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Abstract
We propose a consistent test for testing the distribution of bivariate random samples. The
probability of type I, type II errors and probability of making no decisions under null and
alternative hypotheses are obtained based on copula functions. The consistency of the
proposed test is discussed under some null and alternative hypotheses. An unbiased, con-
sistent estimator is proposed for probability of making no decision. Moreover, a simulation
study is performed for showing the consistency of the proposed test for some well-known
copulas such as independent, Clayton, Gumbel, Frank and Farlie-Gumbel-Morgenstern.
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1. Introduction
One of the classical and important problems of mathematical statistics is two sample

problem which has many applications in different areas such as biology, medicine, econom-
ics, ecology and engineering. This problem aroused the interest of many researchers and
there is a tremendous number of research works dealing with two sample problems in the
univariate cases. With the developments of machine learning methods in classifications
of statistical data, this problem becomes attractive to many researchers. The classical
statement of the problem considers two training samples from two populations and a con-
trol sample which must be classified to one of these populations. The classical theory of
hypothesis testing offers many interesting criteria based on distances between distribution
functions, such as Kolmogorov-Smirnov, Cramer-Von Mises, Chi-square etc. Using these
criteria the researchers accept or reject the hypothesis asserting that the control sample
belongs to one of two populations and calculating the probability of miss classification
expressed in probabilities of type I and type II errors. The consistency and efficiency of
criteria are subject to the large sample sizes are also important.

In machine learning, classification based on a rejection option is widely preferred. In
rejection option technique, if the patterns are most likely misclassified, then they are
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rejected (i.e., they are not classified). Then these unclassified patterns can be treated
by more advanced classification techniques or they can be left to human operators for
classification. As a result the researcher is averted from cost of making unreliable decisions.
Fumera et al. [12] proposed multiple rejection thresholds related to the data classes. Herbei
and Wegkamp [13] studied on a binary classification method with a rejection option which
is constructed on plug-in rules and empirical risk minimizers. For more studies about the
rejection option we also refer to [17,18,21,27]

In a univariate case Bairamov and Petunin [2] proposed a consistent nonparametric test
based on univariate training samples which are relied on the order statistics (OSs) and use
of different test procedure. The null hypothesis assumes that the control sample belongs
to one of the populations. It may be accepted or rejected if the control sample belongs to
one of two intervals determined by OSs of training samples. If the control sample doesn’t
belong to the first or second interval, then no decision is taken and further investigations
are required. The test is said to be consistent if probability of type I and type II errors
both become infinitely small and if the sample size increases, the probability of making
no decision is not one.

Computer-aided diagnostic systems are very important in medical sciences, when the
diseases are diagnosed on the base of training samples of complex of symptoms of two
groups of patients diagnosed with the disease A and B, respectively. The control sample
is the complexes of symptoms of new patient who is determined to suffer with one of the
diseases A or B and must be diagnosed to A or B by computer-aided diagnosis system.
For example, A may be diabetes with normal blood sugar level (Diabetes Insipidus) and B
may be diabetes with high blood sugar level (Diabetes Mellitus). However, in some cases
it can be difficult to diagnose the case by a computer-aided diagnostic system. In such
cases, the cases are examined by the expert as an advanced stage. Thus, the workload
of the experts is reduced and the loss of time is minimized. If the probability of type I
and type II errors are small and the probability of making no decision is large, the patient
should be investigated in more detail until a correct diagnosis is made. For studies about
the applications of rejection option in medicine, we refer to [7, 14,19].

There are many interesting recent papers in statistical literature related to equality of
two probability distributions, see, e.g., [1, 23–25]. Jiménez-Gamero et al. [15] proposed a
test for testing equality of distribution of two samples based on empirical characteristic
functions. Similarly, Alba-Fernández et al. [1] studied on a test statistic which relies
on probability generating function. For more recent studies about univariate two-sample
problems we also refer to [20].

In the case of bivariate observations, nonparametric two sample problem has not been
studied much. These type of tests naturally involve the bivariate OSs and concomitants
of order statistics. The theory of bivariate OSs is closely related to bivariate binomial
distributions. Eryilmaz and Bairamov [10] studied the distribution of the bivariate training
sample ranks of OSs and its concomitants. For some recent work on this topic we can
refer to [4, 16]. There are some works dealing with the bivariate OSs and concomitants.
Kemalbay and Bayramoglu [16] considered the joint distribution of ranks of OSs based
on bivariate random samples. Stoimenova and Balakrishnan [24] also dealt with the two
sample problem constructing a consistent test using precedence and exceedance statistics.
Afterwards, Erem and Bayramoglu [9] obtained the exact and asymptotic distributions of
exceedance statistics based on bivariate random sequences. Recently, Erem [8] proposed
bivariate two sample test based on exceedance statistics for testing equality of two copula
functions. For more results on the studies investigating the equality of two copula functions
we refer to [6, 22]. Also, Susam and Ucer [26] studied the independency of Archimedean
copulas based on Bernstein estimate of Kendall distribution function.

In this paper we consider two sample problem for bivariate observations. Similar to
Bairamov and Petunin [2] considering univariate case, we construct statistical tests based
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on bivariate OSs for bivariate random samples. We divide a possible set of training samples
into three mutually exclusive sets. If the control sample belongs to the first set we accept
the null hypothesis. If it belongs to the second set we reject it and if it belongs to third
set we do not make any decision and further investigations are made. The probabilities of
type I and type II errors and also the probability of making no decision are calculated. The
unbiased and consistent estimators for probability of not making a decision are constructed.
The test proposed in this work can be used in many applications, in particular may be
successful in the case of small sample observations.

In this paper we propose a test statistic for testing the equality of two copula functions
based on bivariate OSs of training samples. In Section 2 problem statement and test
procedure are introduced. Under some cases, the consistency of the test is discussed based
on probability of type I, type II errors and probability of making no decision. In Section
3 an unbiased and consistent estimator for probability of making no decision is proposed.
Finally in Section 4, a simulation study is performed for probability of type I, type II errors
and probability of making no decision under some well-known copulas such as independent,
Clayton, Frank, Gumbel and Farlie-Gumbel-Morgenstern (FGM) copulas.

2. Problem statement and the test procedure

Let Z1 =
{(

X
(1)
k , Y

(1)
k

)
, k = 1, 2, ..., n

}
be a sequence of independent random variables

with joint cumulative distribution function (cdf) F (x, y) = C1 (FX (x) , FY (y)) , where
C1(u, v), (u, v) ∈ [0, 1]2 is a connecting copula and FX(x), FY (y) are the marginal cdf’ s
of X and Y, respectively. Furthermore, let Z2 =

{(
X

(2)
k , Y

(2)
k

)
, k = 1, 2, ..., n

}
be another

sequence of independent random variables with joint cdf G (x, y) = C2 (FX (x) , FY (y)) ,

where C2(u, v), (u, v) ∈ [0, 1]2 is a connecting copula and FX(x), FY (y) are the marginal
cdf’ s of X and Y, respectively. Let f (x, y) = ∂2F (x,y)

∂x∂y , g (x, y) = ∂2G(x,y)
∂x∂y , fX(x) = dFX(x)

dx

and fY (y) = dFY (y)
dy . We assume that Z1 and Z2 are independent and we call them the

training samples from populations with joint cdfs F and G, respectively.
Let Z = {(X1, Y1) , ..., (Xn, Yn)} be a control sample with joint distribution function

H (x, y) = C (FX (x) , FY (y)) , where C(u, v), (u, v) ∈ [0, 1]2 is a connecting copula. Recall
Z1, Z2 are training samples and Z is a control sample. Consider the null hypothesis
H0 : H (x, y) = F (x, y) and the alternative hypothesis H1 : H (x, y) = G (x, y) . To test
H0 against alternative H1 we construct a test based on bivariate OSs of the samples Z1
and Z2.

