level which 
becomes earlier with an increased value of Ha. 
 
In this paper, the problem parameters Re and Rm 

effects on the the transient MHD flow behavior has 
been examined. The fully-developed, laminar, 
unsteady MHD flow is studied under influence time 
dependent applied magnetic field B0(t)=B0f(t). The 
fluid flowing through square duct is incompressible, 
viscous and electrically conducting. The MHD flow 
equations are treated with DRBEM iteratively. The 
main advantage of DRBEM is to obtain both unknown 
velocity and induced current at once by only 
discretizing the boundary of duct. The flow and 
induced current configurations are simulated with 
various values of Re as 5, 10, 25 and Rm as 1, 3, 5 along 
with polynomial, trigonometric, logarithmic and 
exponential function f(t). The transient behavior of 
the flow has been revealed that, the flow elongation 
starts at a further time level with the increase in Re or 
Rm values. Although, both Re and Rm are in front of the 
time derivative terms of the flow equations, Re effect 
on flow is more dominant than Rm due to the fluid 
electrical conductivity present in Rm. For the 
trigonometric type f(t), the same period in the flow is 
seen at a further time level for all values of Re and Rm 
as in the case of Re = Rm =1 [7].   
 
2.  Material and Method 
 
2.1. Mathematical formulation 
 
We consider the unsteady MHD flow in a long pipe of  
 

square cross-section (duct). Fluid velocity is parallel 
to the axis of the pipe (z-axis), and the externally 
applied magnetic field depending on time, 
B0(t)=B0f(t) is in the x-direction. B0 is the intensity of 
applied magnetic field at the initial time. The flow is 
fully-developed, and the velocity and the induced 
magnetic field have only pipe-axis direction 

components, i.e. V⃗⃗ =(0,0,Vz(x,y,t)) and 

B⃗⃗ =(B0f(t),0,Bz(x,y,t)). Thus, the equations of motion 
(for an incompressible, viscous fluid) and the 
magnetic induction equations become  
 

µ ∇2Vz + B0𝑓(𝑡)
1

µe

∂Bz

∂𝑥
=

∂𝑃

∂𝑧
 

 

   
(1) 
 

η ∇2Bz + B0𝑓(𝑡)
∂Vz

∂𝑥
= 0 

 

   
(2) 
 

where µ, µe, and 𝜎 are the coefficient of viscosity, 
magnetic permeability and electrical conductivity, 
respectively. 𝜂=(𝜎 µe)-1 is the magnetic diffusivity. 
The function f(t) describes the profile of the applied 
magnetic field depending on time. 
 
Introducing dimensionless variables  

V=
1

V0
Vz , B=

1

V0 µe
 (𝜎 µ)-1/2 Bz , x’=

𝑥

L0
 , y’=

𝑦

L0
 where 

V0=-(L0)2
∂𝑃

∂𝑧
/ µ is the characteristic (mean-axis) 

velocity and L0 is the characteristic length and 
∂P

∂z
 is 

the pressure gradient. 
 
The governing non-dimensional equations then 
(dropping prime notation) 
 

ΔV + �̅� 
∂𝐵

∂𝑥
= −1 + Re 

∂𝑉

∂𝑡
 

 

   
(3) 
 

ΔB + �̅� 
∂𝑉

∂𝑥
= Rm 

∂𝐵

∂𝑡
 

   
(4) 

 

where M̅=Haf(t) and Ha=B0L0  √σ/μ  is the Hartmann 

number. The non-dimensional parameters  
Re= L0V0 /μ,    Rm= σ L0V0 μe are the Reynolds and 
magnetic Reynolds numbers, respectively. 
 
The duct Ω=[-1,1]x[-1,1] walls have the no-slip 
velocity and they are insulated, i.e.  
 

V(𝑥, 𝑦, 𝑡) = 0,   B(𝑥, 𝑦, 𝑡) = 0, t > 0 (5) 
 

zero initial values for the velocity and the induced 
magnetic field are taken  

V(𝑥, 𝑦, 0) = 0, B(𝑥, 𝑦, 0) = 0  (𝑥, 𝑦) ∊ Ω. (6) 
 
These MHD flow equations (3)-(4) are coupled in 
terms of the velocity V and the induced magnetic field 
B due to the time derivative terms. Thus, they have to 
be solved as a whole. 
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2.2. Application of the Drbem  
 
The coupled MHD flow equations in (3)-(4) are 

rewritten to leave the Laplacian terms alone 

ΔV = −1 + Re 
∂𝑉

∂𝑡
  −   �̅̅̅� 

∂𝐵

∂𝑥
 

 

(7) 
 

ΔB = Rm 
∂𝐵

∂𝑡
  −  �̅� 

∂𝑉

∂𝑥
 (8) 

 
in Ω x [0, ∞).           