The (i, j)th bivariate OSs of Z1 are defined as (X(1)
i:n , Y

(1)
j:n ), where 1 ≤ i < j ≤ n, X

(1)
1:n ≤

X
(1)
2:n ≤ · · · ≤ X

(1)
n:n and Y

(1)
1:n ≤ Y

(1)
2:n ≤ · · · ≤ Y

(1)
n:n are the OSs of {X

(1)
k , k = 1, 2, ..., n} and

{Y
(1)

k , k = 1, 2, ..., n}, respectively. Similarly, the bivariate (i, j)th order statistics of Z2 is
(X(2)

i:n , Y
(2)

j:n ), where X
(2)
1:n ≤ X

(2)
2:n ≤ · · · ≤ X

(2)
n:n and Y

(2)
1:n ≤ Y

(2)
2:n ≤ · · · ≤ Y

(2)
n:n are the OSs of

{X
(2)
k , k = 1, 2, ..., n} and {Y

(2)
k , k = 1, 2, ..., n}, respectively.

We assume that X
(1)
1:n ≤ X

(2)
1:n and X

(1)
n:n ≤ X

(2)
n:n. Similarly Y

(1)
1:n ≤ Y

(2)
1:n and Y

(1)
n:n ≤ Y

(2)
n:n .

2.1. The test
Let E1 ≡ E1 (X, Y ) =

(
−∞, X

(2)
1:n

)
×
(
−∞, Y

(2)
1:n

)
and E2 ≡ E2 (X, Y ) =

(
X

(1)
n:n, ∞

)
×(

Y
(1)

n:n , ∞
)

. The test T (n, r) (1 < r < n) for testing H0 against H1 is defined as follows:

(1) Accept the hypothesis H0 if at least r of the sample values of Z are in E1.
(2) Accept H1 if at least r of the sample values of Z are in E2.
(3) In all other cases no decision is made about H0 and H1.
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Since the sets E1 and E2 are disjoint, the alternatives 1 and 2 can not be observed at
the same time. The graphical illustration of E1 and E2 is given in Figure 1.

Figure 1. Graphical illustration of critical set.

Remark. To apply this test we need the following conditions:

X
(1)
1:n ≤ X

(2)
1:n and X(1)

n:n ≤ X(2)
n:n, similarly Y

(1)
1:n ≤ Y

(2)
1:n and Y (1)

n:n ≤ Y (2)
n:n . (2.1)

One of the referees rightly observes that the condition in Equation (2.1) is restrictive and
will put strong relationship between two distribution functions F and G. This condition
is satisfied in some situations if the training samples are not separated from each other,
they are mixed. The verification of this condition is not difficult, because it is put on
the data and required to check the training samples. The test can be applied and will
be consistent if this condition is satisfied. In many practical applications the data from
different samples are mixed, not separated. Alternatively, if

X
(2)
1:n ≤ X

(1)
1:n and X(2)

n:n ≤ X(1)
n:n, similarly Y

(2)
1:n ≤ Y

(1)
1:n and Y (2)

n:n ≤ Y (1)
n:n ,

then the test procedure will be applied by changing places of the training samples Z1 and
Z2. In the case when the training samples are separated, i.e.

X(1)
n:n ≤ X

(2)
1:n and Y (1)

n:n ≤ Y
(2)

1:n ,

and in other cases not satisfying (2.1) different test procedures can be investigated and
applied.

Definition 2.1. The test T (n, r) based on bivariate training samples Z1, Z2 and control
sample Z, is called consistent if probability of making no decision (ND) given that the
hypothesis Hi, i = 0, 1 (P (ND | Hi)) is true, is less than 1, i.e. P (ND | Hi) < 1, i = 0, 1
and the probability of type I and type II errors tend to zero when the sample size n
increases to infinity.
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2.2. The probability of type I error
The probability of type I error αn of the test T (n, r) can be calculated as follows:

αn = P {H1 | H0}

= P
{

at least r of the sample values in Z are in
(
X(1)

n:n, ∞
)

×
(
Y (1)

n:n , ∞
)

| H(x, y) = F (x, y)
}

= P
{

Xn−r+1:n > X(1)
n:n, Yn−r+1:n > Y (1)

n:n | H(x, y) = F (x, y)
}

=
∫ ∞

−∞

∫ ∞

−∞
[F (t, s)]n fXn−r+1:n,Yn−r+1:n(t, s)dtds, (2.2)

where fXn−r+1:n,Yn−r+1:n is probability density function (pdf) of X
(1)
n−r+1:n and Y

(1)
n−r+1:n in

training sample Z1. The joint pdf fXn−r+1:n,Yn−r+1:n of bivariate OSs X
(1)
n−r+1:n and Y

(1)
n−r+1:n

is studied in [3] and [16] has the following form:

fXn−r+1:n,Yn−r+1:n(t, s) =
a2∑

t1=a1

l1 [F (t, s)]t1 [(FX (t) − F1 (t, s)) (FY (s) − F1 (t, s))]n−r−t1

×
[
F (t, s)

]2r−n−1+t1
f (t, s) +

d2∑
t4=d1

c2∑
t2=c1

b2∑
t1=b1

l2 [F (t, s)]t1

× [(FX (t) − F (t, s))]n−r−t1−t2 [(FY (s) − F (t, s))]n−r−t1−t4

×
[
F (t, s)

]2r−n+t1+t2+t4−2 [
F .,1 (t, s)

]t2 [
fY (s) − F .,1 (t, s)

]1−t2

×
[
F 1,. (t, s)

]t4 [
fX (t) − F 1,. (t, s)

]1−t4
, (2.3)

where a1 = max (0, n − 2r + 1) , a2 = n − r, b1 = max (0, n − 2r + 2 − t2 − t4) , b2 =
min (n − r − t2, n − r − t4) , c1 = max (0, 2 − r) , c2 = min (1, n − r) , d1 = max (0, 2 − r) ,
d2 = min (1, n − r) ,

F 1,. (t, s) = ∂F1 (t, s)
∂t

,

F .,1 (t, s) = ∂F1 (t, s)
∂s

,

and the constants l1 and l2 are

l1 = n!
t1! [(n − r − t1) ! ]2 (2r − n + t1 − 1) !

,

l2 = n!
t1! (n − r − t1 − t2) ! (n − r − t1 − t4) ! (2r − n − 2 + t1 + t2 + t4) !

.

2.3. The probability of type II error
The probability of Type II error βn of the test T (n, r) can be calculated as follows:

βn = P {H0 | H1}

= P
{

at least r of the sample values in Z are in
(
−∞, X

(2)
1:n

)
×
(
−∞, Y

(2)
1:n

)
| H(x, y) = G (x, y)

}
= P

{
Xr:n < X

(2)
1:n, Yn−1:n < Y

(2)
1:n | H(x, y) = G (x, y)

}
=
∫ ∞

−∞

∫ ∞

−∞

[
G(t, s)

]n
gXr:n,Yr:n (t, s) dtds, (2.4)
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where gXr:n,Yr:n (t, s) is pdf of X
(2)
r:n and Y

(2)
r:n in training sample Z2 and G(t, s) = 1 −

FX (t) − FY (s) + G (t, s) .

2.4. Consistency of the test
By using Equations (2.2) and (2.4) we have the following theorems.

Theorem 2.2. The test T (n, n − 1) is consistent under the following hypotheses

H0 : C (u, v) = C1(u, v) = uv

H1 : C (u, v) = C2(u, v).

Proof. See Appendix A. �

In Figure 2, the plot of αn is provided for C1(u, v) = uv.

Figure 2. The plot of αn for C1 (u, v) = uv.

Theorem 2.3. The test T (n, n − 1) is consistent under H0 : C (u, v) = C1(u, v) against
H1 : C (u, v) = C2(u, v) = uv.

Proof. See Appendix B. �

In Figure 3, the plot of βn is provided for C2(u, v) = uv.

Figure 3. The plot of βn for C2 (u, v) = uv.
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3. An unbiased and consistent estimator of probability of making no de-
cision

In this section, an unbiased and consistent estimator of probability of making no de-
cisions under the null and alternative hypotheses (P {ND | H0} and P {ND | H1}) are
constructed. Here, ND denotes the event making no decision. By constructing the un-
biased and consistent estimator, the investigator can make inference on probability of
making no decision under the null hypothesis before using T (n, n − 1) test.

Firstly consider the unbiased and consistent estimator of P {ND | H0} under the fol-
lowing hypotheses:

H0 : C (u, v) = C1(u, v) = uv

H1 : C (u, v) = C2(u, v).

Let A denotes the event that at least r of the sample values of Z are in
(
−∞, X

(2)
1:n

)
×(

−∞, Y
(2)

1:n

)
and B denotes the event at least r of the sample values of Z are in

(
X

(1)
n:n, ∞

)
×(

Y
(1)

n:n , ∞
)

. The events A and B are mutually exclusive events. Then by using Equation
(A.4) in Appendix A, we have

P {ND | H0} = 1 − αn − P {A | H0} , (3.1)
where

αn = n (n − 1)2 (n + 1) (n − 2) !
4nA (n)

+
(
n2 − 1

)
(n − 1) ! (n + 1) !

4n (A (n))2 .

Since P {A | H0} consists of a double integral which depends on unknown copula func-
tion Ĉ2 (1 − u, 1 − v) , an estimator for estimating the integral based on training samples
Z1 and Z2 are constructed. The following sampling scheme is considered for bivariate
training sample Z1. We divide Z1 sequentially into l =

[
n
k

]
parts, such that

Z1 =
{(

X
(1)
1 , Y

(1)
1

)
, ...,

(
X

(1)
k , Y

(1)
k

)
,
(
X

(1)
k+1, Y

(1)
k+1

)
, ...,

(
X

(1)
2k , Y

(1)
2k

)
, ...,

(
X

(1)
k(l−1), Y

(1)
k(l−1)

)
, ...,

(
X

(1)
kl , Y

(1)
kl

)}
,

and each sequential group is called as a subgroup of bivariate training sample of Z1. Then,
the OSs of i-th subgroup of training sample Z1 with a sample size of k is

X
(1)
i1:n

≤ X
(1)
i2:n

≤ · · · ≤ X
(1)
ik:k

Y
(1)

i1:n
≤ Y

(1)
i2:n

≤ · · · ≤ Y
(1)

ik:k
.

Define the event Ai as at least k−1 of i−th subgroup of Z1 is in
(
−∞, X

(2)
1:n

)
×
(
−∞, Y

(2)
1:n

)
.

Then
P (Ai) = P

{
at least k − 1 of i − th subgroup of Z1 is in

(
−∞, X

(2)
1:n

)
×
(
−∞, Y

(2)
1:n

)}
= P

{
X

(1)
ik−1:k

< X
(2)
1:n, Y

(1)
ik−1:k

< Y
(2)

1:n

}
=
∫ ∞

−∞

∫ ∞

−∞

[
G (t, s)

]n
fXk−1:k,Yk−1:k (t, s) dtds. (3.2)

Let define the binary random variable ξi as follows:

ξi =
{

1 if event Ai occurs,
0 if event Ai does not occur,

then Sl = ξ1 + ξ2 + ... + ξl denotes the number of events Ai’ s within l outcomes. It is
clear that P {ξi = 1} = P (Ai) and P {ξi = 0} = 1 − P (Ai). From Equation (3.2) we can
observe that P (Ai) is equiprobable for i = 1, 2, ..., l. Let h = Sl

l and P (Ai) = p. Then

E (h) = 1
l
E (Sl) = E (ξi) = p.



216 A. Erem, I. Bayramoglu

Therefore, h = Sl
l is an unbiased estimator for P {A | H0} in Equation (3.1). Now consider

the variance of statistic h

V (h) = 1
l2

V (Sl)

= 1
l2

 l∑
i=1

V (ξi) + 2
l∑

i=1

l∑
j=1

Cov (ξi, ξj)


= 1

l2

(
lp (1 − p) + 2

(
l

2

)
Cov (ξi, ξj)

)

= p (1 − p)
l

+ l − 1
l

[
P (AiAj) − E (ξi)2

]
= p (1 − p)[

n
k

] +
[

n
k

]
− 1[

n
k

] [
P (AiAj) − p2

]
,

where P (AiAj) = p {ξi = 1, ξj = 1} .

P (AiAj) = P
{

X
(1)
ik−1:k

< X
(2)
1:n, Y

(1)
ik−1:k

< Y
(2)

1:n , X
(1)
jk−1:k

< X
(2)
1:n, Y

(1)
jk−1:k

< Y
(2)

1:n

}
=
∫ ∞

−∞

∫ ∞

−∞
P
{

X
(1)
ik−1:k

< t, Y
(1)

ik−1:k
< s, X

(1)
jk−1:k

< t, Y
(1)

jk−1:k
< s
}

gX1:n,Y1:n (t, s) dtds

=
∫ ∞

−∞

∫ ∞

−∞
P
{

X
(1)
ik−1:k

< t, Y
(1)

ik−1:k
< s
}

P
{

X
(1)
jk−1:k

< t, Y
(1)

jk−1:k
< s
}

gX1:n,Y1:n (t, s) dtds

=
∫ ∞

−∞

∫ ∞

−∞

[
FXk−1:k,Yk−1:k (t, s)

]2
gX1:n,Y1:n (t, s) dtds, (3.3)

where FXk−1:k,Yk−1:n (t, s) is the joint cdf of bivariate OSs X
(1)
k−1:k and Y

(1)
k−1:k in i-th sub-

group of training sample Z1 with a sample size of k. Also gX1:n,Y1:n (t, s) is pdf of X
(2)
1:n and

Y
(2)

1:n in training sample Z2. By probability integral transformation, Equation (3.3) can be
written for C1 (u, v) = uv as follows:

P (AiAj) =
∫ 1

0

∫ 1

0
[Ck,k (u, v)]2

{
n
[
Ĉ2 (1 − u, 1 − v)

]n−1
c2 (u, v)

+n (n − 1)
[
Ĉ2 (1 − u, 1 − v)

]n−2 (
1 − C .,1

2 (u, v)
) (

1 − C1,.
2 (u, v)

)}
dudv,

where Ĉ2 (1 − u, 1 − v) = 1 − u − v + C2(u, v), c2 (u, v) = ∂2C2(u,v)
∂u∂v and

Ck,k (u, v) =
k∑

i=k−1

k∑
j=k−1

min(i,j)∑
l=max(0,i+j−k)

k!
l! (i − l) ! (j − l) ! (k − i − j + l) !

[C1(u, v)]l [u − C1 (u, v)]i−l

× [v − C1(u, v)]j−l [1 − u − v + C1 (u, v)]k−i−j+l
.

Then it is obvious that limn→∞ P (AiAj) = 0. Therefore, limn→∞ V (h) = 0.
So an unbiased and consistent estimator of P {ND | H0} under the following null and

alternative hypotheses
H0 : C (u, v) = C1 (u, v) = uv

H1 : C (u, v) = C2 (u, v)
is given by

t0 (n) = 1 −
[

n (n − 1)2 (n + 1) (n − 2) !
4nA (n)

+
(
n2 − 1

)
(n − 1) ! (n + 1) !