Then, the DRBEM procedure can be used with the 

fundamental solution of Laplace's equation u*= 
ln(1/r)

2π  
 

given in [8]. The weighted residual statement is 

obtained after applying Green's second identity twice 

as 

𝑐𝑖𝑉𝑖 + ∫ 𝑞∗𝑉𝑑Γ
Γ

−   ∫ 𝑢∗ 
∂𝑉

∂𝑛
 𝑑Γ

Γ
=  

−∫ (−1 + 𝑅𝑒
𝜕𝑉

𝜕𝑡
− �̅�

𝜕𝐵

𝜕𝑥
)

Ω

 𝑢∗ 𝑑Ω 

 

(9) 

𝑐𝑖𝐵𝑖 + ∫𝑞∗𝐵𝑑Γ
Γ

−  ∫ 𝑢∗ 
∂𝐵

∂𝑛
 𝑑Γ

Γ

= 

  

−∫ (𝑅𝑚
𝜕𝐵

𝜕𝑡
− �̅�

𝜕𝑉

𝜕𝑥
)

Ω

𝑢∗𝑑Ω 

 

(10) 

where q∗ stands for normal derivative of u∗ as 
∂u∗ 

∂n
. 

The coefficient ci is either 0.5 or 1 depending the 
source point i is on the boundary or inside the region 
Ω, respectively. i=1,…,N, N denotes the number of 
constant boundary elements. 
 
The integrands of the domain integrals are 
considered as inhomogeneities. These 
inhomogeneous terms are expanded as 

 

𝑏1(𝑥, 𝑦) = (−1 + 𝑅𝑒
𝜕𝑉

𝜕𝑡
− �̅�

𝜕𝐵

𝜕𝑥
)

= ∑ 𝛼𝑗

𝑁+𝐿

𝑗=1

𝑓𝑗(𝑥, 𝑦) 
(11) 

 

𝑏2(𝑥, 𝑦)  = (𝑅𝑚
𝜕𝐵

𝜕𝑡
− �̅�  

𝜕𝑉

𝜕𝑥
)  

= ∑ β𝑗

𝑁+𝐿

𝑗=1

f𝑗(𝑥, 𝑦) 
(12) 

 

where fj(x,y)'s are the radial basis functions which 

are connected to ûj  through  𝛁2ûj= fj=1+rij, the 
unknown coefficients αj's  and βj's are undetermined 

constants.  rij denotes distance between the points i 

and j where i,j = 1,...,N+L.  fj  is assumed to be varying 

linearly. 
 
Substituting  fj=  𝛁2 ûj into the equations (11)-(12) 

and then applying Green's second identity twice 
result in  
 

𝑐𝑖𝑉𝑖 + ∫ 𝑞∗𝑉𝑑
𝛤

𝛤 − ∫ 𝑢∗  
𝜕𝑉

𝜕𝑛
 𝑑

𝛤
𝛤 =

∑ 𝛼𝑗
𝑁+𝐿

𝑗=1
(𝑐𝑖  ûij+ ∫ 𝑞∗û𝑗   𝑑𝛤

𝛤 – ∫ 𝑢∗ �̂�𝑗  𝑑𝛤
𝛤) 

 

(13) 

𝑐𝑖𝐵𝑖 + ∫ 𝑞∗𝐵𝑑
𝛤

𝛤 − ∫ 𝑢∗  
𝜕𝐵

𝜕𝑛
 𝑑

𝛤
𝛤 =

∑ 𝛼𝑗
𝑁+𝐿

𝑗=1
(𝑐𝑖ûij+ ∫ 𝑞∗û𝑗   𝑑𝛤

𝛤 – ∫ 𝑢∗ �̂�𝑗  𝑑𝛤
𝛤) 

(14) 

 

where q̂j =  
∂ûj 

∂n
 . 