4n (A (n))2 + h

]
. (3.4)

In a similar way, one can also construct an unbiased and consistent estimator for
P {ND | H1}. Define the event Bi as at least k−1 of i−th subgroup of Z2 is in

(
X

(1)
1:n, ∞

)
×
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(
Y

(1)
1:n , ∞

)
. Then an unbiased and consistent estimator of P {ND | H1} under the following

null and alternative hypotheses
H0 : C (u, v) = C1 (u, v)
H1 : C (u, v) = C2 (u, v) = uv

is given by

t1 (n) = 1 −
[

n (n − 1)2 [(n − 2) ! ]2 [(n + 1) ! ]2

[(2n) ! ]2
+ (n − 1) (n − 1) ! n! [(n + 1) ! ]2

[(2n) ! ]2
+ h

∗
]

,

where h∗ is proportion of total number of events Bi’ s in l subgroup of Z2. In this section a
simulation study is performed to show the consistency of the test under some well-known
copulas (Independent, Clayton, Frank, Gumbel and FGM) in R programme for different
values of n, r and dependence parameters. The number of repetition is 5000.

Table 1. Probability of type I Error for C1 (u, v) = uv and different values of n and r.

n r α n r α n r α
10 1 0.072 20 1 0.0462 40 1 0.0192
10 2 0.0078 20 2 0.0016 40 2 0.0002
10 3 0.0014 20 3 0.0004 50 1 0.0188
10 4 0.0002 30 1 0.029 50 2 0.0006

30 2 0.0012

Table 2. Probability of type I Error for C1 (u, v) is FGM copula and different
values of n, r and θ2.

(n, r) θ2 α (n, r) θ2 α (n, r) θ2 α
(10, 1) −1 0.0224 (20, 1) −1 0.0084 (30, 2) −1 0
(10, 1) 0.5 0.0916 (20, 1) 0.5 0.061 (30, 2) 0.5 0.002
(10, 1) 1 0.1266 (20, 1) 1 0.094 (30, 2) 1 0.0062
(10, 2) −1 0.0002 (20, 2) −1 0.0002 (30, 3) −1 0
(10, 2) 0.5 0.0134 (20, 2) 0.5 0.0052 (30, 3) 0.5 0.0002
(10, 2) 1 0.0232 (20, 2) 1 0.0088 (30, 3) 1 0.0006
(10, 3) −1 0.0002 (20, 3) −1 0 (50, 1) −1 0.001
(10, 3) 0.5 0.0028 (20, 3) 0.5 0.0004 (50, 1) 0.5 0.027
(10, 3) 1 0.005 (20, 3) 1 0.002 (50, 1) 1 0.0388
(10, 4) −1 0 (30, 1) −1 0.0028 (50, 2) −1 0
(10, 4) 0.5 0.004 (30, 1) 0.5 0.0412 (50, 2) 0.5 0.0012
(10, 4) 1 0.006 (30, 1) 1 0.052 (50, 2) 1 0.0022

Table 3. Probability of type I Error for C1 (u, v) is Clayton copula and different
values of n, r and θ1.

(n, r) θ1 α (n, r) θ1 α (n, r) θ1 α (n, r) θ1 α
(10, 1) −1 0 (20, 1) −1 0 (30, 1) −1 0 (50, 1) −1 0
(10, 1) 1 0.124 (20, 1) 1 0.0782 (30, 1) 1 0.0618 (50, 1) 1 0.034
(10, 1) 2 0.166 (20, 1) 2 0.1064 (30, 1) 2 0.0774 (50, 1) 2 0.0578
(10, 2) −1 0 (20, 2) −1 0 (30, 2) −1 0 (50, 2) −1 0
(10, 2) 1 0.023 (20, 2) 1 0.0104 (30, 2) 1 0.0032 (50, 2) 1 0.0024
(10, 2) 2 0.0352 (20, 2) 2 0.018 (30, 2) 2 0.0116 (50, 2) 2 0.006
(10, 5) −1 0 (20, 3) −1 0 (30, 3) −1 0 (50, 3) −1 0
(10, 5) 1 0 (20, 3) 1 0.0016 (30, 3) 1 0.0012 (50, 3) 1 0
(10, 5) 2 0.0012 (20, 3) 2 0.0036 (30, 3) 2 0.0016 (50, 3) 2 0.0006

In Tables 1-3, probability of type I error are provided under the following hypotheses:
H0 : C (u, v) = C1(u, v) = uv

H1 : C (u, v) = C2(u, v),
(3.5)
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H0 : C (u, v) = C1(u, v) = uv (1 + θ2 (1 − u) (1 − v)) , − 1 ≤ θ2 ≤ 1, (FGM copula)
H1 : C (u, v) = C2(u, v),

(3.6)

H0 : C (u, v) = C1(u, v) = max
([

u−θ1 + v−θ1 − 1
]− 1

θ1 , 0
)

, θ1 ∈ [−1, ∞) \ {0} , (Clayton copula)

H1 : C (u, v) = C2(u, v),
(3.7)

respectively. From Tables 1-3, it is clear that probability of type I error decreases when
n increases. For fixed values of n, while r increases probability of type I error decreases.
Furthermore for fixed values of n and r, when the dependence parameters (θ1 and θ2)
increases, probability of type I error also increases. Similar conclusions can be done from
Tables 4-6 for probability of type II error.

Table 4. Probability of type II Error for C2 (u, v) = uv and different values of n and r.

n r β n r β n r β
10 1 0.081 20 1 0.04 40 1 0.022
10 2 0.0086 20 2 0.0034 40 2 0.0012
10 3 0.001 20 3 0 50 1 0.0172
10 4 0 30 1 0.0282 50 2 0.0014

30 2 0.002

Table 5. Probability of type II Error for C2 (u, v) is FGM copula and different
values of n, r and θ2.

(n, r) θ2 β (n, r) θ2 β (n, r) θ2 β (n, r) θ2 β
(10, 1) −1 0.021 (20, 1) −1 0.009 (30, 1) −1 0.004 (50, 1) −1 0.01
(10, 1) 0.5 0.0984 (20, 1) 0.5 0.0504 (30, 1) 0.5 0.4 (50, 1) 0.5 0.037
(10, 1) 1 0.132 (20, 1) 1 0.084 (30, 1) 1 0.06 (50, 1) 1 0.045
(10, 2) −1 0.001 (20, 2) −1 0 (30, 2) −1 0 (50, 2) −1 0
(10, 2) 0.5 0.015 (20, 2) 0.5 0.004 (30, 2) 0.5 0.0032 (50, 2) 0.5 0.003
(10, 2) 1 0.028 (20, 2) 1 0.01 (30, 2) 1 0.0594 (50, 2) 1 0.007
(10, 3) −1 0 (20, 3) −1 0 (30, 3) −1 0 (10, 4) −1 0
(10, 3) 0.5 0.003 (20, 3) 0.5 0 (30, 3) 0.5 0 (10, 4) 0.5 0
(10, 3) 1 0.008 (20, 3) 1 0.002 (30, 3) 1 0.001 (10, 4) 1 0.001

Table 6. Probability of type II Error for C2 (u, v) is Clayton Copula and different
values of n, r and θ1.

(n, r) θ1 β (n, r) θ1 β (n, r) θ1 β (n, r) θ1 β
(10, 1) −1 0 (20, 1) −1 0 (30, 1) −1 0 (50, 1) −1 0
(10, 1) 1 0.317 (20, 1) 1 0.305 (30, 1) 1 0.285 (50, 1) 1 0.274
(10, 1) 2 0.41 (20, 1) 2 0.392 (30, 1) 2 0.383 (50, 1) 2 0.4
(10, 2) −1 0 (20, 2) −1 0 (30, 2) −1 0 (50, 2) −1 0
(10, 2) 1 0.096 (20, 2) 1 0.087 (30, 2) 1 0.081 (50, 2) 1 0.074
(10, 2) 2 0.142 (20, 2) 2 0.182 (30, 2) 2 0.155 (50, 2) 2 0.144
(10, 3) −1 0 (20, 3) −1 0 (30, 3) −1 0 (50, 3) −1 0
(10, 3) 1 0.001 (20, 3) 1 0.081 (30, 3) 1 0.024 (50, 3) 1 0.0878
(10, 3) 2 0.006 (20, 3) 2 0.136 (30, 3) 2 0.057 (50, 3) 2 0.1458

In Tables 4-6 the simulation study is performed for probability of type II error under
the following hypotheses, respectively:

H0 : C (u, v) = C1(u, v)
H1 : C (u, v) = C2(u, v) = uv,
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H0 : C (u, v) = C1(u, v)
H1 : C (u, v) = C2(u, v) = uv (1 + θ2 (1 − u) (1 − v)) , − 1 ≤ θ2 ≤ 1, (FGM copula),

and
H0 : C (u, v) = C1(u, v)

H1 : C (u, v) = C2(u, v) = max
([

u−θ1 + v−θ1 − 1
]− 1

θ1 , 0
)

, θ1 ∈ [−1, ∞) \ {0} , (Clayton copula),

Table 7. P (ND | H0) under hypothesis (3.8) for some values of n, r and θ1.

(n, r) θ1 P (ND | H0) (n, r) θ1 P (ND | H0)
(10, 1) 4 0.457 (15, 1) 4 0.4978
(10, 1) 5 0.437 (15, 1) 5 0.4854
(10, 1) 6 0.4144 (15, 1) 6 0.4728
(10, 2) 4 0.8282 (15, 2) 4 0.8498
(10, 2) 5 0.812 (15, 2) 5 0.8414
(10, 2) 6 0.8016 (15, 2) 6 0.8306

Table 8. P (ND | H0) under hypothesis (3.9) for some values of n, r, θ1 and θ2.

(n, r) (θ1, θ3) P (ND | H0) (n, r) (θ1, θ3) P (ND | H0)
(10, 1) (1, 5) 0.56 (15, 1) (1, 5) 0.5894
(10, 1) (2, 5) 0.4526 (15, 1) (2, 5) 0.5034
(10, 1) (3, 5) 0.4026 (15, 1) (3, 5) 0.4452
(10, 1) (4, 5) 0.387 (15, 1) (4, 5) 0.425
(10, 1) (5, 5) 0.3458 (15, 1) (5, 5) 0.4092
(10, 1) (5, 2) 0.3998 (15, 1) (5, 2) 0.457
(10, 1) (5, 3) 0.368 (15, 1) (5, 3) 0.4356
(10, 1) (5, 4) 0.354 (15, 1) (5, 4) 0.4088
(10, 1) (5, 6) 0.3452 (15, 1) (5, 6) 0.3936
(10, 2) (1, 5) 0.8638 (15, 2) (1, 5) 0.8852
(10, 2) (2, 5) 0.8042 (15, 2) (2, 5) 0.8824
(10, 2) (3, 5) 0.7886 (15, 2) (3, 5) 0.8014
(10, 2) (4, 5) 0.7474 (15, 2) (4, 5) 0.7822
(10, 2) (5, 5) 0.7398 (15, 2) (5, 5) 0.7696
(10, 2) (5, 2) 0.7816 (15, 2) (5, 2) 0.8188
(10, 2) (5, 3) 0.7676 (15, 2) (5, 3) 0.7918
(10, 2) (5, 4) 0.7462 (15, 2) (5, 4) 0.7766
(10, 2) (5, 6) 0.7212 (15, 2) (5, 6) 0.7588

Table 9. P (ND | H0) under hypothesis (3.10) for some values of n, r and θ3.

(n, r) θ3 P (ND | H0) (n, r) θ3 P (ND | H0)
(10, 1) 2 0.458 (15, 1) 2 0.4774
(10, 1) 3 0.3458 (15, 1) 3 0.3542
(10, 1) 4 0.2822 (15, 1) 4 0.3072
(10, 1) 5 0.2652 (15, 1) 5 0.2552
(10, 2) 2 0.8362 (15, 2) 2 0.8412
(10, 2) 3 0.7674 (15, 2) 3 0.772
(10, 2) 4 0.728 (15, 2) 4 0.738
(10, 2) 5 0.6876 (15, 2) 5 0.7116

In Tables 7-10, the simulation study is performed for probability of making no decision
when the null hypothesis is true (P (ND | H0)). We consider the following hypotheses,
respectively:

H0 : C (u, v) = C1 (u, v) = max
([

u−θ1 + v−θ1 − 1
]− 1

θ1 , 0
)

, θ1 ∈ [−1, ∞) \ {0} , (Clayton copula)

H1 : C (u, v) = C2 (u, v) = uv, (3.8)
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H0 : C (u, v) = C1 (u, v) = max
([

u−θ1 + v−θ1 − 1
]− 1

θ1 , 0
)

, θ1 ∈ [−1, ∞) \ {0} , (Clayton copula),

H1 : C (u, v) = C2 (u, v) = exp
{

−
[
(− ln u)θ3 + (− ln v)θ3

]1/θ3
}

, θ3 ∈ [1, ∞) , (Gumbel copula),

(3.9)

H0 : C (u, v) = C1 (u, v) = exp
{

−
[
(− ln u)θ3 + (− ln v)θ3

]1/θ3
}

, θ3 ∈ [1, ∞) , (Gumbel copula),

H1 : C (u, v) = C2 (u, v) = uv, (3.10)

H0 : C (u, v) = C1 (u, v) = exp
{

−
[
(− ln u)θ3 + (− ln v)θ3

]1/θ3
}

, θ3 ∈ [1, ∞) , (Gumbel copula),

H1 : C (u, v) = C2 (u, v) = − 1
θ4

ln

(
1 +

(
e−θ4u − 1

) (
e−θ4v − 1

)
(e−θ4 − 1)

)
, θ4 ∈ (−∞, ∞) \ {0} ,

(Frank copula). (3.11)

Table 10. P (ND | H0) under hypothesis (3.11) for some values of n, r, θ3 and θ4.

(n, r) (θ3, θ4) P (ND | H0) (n, r) (θ3, θ4) P (ND | H0)
(10, 1) (3, 5) 0.3106 (15, 1) (3, 5) 0.3332
(10, 1) (4, 5) 0.2738 (15, 1) (4, 5) 0.2892
(10, 1) (5, 5) 0.2126 (15, 1) (5, 5) 0.2382
(10, 1) (5, 2) 0.2452 (15, 1) (5, 2) 0.2482
(10, 1) (5, 3) 0.2454 (15, 1) (5, 3) 0.2572
(10, 1) (5, 4) 0.2318 (15, 1) (5, 4) 0.2638
(10, 2) (3, 5) 0.7444 (15, 2) (3, 5) 0.754
(10, 2) (4, 5) 0.7008 (15, 2) (4, 5) 0.7258
(10, 2) (5, 5) 0.684 (15, 2) (5, 5) 0.6834
(10, 2) (5, 2) 0.6936 (15, 2) (5, 2) 0.7032
(10, 2) (5, 3) 0.6918 (15, 2) (5, 3) 0.7008
(10, 2) (5, 4) 0.6742 (15, 2) (5, 4) 0.6838

From Tables 7-10, it can be observed that when n increases, P (ND | H0) increases. For
fixed values of n and dependence parameters, when r increases P (ND | H0) increases. In
Tables 7 and 9, when θ1 (θ3) increases P (ND | H0) decreases. In Table 8 for fixed values of
n, r and θ3 (θ1) , as θ1 (θ3) increases P (ND | H0) decreases. Furthermore, from Table 10,
one can observe that for fixed values of n, r and θ3 (θ4) , as θ4 (θ3) increases P (ND | H0)
decreases.