 
Taking the vectors  ûj , q̂j and fj as columns, 

respectively, one can construct the (N+L) x (N+L) 
matrices Û, Q̂ and coordinate matrix  𝐅. Collocating 
the functions b1(x,y) and b2(x,y) at N+L points gives 
𝐛1,  𝐛2 vectors and two sets of linear equations as 
𝐛𝟏 = 𝐅𝛂, 𝐛𝟐 = 𝐅𝛃. Thus, the following matrix-vector 
form equations emerged as 
 

𝑯𝑽 − 𝑮 
𝝏𝑽 

𝝏𝒏
= (H Û-G Q̂) 𝑭−1 {-1+ 𝑹𝒆

𝝏𝑽

𝝏𝒕
−

�̅� 
𝝏𝑩

𝝏𝒙
} 

   
(15) 
 

 

𝑯𝑩 − 𝑮 
𝝏𝑩 

𝝏𝒏
 = (H Û-G Q̂)  𝑭−1 { 𝑹𝒎

𝝏𝑩

𝝏𝒕
−

�̅� 
𝝏𝑽

𝝏𝒙
} 

 (16)  

    

where 𝐕 and 𝐁, 
∂𝐕 

∂n
 and 

∂𝐁

∂n
,-1,  

∂𝐕 

∂t
 and  

∂𝐁 

∂t
 are (N+L)x1 

vectors. 

The entries of the enlarged 𝐇 and 𝐆 matrices are 
given as [8] 

 

𝐻𝑖𝑗 = 𝑐𝑖𝛿𝑖𝑗 +
1

2𝜋
∫   

𝜕 

𝜕𝑛
 ln(1/𝑟) 𝑑𝛤𝑗

𝛤𝑗

 

   𝐻𝑖𝑖 = − ∑ 𝐻𝑖𝑗

𝑁

𝑗=1,𝑗≠𝑖

 

𝐺𝑖𝑗 = 
1

2𝜋
∫   ln(1/𝑟) 𝑑𝛤𝑗
𝛤𝑗

 

𝐺𝑖𝑖 =
𝑙

2𝜋
(ln (

2

𝑙
) + 1) 

 

 

 
 
 
 
 

(17) 

where δij is Kronecker delta function and l denotes 

elements length. 
 
The coordinate derivatives of 𝐕 and 𝐁 with respect to 
x are approximated as 
 

   
𝜕𝑽 

𝜕𝑥
=

𝜕𝑭 

𝜕𝑥
  𝑭−1𝑽    and    𝜕𝑩 

𝜕𝑥
=

𝜕𝑭 

𝜕𝑥
  𝑭−1 𝑩. (18) 
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Euler's method is used to approximate the time 
derivatives in (15)-(16) as 
 

𝜕𝑉 

𝜕𝑡
=

 𝑉𝑛+1 − 𝑉𝑛

𝛥𝑡
   and     𝜕𝐵 

𝜕𝑡
=

 𝐵𝑛+1 − 𝐵𝑛

𝛥𝑡
 (19) 

 
where Δt and n are the time increment and iteration 
level, respectively. 
 
Then, the equations in (15)-(16) are written for an 
increasing time levels as 

 

(𝑯 − 𝑲
𝑹𝒆 

𝛥𝑡
) 𝑽𝑛+1 − 𝑮 

𝝏 𝑽𝑛+1 

𝝏𝒏
 

          +K (�̅�
𝜕𝑭 

𝜕𝑥
 𝑭−1 𝑩𝑛+1)=K(-1- 

𝑹𝒆 

 𝛥𝑡
 𝑽𝑛) 

 
(20) 

 

(𝑯 − 𝑲
𝑹𝒎 

𝛥𝑡
) 𝐵𝑛+1 − 𝑮 

𝝏 𝑩𝑛+1 

𝝏𝒏
 

+K(�̅�
𝜕𝑭 

𝜕𝑥
 𝑭−1 𝑽𝑛+1)=K( - 

𝑹𝒎 

𝛥𝑡
 𝑩𝑛) 

 
(21) 

 
where matrix K denotes (H Û-G Q̂) 𝐅−1  . 
 
The equations (20)-(21) are rearranged for obtaining 
the solution vectors  𝐕n+1 ,   𝐁n+1 ,   iteratively 
 

𝑯𝟏 𝑽𝑛+1 − 𝑮 
𝝏 𝑽𝑛+1 

𝝏𝒏
 + R 𝑩𝑛+1 = b1 (22) 

 

𝑯𝟐 𝑩𝑛+1 − 𝑮 
𝝏 𝑩𝑛+1 

𝝏𝒏
 + R 𝑽𝑛+1 = b2 (23)  

 

where  𝑯𝟏 = 𝑯 − 𝑲
𝑹𝒆 

𝛥𝑡
,   𝑯𝟐 = 𝑯 − 𝑲

𝑹𝒎 

𝛥𝑡
,  

R=K(�̅�
𝜕𝑭 

𝜕𝑥
𝑭−1),   b1= K  (-1- 

𝑹𝒆 

𝛥𝑡
 𝑽𝑛)  and 

b2= K  (- 
𝑹𝒎 

𝛥𝑡
𝑩𝑛) .  

 
The matrix-vector equations (22)-(23) are solved 
together in coupled form by constructing the 
following large system as 
 

[
𝑯𝟏 𝑹
𝑹 𝑯𝟐

] [ 𝑽
𝑛+1

 𝑩𝑛+1]=[
𝑮 𝟎
𝟎 𝑮

] [

𝜕 𝑽𝑛+1 

𝜕𝑛

𝜕 𝑩𝑛+1 

𝜕𝑛

]+[
𝒃𝟏

𝒃𝟐
] (24) 

 

where 𝑯𝟏, 𝑯𝟐, 𝑹 and 𝑮 are (N+L) x (N+L) matrices. 
𝟎 denotes zero matrix with size (N+L) x (N+L).  
Shuffled for obtaining the unknown entries of V, B 

and 
∂ 𝐕

 ∂n
, 
∂𝐁 

 ∂n
 vectors inside the region and on the 

boundary of the duct, respectively. The shuffled 
equations are solved iteratively starting from zero 
initials. 

The matrix-vector system must be solved at once for 
obtaining unknowns V and B values. That means, the 
enlarged system can not be tranformed into decopled 
form as in the study [7] since there are Re and Rm 
coefficients different from 1 in front of the time 
derivatives of V and B. Thus, the equations must be 
solved in coupled form.  
 
3. Results 
 
N=200 constant boundary elements and L=2500 
interior nodes are used to discretize the cross-section 
of the pipe Ω=[-1,1] x [-1,1]. Using polynomial, 
exponential, logarithmic and trigonometric function 
f(t), the velocity and induced current values are 
obtained at transient time levels for Ha=20. The 
computations are carried with Δt = 0.01. The velocity 
and induced current profiles in pipe-axis direction 
are simulated at transient time levels to observe the 
effect of Re and Rm. The flow behavior is examined for 
the increase in the values of Rm as 1,3,5 when Re=1 in 
Figure 1. The applied magnetic field varies 
exponentially in time, i.e f(t)=et. Figure 1 shows the 
time levels tn where the flow elongates (central 
vortex turns to be alligned parallel to the applied 
magnetic field direction) for each value of Rm. 
Actually, the flow elongates at tn=0.10,0.15,0.19 for 
Rm=1, 3 and 5, respectively. One can deduce from 
Figure 1 that, as Rm increases the elongation time 
level is postponed to an increasing time level and also 
the magnitude of the flow increases as the value of Rm 
increases. The effect of increasing Rm (Rm ≠1) is seen 
after the elongation, that is, the flow circulates in 
front of the Hartmann walls and then settles down 
parallel to the applied magnetic field direction with a 
drop in its magnitude. 
 
Figure 2 represents the flow behavior as Re values 
increasing for the time-varied function f(t)=et. The 
Reynolds number values are taken as Re=5,10,25 for 
Rm=1. The flow behaviors are presented at different 
time levels tn where the flow elongates for the first 
time as well as the time levels before and after the 
elongations for the increase in Re values. The time 
levels tn=0.20,0.30,0.50 are the values where the flow 
elongates for Re=5,10 and 25, respectively. The 
increase in Re postpones the elongation of the flow to 
a further time level. Moreover, as Re increases the 
magnitude of the flow decreases which is an opposite 
effect on the behavior when it is compared with the 
increase in Rm. 
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Figure 1. Velocity contours, f(t)=e t, Re=1, Rm=1,3,5, Ha=20. 
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Figure 2. Velocity contours, f(t)=e t, Rm=1, Re=5,10,25, Ha=20. 