In Tables 11-15 the results of simulation study are provided for probability of making no
decision, when the alternative hypothesis is true (P (ND | H1)). We consider the following
hypotheses, respectively:
H0 : C (u, v) = C1 (u, v) = uv,

H1 : C (u, v) = C2 (u, v) = max
([

u−θ1 + v−θ1 − 1
]− 1

θ1 , 0
)

, θ1 ∈ [−1, ∞) \ {0} , (Clayton copula),
(3.12)

H0 : C (u, v) = C1 (u, v) = uv (1 + θ2 (1 − u) (1 − v)) , − 1 ≤ θ2 ≤ 1 (FGM copula),

H1 : C (u, v) = C2 (u, v) = max
([

u−θ1 + v−θ1 − 1
]− 1

θ1 , 0
)

, θ1 ∈ [−1, ∞) \ {0} , (Clayton copula),
(3.13)

H0 : C (u, v) = C1 (u, v) = uv,

H1 : C (u, v) = C2 (u, v) = exp
{

−
[
(− ln u)θ3 + (− ln v)θ3

]1/θ3
}

, θ3 ∈ [1, ∞) , (Gumbel copula),

(3.14)
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H0 : C (u, v) = C1 (u, v) = − 1
θ4

ln

(
1 +

(
e−θ4u − 1

) (
e−θ4v − 1

)
(e−θ4 − 1)

)
, θ4 ∈ (−∞, ∞) \ {0} ,

(Frank copula),

H1 : C (u, v) = C2 (u, v) = exp
{

−
[
(− ln u)θ3 + (− ln v)θ3

]1/θ3
}

, θ3 ∈ [1, ∞) , (Gumbel copula).

(3.15)

Table 11. P (ND | H1) under hypothesis (3.12) for n, r and θ1.

(n, r) θ1 P (ND | H1) (n, r) θ1 P (ND | H1)
(10, 1) 3 0.4214 (15, 1) 3 0.4312
(10, 1) 4 0.3626 (15, 1) 4 0.3836
(10, 1) 5 0.3498 (15, 1) 5 0.3802
(10, 1) 6 0.342 (15, 1) 6 0.3352
(10, 2) 3 0.7766 (15, 2) 3 0.7922
(10, 2) 4 0.7604 (15, 2) 4 0.7768
(10, 2) 5 0.7416 (15, 2) 5 0.761
(10, 2) 6 0.7152 (15, 2) 6 0.733

Table 12. P (ND | H1) under hypothesis (3.13) for some values of n, r, θ1 and θ2.

(n, r) (θ1, θ2) P (ND | H1) (n, r) (θ1, θ2) P (ND | H1)
(10, 1) (4, −1) 0.3724 (15, 1) (4, −1) 0.411
(10, 1) (4, 1) 0.3522 (15, 1) (4, 1) 0.398
(10, 1) (5, −1) 0.3484 (15, 1) (5, −1) 0.3944
(10, 1) (5, 1) 0.3346 (15, 1) (5, 1) 0.3638
(10, 2) (4, −1) 0.7602 (15, 2) (4, −1) 0.7698
(10, 2) (4, 1) 0.7338 (15, 2) (4, 1) 0.7658
(10, 2) (5, −1) 0.746 (15, 2) (5, −1) 0.7512
(10, 2) (5, 1) 0.721 (15, 2) (5, 1) 0.7338

Table 13. P (ND | H1) under hypothesis (3.9) for some values of n, r, θ1 and θ2.

(n, r) (θ1, θ3) P (ND | H1) (n, r) (θ1, θ3) P (ND | H1)
(10, 1) (1, 5) 0.2872 (15, 1) (1, 5) 0.2948
(10, 1) (2, 5) 0.2808 (15, 1) (2, 5) 0.3086
(10, 1) (3, 5) 0.2768 (15, 1) (3, 5) 0.306
(10, 1) (4, 5) 0.267 (15, 1) (4, 5) 0.2866
(10, 1) (5, 5) 0.2558 (15, 1) (5, 5) 0.301
(10, 1) (5, 2) 0.4666 (15, 1) (5, 2) 0.4956
(10, 1) (5, 3) 0.3504 (15, 1) (5, 3) 0.3758
(10, 1) (5, 4) 0.3092 (15, 1) (5, 4) 0.3154
(10, 1) (5, 6) 0.2624 (15, 1) (5, 6) 0.2896
(10, 2) (1, 5) 0.7242 (15, 2) (1, 5) 0.7436
(10, 2) (2, 5) 0.7238 (15, 2) (2, 5) 0.7524
(10, 2) (3, 5) 0.7198 (15, 2) (3, 5) 0.7202
(10, 2) (4, 5) 0.7148 (15, 2) (4, 5) 0.723
(10, 2) (5, 5) 0.7004 (15, 2) (5, 5) 0.7238
(10, 2) (5, 2) 0.8402 (15, 2) (5, 2) 0.8588
(10, 2) (5, 3) 0.7662 (15, 2) (5, 3) 0.7872
(10, 2) (5, 4) 0.73 (15, 2) (5, 4) 0.7502
(10, 2) (5, 6) 0.695 (15, 2) (5, 6) 0.6976

In Tables 11-15, one can observe that as n increases, P (ND | H1) increases for fixed
values of r and dependence parameters. Furthermore for fixed values of r and the de-
pendence parameters, as r increases P (ND | H1) decreases. In Tables 11 and 14, when
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θ1 (θ3) increases P (ND | H1) decreases. In Table 12 for fixed values of θ1 (θ2), n and r
when θ2 (θ1) increases P (ND | H1) decreases. In Table 13, for fixed values of n, r and θ3
when θ1 increases, P (ND | H1) decreases. Similarly for fixed values of n, r and θ1 when
θ3 increases, P (ND | H1) decreases. Likewise, in Table 15 one can observe that for fixed
values of θ3 (θ4) , n and r, as θ4 (θ3) increases P (ND | H1) decreases.

Table 14. P (ND | H1) under hypothesis (3.10) for some values of n, r and θ3.

(n, r) θ3 P (ND | H1) (n, r) θ3 P (ND | H1)
(10, 1) 2 0.4924 (15, 1) 2 0.5182
(10, 1) 3 0.3656 (15, 1) 3 0.3982
(10, 1) 4 0.3274 (15, 1) 4 0.3308
(10, 1) 5 0.2932 (15, 1) 5 0.3164
(10, 2) 2 0.863 (15, 2) 2 0.875
(10, 2) 3 0.7958 (15, 2) 3 0.801
(10, 2) 4 0.7566 (15, 2) 4 0.7778
(10, 2) 5 0.7316 (15, 2) 5 0.7434

Table 15. P (ND | H1) under hypothesis (3.15) for some values of n, r, θ3 and θ4.