Figure 3 depicts the velocity and induced current 
behavior for the applied magnetic field varying 
linearly and exponentially in time (f(t)=1+t and 
f(t)=et) with the increase in Rm values as 1,3,5 and 
Re=1 at the elongation time levels.   The first row in 
Figure 3 where Re=Rm=1 shows an agreement with 
decoupled MHD equations which is possible only for 

Re=Rm=1, [7]. The flow elongates almost at the same 
time levels for both linear and exponential functions 
for the same Re and Rm values. Although, the behavior 
of the induced current does not change when Rm 
increases, its magnitude increases as well as the 
increase in the flow magnitude. 
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Figure 3. V, B contours, Re=1, Ha=20. 

Figure 4. V, B contours, Rm=1, Ha=20. 

 
Figure 4 shows the flow and induced current profiles 
for f(t)=1+t and f(t)=et, keeping Rm=1 and for the 
increase in Re values as 5,10 and 25. As Re increases 
the induced current magnitudes decrease similar to 
the decrease in the flow magnitudes. 
 
In Figure 5, the Re and Rm values are taken different 
than one as Re=10, Rm=2. It can be seen that, the flow 
  

 
elongation occurs at tn=0.40 for Re=10 and Rm=2 
which is a postponed time level, with the effect of the 
increase in Rm, compared to the case Re=10 and Rm=1 
given in Figure 4. Since the elongation occurs around 
small time levels (e.g. tn=0.40) the effects of the 
functions f(t)=1+t, f(t)=et are almost the same. They 
may differ for larger values of t but the behavior of 
the flows do not change after the elongations. 
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Figure 5. V, B contours, Re=10, Rm=2, Ha=20.  
 

Figure 6. V, B contours, f(t)=cos(2t), Re=Rm=1, Ha=20. 

Figure 6 stands to validate again our solution of the 
coupled MHD flow equations for Re=Rm=1 with 
f(t)=cos(2πt), with the solution in [7] obtained from 
the decoupled MHD equations. The period of the flow 
is again seen as 0.5. Then, Figure 7 depicts the 
profiles of the velocity and induced current for Re=1, 
Rm=2 and Re=5, Rm=1, respectively. In both cases, the 
first time level exhibits elongation of the flow for the 
first time. Once more, the elongation time level is 
postponed when compared to Figure 6. The period of 

f(t)=cos(2πt) does not change with the changes in the 
values of Re and Rm staying again 0.5. 

The flow and induced current profiles are 
demostrated at further transient time levels for 
f(t)=cos(2πt), when Re=5 and Rm=2 in Figure 8. It is 
confirmed that the period of the flow for the 
elongation is really 0.5. The periodic effect of f(t) can 
be seen on the flow behavior in Figures 6-8 as the 
flow is repeating itself. 
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Figure 7. V, B contours for f(t)= cos(2 t), Ha=20. 

 
Figure 8. V, B contours for f(t)= cos(2 t), Re=5, Rm=2, Ha=20. 
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Figure 9 represents the flow behavior at different 
time levels for a time-varied function f(t)=1+ln(1+t) 
which is not considered in study [7]. The flow 
elongates at tn=0.11,0.15,0.33 for Re=1=Rm, Re=1, 
Rm=3, and Re=10, Rm=1, respectively, for this type of 
function. Either increasing the value of Re or Rm 
postpones the time level where the flow elongates to 
a further time level. The velocity contours are 

examined before and after the elongation time levels 
for comparison. It is seen that, the flow elongates at a 
certain time level tn and after the elongation the 
Hartmann layers start to be formed. That is, a 
common behavior of the flow is observed for the 
time-varied functions f(t)=1+t, f(t)=et and 
f(t)=1+ln(1+t). 

 

Figure 9. Velocity contours, f(t)= 1+ln(1+t), Ha=20. 

4. Discussions and Conclusions 
 
The unsteady MHD duct flow behavior controlled by 
a time dependent magnetic field B0(t)=B0f(t) is 
investigated. The problem parameters, Re and Rm 

effects on the flow are examined for a fixed Hartmann 
number value as 20 by taking Re as 5,10,25 and Rm as 
1,3,5. The velocity and induced current profiles are 
visualized using polynomial, exponential, logarithmic 
and trigonometric types time-varied function f(t). 
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The study reveals that, when Rm increases the flow 
magnitude increases up to the time level where the 
flow elongates, however, as Re increases the flow 
magnitude decreases. The increases in Re and Rm 
postpone the elliptical elongation of the flow to 
further time levels which are observed as a common 
behavior of the flow for each type function 
considered. 
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