(n, r) (θ3, θ4) P (ND | H1) (n, r) (θ3, θ4) P (ND | H1)
(10, 1) (3, 5) 0.3488 (15, 1) (3, 5) 0.4062
(10, 1) (4, 5) 0.317 (15, 1) (4, 5) 0.3332
(10, 1) (5, 5) 0.2552 (15, 1) (5, 5) 0.2874
(10, 1) (5, 2) 0.294 (15, 1) (5, 2) 0.3126
(10, 1) (5, 3) 0.2786 (15, 1) (5, 3) 0.3088
(10, 1) (5, 4) 0.2764 (15, 1) (5, 4) 0.301
(10, 2) (3, 5) 0.7716 (15, 2) (3, 5) 0.7882
(10, 2) (4, 5) 0.7372 (15, 2) (4, 5) 0.7536
(10, 2) (5, 5) 0.7166 (15, 2) (5, 5) 0.7378
(10, 2) (5, 2) 0.7366 (15, 2) (5, 2) 0.751
(10, 2) (5, 3) 0.7254 (15, 2) (5, 3) 0.7282
(10, 2) (5, 4) 0.716 (15, 2) (5, 4) 0.7348

4. Conclusion
In this paper, a test statistic T (n, r) is proposed for testing the distribution of bivariate

sample Z based on bivariate samples Z1 and Z2. The consistency of T (n, n − 1) test is
discussed by considering the probability of type I, II errors and probability of making
no decision under null and alternative hypotheses. These probabilities involve copulas of
underlying distributions. Also unbiased and consistent estimators for probability of mak-
ing no decision under the null/alternative hypotheses are proposed. This approach can
help the investigators in prediction of probability of making no decision. If probability
of making no decision is high, the test can not be performed or it can be repeated with
different samples. Therefore, the researcher avoids making wrong decision. Furthermore,
under particular hypotheses a simulation study is performed. In simulation study we ob-
serve that the probability of making no decision under the null/alternative hypotheses is
considerably high for large values of n. Therefore, the use of T (n, r) is preferable for small
sample size.
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Appendix A
Proof of Theorem 2.2. We have to show that the probabilities of type I and type II
errors both tend to infinity as n → ∞ and the probability of not making a decision
under hypotheses H0 and H1 are less than 1. We use probability integral transformation
FX (t) = u, FY (s) = v and F (t, s) = C1 (FX (t) , FY (s)) , in Equation (2.3). It is clear
that

|J | =
∣∣∣∣∣ ∂u

∂t
∂u
∂s

∂v
∂t

∂v
∂s

∣∣∣∣∣ =

∣∣∣∣∣∣
1

fX(F −1
X (u)) 0
0 1

fY (F −1
Y (v))

∣∣∣∣∣∣ = 1
fX(t)fY (s)

and

F 1,. (t, s) = ∂F (t, s)
∂t

= ∂C1 (FX (t) , FY (s))
∂t

= ∂C1 (FX (t) , FY (s))
∂FX (t)

· dFX (t)
dt

= C1,.
1 (FX (t) , FY (s)) fX (t) , (A.1)

where C1,.
1 (FX (t) , FY (s)) = ∂C1(FX(t),FY (s))

∂FX(t) . Similarly,

F .,1
1 (t, s) = C .,1

1 (FX (t) , FY (s)) fY (s) ,

where C .,1
1 (FX (t) , FY (s)) = ∂C1(FX(t),FY (s))

∂FY (s) . Taking into account Equations (2.2) and
(2.3), the probability of type I error can be written as follows:

αn =
∫ 1

0

∫ 1

0
(C1 (u, v))n

{
a2∑

t1=a1

l1 [C1 (u, v)]t1 [(u − C1 (u, v)) (v − C1 (u, v))]n−r−t1

×
[
Ĉ1 (1 − u, 1 − v)

]2r−n−1+t1
c1 (u, v) +

d2∑
t4=d1

c2∑
t2=c1

b2∑
t1=b1

l2 [C1 (u, v)]t1 [u − C1 (u, v)]n−r−t1−t2

× [v − C1 (u, v)]n−r−t1−t4
[
Ĉ1 (1 − u, 1 − v)

]2r−n+t1+t2+t4−2
,

×
[
C .,1

1 (u, v)
]t2 [

1 − C .,1
1 (u, v)

]1−t2 [
C1,.

1 (u, v)
]t4 [

1 − C1,.
1 (u, v)

]1−t4

}
dudv, (A.2)

where Ĉ1 (1 − u, 1 − v) = 1 − u − v + C1(u, v) and c1 (u, v) = ∂2C1(u,v)
∂u∂v . It is obvious that

a1 = c1 = d1 = 0 and a2 = c2 = d2 = 1 for r = n − 1. Then, the probability of type I error
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under H0 : C (u, v) = C1 (u, v) = uv is given by

αn =
∫ 1

0

∫ 1

0
(uv)n

{(
n (n − 1)2 uv [(1 − u) (1 − v)]n−2

)

+
1∑

t4=0

1∑
t2=0

min(1−t2,1−t4)∑
t1=max(0,4−n−t2−t4)

l2uv [(1 − u) (1 − v)]n−2
}

dudv

= n (n − 1)2 (n + 1) ! (n − 2) !
(2n) !

+
(
n2 − 1

)
(n − 1) ! (n + 1) ! (n! )2

((2n) ! )2

= n (n − 1)2 (n + 1) (n − 2) !
4nA (n)

+
(
n2 − 1

)
(n − 1) ! (n + 1) !

4n (A (n))2 ,

where

A (n) =
n∏

k=1
(2n − (2k − 1)) .

For simplicity denote I
′
n = n(n−1)2(n+1)(n−2)!

4nA(n) and I
′′
n = (n2−1)(n−1)!(n+1)!

4n(A(n))2 . Then,

lim
n→∞

I
′
n = lim

n→∞
n (n − 1)2 (n + 1) (n − 2) !

4nA (n)

= lim
n→∞

n (n + 1) (n − 2) !
A (n)

· lim
n→∞

(n − 1)2

4n

= 0 · lim
n→∞

(n − 1)2

4n

= 0.

Similarly,

lim
n→∞

I
′′
n = lim

n→∞

(
n2 − 1

)
(n − 1) ! (n + 1) !
4nA (n)

= lim
n→∞

(
n2 − 1

)
(n + 1) (n − 1) ! n!

4n (A (n))2

= lim
n→∞

(
n2 − 1

)
(n + 1)

4n
· lim

n→∞
(n − 1) ! n!
(A (n))2

= 0.

It can be easily shown that limn→∞ αn = 0.
Now let us calculate the probability of no decision given that H0 is true. Let A denotes

the event that at least r of the sample values in Z are in
(
−∞, X

(2)
1:n

)
×
(
−∞, Y

(2)
1:n

)
and

B denotes the event at least r of the sample values in Z are in
(
X

(1)
n:n, ∞

)
×
(
Y

(1)
n:n , ∞

)
.

The events A and B are mutually exclusive events. Then,

P {ND | H0} = 1 − P {A ∪ B | H0}
= 1 − P {A | H0} − P {B | H0} . (A.3)

It is obvious that P {B | H0} = αn, then,

P {ND | H0} = 1 − αn − P {A | H0} .
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P {A | H0} = P
{

at least r of the sample values in Z are in
(

−∞, X
(2)
1:n

)
×
(

−∞, Y
(2)

1:n

)
| H0

}
= P

{
Xr:n < X

(2)
1:n, Yr:n < Y

(2)
1:n | H0

}
=
∫ ∞

−∞

∫ ∞

−∞

[
G(t, s)

]n
fXr:n,Yr:n (t, s) dtds.

=
∫ ∞

−∞

∫ ∞

−∞

[
G(t, s)

]n( n−2∑
t1=n−3

l̃1 [F (t, s)]t1 [(FX (t) − F (t, s)) (FY (s) − F (t, s))]n−2−t1

×
[
F (t, s)

]3−n+t1
f (t, s) +

1∑
t4=0

1∑
t2=0

min(n−2−t2,n−2−t4)∑
t1=max(0,n−2−t2−t4)

l̃2 [F (t, s)]t1

)
,

where

l̃1 = n!
t1! [(n − 2 − t1) ! ]2 (3 − n + t1) !

and

l̃2 = n!
t1! (n − 2 − t1 − t2) ! (n − 2 − t1 − t4) ! (2 − n + t1 + t2 + t4) !

.

Similarly by using probability integral transformation we have

P {A | H0} =
∫ 1

0

∫ 1

0

(
Ĉ2 (1 − u, 1 − v)

)n

×

{
n−2∑

t1=n−3
l̃1 [C1 (u, v)]t1 [(u − C1 (u, v)) (v − C1 (u, v))]n−2−t1

×
[
Ĉ1 (1 − u, 1 − v)

]3−n+t1
c1 (u, v)

+
1∑

t4=0

1∑
t2=0

min(n−2−t2,n−2−t4)∑
t1=max(0,n−2−t2−t4)

l̃2 [C1 (u, v)]t1 [u − C1 (u, v)]n−2−t1−t2

× [v − C1 (u, v)]n−2−t1−t4
[
Ĉ1 (1 − u, 1 − v)

]2−n+t1+t2+t4

×
[
C .,1

1 (u, v)
]t2 [

1 − C .,1
1 (u, v)

]1−t2 [
C1,.

1 (u, v)
]t4 [

1 − C1,.
1 (u, v)

]1−t4

}
dudv

(A.4)

Then, under H0 : C (u, v) = C1 (u, v) = uv,

P {A | H0} + P {B | H0} ≥ o (h1) > 0,

where o (h1) = αn = n(n−1)2(n+1)(n−2)!
4nA(n) + (n2−1)(n−1)!(n+1)!

4n(A(n))2 . It is clear that P {ND | H0} <

1. Thus Theorem 2.2 is proved. �
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Appendix B
Proof of Theorem 2.3. By using the similar probability integral transformation used
in Equation (A.2), Equation (2.4) can be written as follows:

βn = P {H0 | H1}
= P {at least n − 1 of the sample values in Z are in(

−∞, X
(2)
1:n

)
×
(
−∞, Y

(2)
1:n

)
| H(x, y) = G (x, y)

}
=
∫ ∞

−∞

∫ ∞

−∞

[
G(t, s)

]n
gXn−1:n,Yn−1:n (t, s) dtds.

=
∫ ∞

−∞

∫ ∞

−∞

[
G(t, s)

]n( n−2∑
t1=n−3

l̃1 [G (t, s)]t1 [(FX (t) − G (t, s)) (FY (s) − G (t, s))]n−2−t1

×
[
G (t, s)

]3−n+t1
g (t, s) +

1∑
t4=0

1∑
t2=0

min(n−2−t2,n−2−t4)∑
t1=max(0,n−2−t2−t4)

l̃2 [G (t, s)]t1

× [(FX (t) − G (t, s))]n−2−t1−t2 [(FY (s) − G (t, s))]n−2−t1−t4

×
[
G (t, s)

]2−n+t1+t2+t4 [
G.,1 (t, s)

]t2 [
fY (s) − G.,1 (t, s)

]1−t2

×
[
G1,. (t, s)

]t4 [
fX (t) − G1,. (t, s)

]1−t4
)

dtds, (A.5)

where l̃1 and l̃2 are

l̃1 = n!
t1! [(n − 2 − t1)! ]2 (3 − n + t1) !

l̃2 = n!
t1! (n − 2 − t1 − t2) ! (n − 2 − t1 − t4) ! (2 − n + t1 + t2 + t4) !

.

By probability integral transformation we have the following equation.

βn =
∫ 1

0

∫ 1

0

(
Ĉ2 (1 − u, 1 − v)

)n


n−2∑

t1=n−3
l̃1 [C2 (u, v)]t1 [(u − C2 (u, v)) (v − C2 (u, v))]n−2−t1

×
[
Ĉ2 (1 − u, 1 − v)

]3−n+t1
c2 (u, v) +

1∑
t4=0

1∑
t2=0

+
min(n−2−t2,n−2−t4)∑
t1=max(0,n−2−t2−t4)

l̃2 [C2 (u, v)]t1 [u − C2 (u, v)]n−2−t1−t2

× [v − C2 (u, v)]n−2−t1−t4
[
Ĉ2 (1 − u, 1 − v)

]2−n+t1+t2+t4

×
[
C .,1

2 (u, v)
]t2 [1 − C .,1

2 (u, v)
]1−t2 [

C1,.
2 (u, v)

]t4 [1 − C1,.
2 (u, v)

]1−t4
}

dudv.
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Then, the probability of type II error under H1 : C (u, v) = C2 (u, v) = uv is

βn =
∫ 1

0

∫ 1

0
[(1 − u) (1 − v)]n

(
(uv)n−2 (1 − u) (1 − v) n (n − 1)2

+ (uv)n−2 (1 − u) (1 − v)
1∑

t4=0

1∑
t2=0

min(n−2−t2,n−2−t4)∑
t1=max(0,n−2−t2−t4)

l̃2

)
dudv

= n (n − 1)2 [(n − 2) ! ]2 [(n + 1) ! ]2

[(2n) ! ]2
+ (n − 1) (n − 1) ! n! [(n + 1) ! ]2

[(2n) ! ]2
.

Denote K
′
n = n(n−1)2[(n−2)!]2[(n+1)!]2

[(2n)!]2 and K
′′
n = (n−1)(n−1)!n![(n+1)!]2

[(2n)!]2 . Then,

lim
n→∞

K
′
n = lim

n→∞
n (n − 1)2 [(n − 2) ! ]2 [(n + 1) ! ]2

[(2n) ! ]2

= lim
n→∞

n (n + 1)2 [(n − 1) ! ]2 (n! )2

[(2n) ! ]2

= lim
n→∞

n (n + 1)2 [(n − 1) ! ]2

4n (A (n))2

= lim
n→∞

n (n + 1)2

4n
· lim

n→∞

[(n − 1) !
A (n)

]2

lim
n→∞

K
′
n = 0.

Similarly,

lim
n→∞

K
′′
n = lim

n→∞
(n − 1) (n − 1) ! n! [(n + 1) ! ]2

[(2n) ! ]2

= lim
n→∞

(n − 1) (n + 1)2 (n − 1) ! n! (n! )2

[(2n) ! ]2

= lim
n→∞

(n − 1) (n + 1)2 (n − 1) ! n! (n! )2

[(2n) (2n − 1) (2n − 2) · · · 3.2.1]2

= lim
n→∞

(n − 1) (n + 1)2 (n − 1) ! n!
4n [(2n − 1) (2n − 3) (2n − 5) · · · 5.3.1]2

= lim
n→∞

(n − 1) (n + 1)2

4n
· lim

n→∞
(n − 1) ! n!

[(2n − 1) (2n − 3) (2n − 5) · · · 5.3.1]2

= 0 · lim
n→∞

(n − 1) ! n!
[(2n − 1) (2n − 3) (2n − 5) · · · 5.3.1]2

= 0.

Thus limn→∞βn = 0.
Now consider P {ND | H1} under H1 : C (u, v) = C2 (u, v) = uv,

P {ND | H1} = 1 − P {A ∪ B | H1}
= 1 − P {A | H1} − P {B | H1} . (A.6)

It is obvious that βn = P {A | H1} , then,
P {A | H1} + P {B | H1} ≥ o (h2) > 0,

where o (h2) = n(n−1)2[(n−2)!]2[(n+1)!]2

[(2n)!]2 + (n−1)(n−1)!n![(n+1)!]2

[(2n)!]2 and P {ND | H1} < 1.Thus
Theorem 2.3 is proved. �


