

# Nearness $\Gamma$ -Near Rings

Baki Çokakoğlu <sup>©1\*</sup>, Mustafa Uçkun <sup>©2</sup> <sup>1</sup> Adıyaman University, Graduate Education Institute Department of Mathematics, Adıyaman, Türkiye <sup>2</sup> Adıyaman University, Faculty of Arts and Sciences Department of Mathematics, Adıyaman, Türkiye, muckun@adiyaman.edu.tr

| Received: 03 December 2021 | Accepted: 20 January 2022 |
|----------------------------|---------------------------|
|----------------------------|---------------------------|

**Abstract:** The aim of this study is to introduce nearness  $\Gamma$ -near ring, nearness  $\Gamma$ -subnear ring and nearness  $\Gamma$ -ideal. Moreover, some properties of these structures are investigated.

Keywords: Nearness ring, nearness  $\Gamma$ -near ring, nearness  $\Gamma$ -ideal.

# 1. Introduction

A generalization of rough sets, near sets and near approximation spaces were introduced in 2007 [12, 20]. The selection of probe functions that provide a basis for defining and distinguishing affinities between objects is the first step in near set theory. A probe function is a real-valued function representing a feature of objects such as images.

Instead of abstract points, the sets in the nearness approximation space are mainly composed of perceptual objects (non-abstract points). Perceptual objects are featured points. Feature vectors can be used to describe these points [12]. The upper approximation of a set is determined by matching descriptions of objects in the set of perceptual objects. The consideration of upper approximations of perceptual object subsets is a fundamental method in algebraic structures built on nearness approximation space. In a nearness groupoid, the binary operation has the closeness property in upper approximation of set instead of set.

In 1936, Zassenhaus defined the near-ring as a generalization of ring [21]. The most basic source in near ring theory is Pilz's book titled *Near Rings* [15].

Nobusawa defined the idea of a  $\Gamma$ -ring that is more general than a ring [9]. Barnes weakened the axioms in Nobusawa's description of the  $\Gamma$ -ring [1]. Barnes, Kyuno [6] and Luh [7] investigated the structure of  $\Gamma$ -rings and discovered a number of generalizations that are analogous to ring theory.

This article is licensed under a Creative Commons Attribution 4.0 International License.

Also, it has been published considering the Research and Publication Ethics.

<sup>\*</sup>Correspondence: bakicokakoglu@gmail.com

<sup>2020</sup> AMS Mathematics Subject Classification: 08A05, 16Y99, 54E05

Satyanarayana defined the  $\Gamma$ -near ring as a generalization of near-ring and  $\Gamma$ -ring [16].

In 2012, İnan and Öztürk [3, 4] investigated the nearness groups. In 2013, nearness group of weak cosets was introduced [11]. In 2015, İnan et al. [5] also investigated the nearness semigroups. In 2019, nearness ring was introduced as well [10].

The aim of this study is to introduce nearness  $\Gamma$ -near ring, nearness  $\Gamma$ -subnear ring and nearness  $\Gamma$ -ideal. Moreover, some properties of these structures are investigated.

# 2. Preliminaries

Perceptual objects are points that are describable with feature vectors. Let  $\mathcal{O}$  be a set of perceptual objects,  $X \subseteq \mathcal{O}$ ,  $\mathcal{F}$  be a set of probe functions and  $\Phi : \mathcal{O} \longrightarrow \mathbb{R}^L$  be a mapping, where the description length is  $|\Phi| = L$ .

 $\Phi(x) = (\varphi_1(x), \varphi_2(x), \varphi_3(x), \dots, \varphi_i(x), \dots, \varphi_L(x)) \text{ is an object description of } x \in X \text{ such}$ that each  $\varphi_i \in B \subseteq \mathcal{F}$   $(\varphi_i : \mathcal{O} \longrightarrow \mathbb{R})$  is a probe function that represents features of sample objects  $X \subseteq \mathcal{O}$  [12].

Sample objects are near each other if and only if the objects have similar descriptions. Recall that each  $\varphi_i$  defines a description of an object.  $\Delta_{\varphi_i}$  is defined by  $\Delta_{\varphi_i} = |\varphi_i(x') - \varphi_i(x)|$ , where  $x, x' \in \mathcal{O}$ .

Let  $x, x' \in \mathcal{O}$  and  $B \subseteq \mathcal{F}$ .

$$\sim_B = \{(x, x') \in \mathcal{O} \times \mathcal{O} \mid \Delta_{\varphi_i} = 0 \text{ for all } \varphi_i \in B\}$$

is called the indiscernibility relation on  $\mathcal{O}$ , where description length is  $i \leq |\Phi|$  [12].

**Definition 2.1** [8] Let  $\mathcal{O}$  be a set of perceptual objects,  $\Phi$  be an object description and  $A \subseteq \mathcal{O}$ . Then the set description of A is defined as

$$Q(A) = \{\Phi(a) \mid a \in A\}.$$

**Definition 2.2** [8, 14] Let  $\mathcal{O}$  be a set of perceptual objects and  $A, B \subseteq \mathcal{O}$ . Then the descriptive (set) intersection of A and B is defined as

$$A_{\bigcap} B = \{ x \in A \cup B \mid \Phi(x) \in \mathcal{Q}(A) \text{ and } \Phi(x) \in \mathcal{Q}(B) \}.$$

If  $Q(A) \cap Q(B) \neq \emptyset$ , then A is called descriptively near B and denoted by  $A\delta_{\Phi}B$ . Also,  $\xi_{\Phi}(A) = \{B \in \mathcal{P}(\mathcal{O}) \mid A\delta_{\Phi}B\}$  is a descriptive nearness collection [13].

**Definition 2.3** [12] Let  $X \subseteq \mathcal{O}$  and  $x \in X$ .

$$[x]_{B_r} = \{x' \in \mathcal{O} \mid x \sim_{B_r} x'\}$$

is called nearness class of  $x \in X$ .

**Definition 2.4** [12] Let  $X \subseteq \mathcal{O}$ .

$$N_r(B)^* X = \bigcup_{[x]_{B_r} \cap X \neq \emptyset} [x]_{B_r}$$

is called upper approximation of X.

A nearness approximation space is  $(\mathcal{O}, \mathcal{F}, \sim_{B_r}, N_r(B), \nu_{N_r})$ , where  $\mathcal{O}$  is a set of perceptual objects,  $\mathcal{F}$  is a set of probe functions, " $\sim_{B_r}$ " is an indiscernibility relation relative to  $B_r \subseteq B \subseteq \mathcal{F}$ ,  $N_r(B)$  is a collection of partitions and  $\nu_{N_r} : \wp(\mathcal{O}) \times \wp(\mathcal{O}) \longrightarrow [0,1]$  is an overlap function that maps a pair of sets to [0,1] representing the degree of nearness between sets. The subscript rdenotes the cardinality of the restricted subset  $B_r$ .

**Definition 2.5** [3] Let  $(\mathcal{O}, \mathcal{F}, \sim_{B_r}, N_r(B), \nu_{N_r})$  be a nearness approximation space and " $\cdot$ " be a binary operation defined on  $\mathcal{O}$ .  $G \subseteq \mathcal{O}$  is called a nearness group if the following properties are satisfied:

 $(NG_1)$  For all  $x, y \in G$ ,  $x \cdot y \in N_r(B)^* G$ ,

 $(NG_2)$  For all  $x, y, z \in G$ ,  $(x \cdot y) \cdot z = x \cdot (y \cdot z)$  property holds in  $N_r(B)^* G$ ,

(NG<sub>3</sub>) There exists  $e_G \in N_r(B)^* G$  such that  $x \cdot e_G = e_G \cdot x = x$  for all  $x \in G$  ( $e_G$  is called the near identity element of G),

(NG<sub>4</sub>) There exists  $y \in G$  such that  $x \cdot y = y \cdot x = e_G$  for all  $x \in G$  (y is called the inverse of x in G and denoted as  $x^{-1}$ ).

Additionally, if the property  $x \cdot y = y \cdot x$  is satisfied in  $N_r(B)^* G$  for all  $x, y \in G$ , then G is said to be a commutative nearness group.

Also,  $S \subseteq \mathcal{O}$  is called a nearness semigroup if  $x \cdot y \in N_r(B)^* S$  for all  $x, y \in S$  and  $(x \cdot y) \cdot z = x \cdot (y \cdot z)$  property is satisfied in  $N_r(B)^*(S)$  for all  $x, y, z \in S$ .

**Theorem 2.6** [4] Let G be a nearness group, H be a nonempty subset of G and  $N_r(B)^* H$  be a groupoid. Then  $H \subseteq G$  is a subnearness group of G if and only if  $x^{-1} \in H$  for all  $x \in H$ .

**Definition 2.7** [10] Let  $(\mathcal{O}, \mathcal{F}, \sim_{B_r}, N_r(B), \nu_{N_r})$  be a nearness approximation space and "+" and " $\cdot$ " be binary operations defined on  $\mathcal{O}$ .  $R \subseteq \mathcal{O}$  is called a nearness ring if the following properties are satisfied:

 $(NR_1)$  R is a commutative nearness group with binary operation "+",

 $(NR_2)$  R is a nearness semigroup with binary operation ".",

 $(NR_3)$  For all  $x, y, z \in R$ ,

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 and  $(x+y) \cdot z = (x \cdot z) + (y \cdot z)$ 

properties hold in  $N_r(B)^* R$ .

In addition,

 $(NR_4)$  R is said to be a commutative nearness ring if  $x \cdot y = y \cdot x$  for all  $x, y \in R$ ,

 $(NR_5)$  R is said to be a nearness ring with identity if  $N_r(B)^* R$  contains an element  $1_R$ such that  $1_R \cdot x = x \cdot 1_R = x$  for all  $x \in R$ .

**Definition 2.8** [15, 21] Let N be a nonempty set and "+" and " $\cdot$ " be binary operations defined on N. N is called a (right) near ring if the following properties are satisfied:

- $(N_1)$  N is a group with binary operation "+" (It does not need to be commutative),
- $(N_2)$  N is a semigroup with binary operation ".",
- (N<sub>3</sub>) For all  $x, y, z \in N$ ,  $(x+y) \cdot z = (x \cdot z) + (y \cdot z)$  properties hold in  $N_r(B)^* N$ .

**Definition 2.9** [1]  $A \ \Gamma$ -ring (in the sense of Barnes) is a pair  $(M, \Gamma)$ , where M and  $\Gamma$  are (additive) commutative groups for which exists a  $\_: M \times \Gamma \times M \to M$ , the image of  $(a, \alpha, b)$  being denoted by  $a\alpha b$  for  $a, b \in M$  and  $\alpha \in \Gamma$ , satisfying for all  $a, b, c \in M$  and all  $\alpha, \beta \in \Gamma$ :

•  $(a+b)\alpha c = a\alpha c + b\alpha c$ , •  $a\alpha(b+c) = a\alpha b + a\alpha c$ , •  $a(\alpha + \beta)b = a\alpha b + a\beta b$ , •  $(a\alpha b)\beta c = a\alpha(b\beta c)$ .

**Definition 2.10** [1] Let M be a  $\Gamma$ -ring. A left (right) ideal of M is an additive subgroup U of M such that  $M\Gamma U \subseteq U$  ( $U\Gamma M \subseteq U$ ). If U is both a left and a right ideal, then we say that U is an ideal of M.

**Definition 2.11** [16] A  $\Gamma$ -near ring is a triple  $(M, +, \Gamma)$ , where

 $(\Gamma N_1)$  (M, +) is a group (need not be commutative),

 $(\Gamma N_2)$   $\Gamma$  is a non-empty set of binary operators on M such that  $(M, +, \gamma)$  is a (right) near ring for each  $\gamma \in \Gamma$ ,

 $(\Gamma N_3)$   $(a\alpha b)\beta c = a\alpha(b\beta c)$  for all  $a, b, c \in M$  and  $\alpha, \beta \in \Gamma$ .

**Definition 2.12** [19]Let  $(\mathcal{O}, \mathcal{F}, \sim_{B_r}, N_r(B), \nu_{N_r})$  be a nearness approximation space and  $M, \Gamma \subseteq \mathcal{O}$  be an additive commutative nearness groups in  $\mathcal{O}$ .  $M \subseteq \mathcal{O}$  is named an  $\Gamma$ -ring in nearness approximation space or shortly, nearness  $\Gamma$ -ring if the followings are provided:

- $(N\Gamma_1) \ a\alpha b \in N_r (B)^* M$ ,
- $(N\Gamma_2)$   $(a\alpha b)\beta c = a\alpha (b\beta c)$  property verify on  $N_r(B)^* M$ ,

 $(N\Gamma_3)$   $(a+b)\alpha c = a\alpha c + b\alpha c$ ,  $a(\alpha + \beta)b = a\alpha b + a\beta b$ ,  $a\alpha(b+c) = a\alpha b + a\alpha c$  properties verify on  $N_r(B)^* M$  for all  $a, b, c \in M$  and all  $\alpha, \beta \in \Gamma$ .

In addition, M is called a commutative nearness  $\Gamma$ -ring if  $a\alpha b = b\alpha a$  for all  $a, b \in M$  and all  $\alpha \in \Gamma$ .

M is called a nearness  $\Gamma$ -ring with identity if  $N_r(B)^* M$  contains  $1_M$  such that  $1_M \alpha a =$  $a\alpha 1_M = a \text{ for all } a \in M \text{ and all } \alpha \in \Gamma.$ 

# **3.** Nearness $\Gamma$ -near rings

Throughout this section,  $\mathcal{O}$  considered as a set of perceptual objects in nearness approximation space unless otherwise stated.

**Definition 3.1** Let  $N, \Gamma \subseteq \mathcal{O}$  be additive nearness groups. If for all  $k, \ell, m \in N$  and all  $\beta, \gamma \in \Gamma$ the conditions

 $(\mathcal{N}\Gamma N_1) \quad k\beta\ell \in N_r (B)^* N,$ 

 $(\mathcal{N}\Gamma N_2)$   $(k+\ell)\beta m = k\beta m + \ell\beta m$  property provides on  $N_r(B)^* N$ ,

 $(\mathcal{N}\Gamma N_3)$   $(k\beta\ell)\gamma m = k\beta(\ell\gamma m)$  property provides on  $N_r(B)^* N$ 

are satisfied, then N is called an  $\Gamma$ -near ring in nearness approximation space or shortly nearness  $\Gamma$ -near ring.

In addition, if  $k\beta \ell = \ell\beta k$  for all  $k, \ell \in N$  and all  $\beta \in \Gamma$ , then N is called a commutative nearness  $\Gamma$ -near ring.

**Example 3.2**  $\mathcal{O} = \{k_{ij} \mid 0 \le i, j \le 4\}$  be a set of perceptual objects and  $B = \{\varphi\} \subseteq \mathcal{F}$  be a set of probe function. Probe function

$$\varphi: \mathcal{O} \longrightarrow V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$$

is given in Table 1.

#### Table 1

 $v_7$ 

 $v_8$ 

 $v_3$ 

 $v_5$ 

Thus

$$\begin{bmatrix} k_{00} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{00}) = v_1\} \\ = \{k_{00}\},$$

$$\begin{bmatrix} k_{01} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{01}) = v_2\} \\ = \{k_{01}\},$$

$$\begin{bmatrix} k_{02} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{02}) = v_3\} \\ = \{k_{02}, k_{44}\} = \begin{bmatrix} k_{44} \end{bmatrix}_{\varphi},$$

$$\begin{bmatrix} k_{03} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{03}) = v_5\} \\ = \{k_{03}, k_{04}, k_{12}, k_{41}\} \\ = \begin{bmatrix} k_{04} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{12} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{41} \end{bmatrix}_{\varphi},$$

$$\begin{bmatrix} k_{10} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{10}) = v_4\} \\ = \{k_{10}, k_{11}\} = \begin{bmatrix} k_{11} \end{bmatrix}_{\varphi},$$

$$\begin{bmatrix} k_{13} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{13}) = v_6\} \\ = \{k_{13}, k_{21}, k_{22}, k_{31}\} \\ = \begin{bmatrix} k_{21} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{22} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{31} \end{bmatrix}_{\varphi},$$

$$\begin{bmatrix} k_{14} \end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{14}) = v_7\} \\ = \{k_{14}, k_{20}, k_{24}, k_{32}, k_{42}\} \\ = \begin{bmatrix} k_{20} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{22} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{32} \end{bmatrix}_{\varphi} = \begin{bmatrix} k_{42} \end{bmatrix}_{\varphi},$$

$$\end{bmatrix}_{\varphi} = \{k \in \mathcal{O} | \varphi(k) = \varphi(k_{23}) = v_8\}$$

$$\begin{split} [k_{23}]_{\varphi} &= \{k \in \mathcal{O} \mid \varphi \left( k \right) = \varphi \left( k_{23} \right) = v_8 \} \\ &= \{k_{23}, k_{30}, k_{33}, k_{34}, k_{40}, k_{43} \} \\ &= [k_{30}]_{\varphi} = [k_{33}]_{\varphi} = [k_{34}]_{\varphi} = [k_{40}]_{\varphi} = [k_{43}]_{\varphi} . \end{split}$$

Therefore

$$\xi_{\varphi} = \left\{ \left[ k_{00} \right]_{\varphi}, \left[ k_{01} \right]_{\varphi}, \left[ k_{02} \right]_{\varphi}, \left[ k_{03} \right]_{\varphi}, \left[ k_{10} \right]_{\varphi}, \left[ k_{13} \right]_{\varphi}, \left[ k_{14} \right]_{\varphi}, \left[ k_{23} \right]_{\varphi} \right\} \right\}$$

Hence, a set of partitions of  $\mathcal{O}$  is  $N_1(B) = \{\xi_{\varphi}\}$  for r = 1. Thus

$$N_{1}(B)^{*} N = \bigcup_{\substack{[k]_{\varphi} \cap N \neq \emptyset \\ = \{k_{00}\} \cup \{k_{01}\} \cup \{k_{10}, k_{11}\} \\ = \{k_{00}, k_{01}, k_{10}, k_{11}\}$$

and

$$N_1(B)^* \Gamma = \bigcup_{\substack{[k]_{\varphi} \cap \Gamma \neq \emptyset}}^{[k]_{\varphi}} \prod_{\substack{[k]_{\varphi} \cap \Gamma \neq \emptyset}}^{[k]_{\varphi}} = \{k_{00}, k_{02}, k_{44}\},$$

where  $N = \{k_{00}, k_{01}, k_{10}\}, \Gamma = \{k_{00}, k_{02}\} \subseteq \mathcal{O}.$ 

Let

$$+_{1} : \begin{array}{c} \mathcal{O} \times \mathcal{O} & \longrightarrow \mathcal{O} \\ (k_{ij}, k_{mn}) & \longmapsto k_{ij} +_{1} k_{mn} \end{array}$$

be a binary operation (first addition) on  $\mathcal{O}$  such that

$$k_{ij} + k_{mn} \equiv k_{pr}, \quad i + m \equiv p \pmod{2}$$
 ve  $j + n \equiv r \pmod{2}.$ 

Then (N, +1) is a nearness group.

Furthermore, let

$$+_{2} : \begin{array}{c} \mathcal{O} \times \mathcal{O} & \longrightarrow \mathcal{O} \\ (k_{ij}, k_{mn}) & \longmapsto k_{ij} +_{2} k_{mn} \end{array}$$

be a binary operation (second addition) on  $\mathcal{O}$  such that

 $k_{ij} + k_{mn} = k_{st}, \quad i + m \equiv s \pmod{4}$  ve  $j + n \equiv t \pmod{4}$ .

Then  $(\Gamma, +2)$  is a nearness group.

Since  $k_{01} + k_{10} = k_{11} \notin N$ ,  $N \subseteq \mathcal{O}$  is not a group with binary operation "+1" and so N is not a  $\Gamma$ -near ring.

Let

$$\begin{array}{ll} \mathcal{O} \times \Gamma \times \mathcal{O} & \longrightarrow \mathcal{O} \\ (k_{ij}, k_{uv}, k_{mn}) & \longmapsto k_{ij} k_{uv} k_{mn} = k_{ij} \end{array}$$

be an operation on  $\mathcal{O}$ .

From Definition 3.1, it is easily shown that

 $\left(\mathcal{N}\Gamma N_{1}\right) \quad k\beta\ell \in N_{r}\left(B\right)^{*}N,$ 

 $(\mathcal{N}\Gamma N_2)$   $(k+1\ell)\beta m = k\beta m + 1\ell\beta m$  property provides on  $N_r(B)^* N$ ,

 $(\mathcal{N}\Gamma N_3)$   $(k\beta\ell)\gamma m = k\beta(\ell\gamma m)$  property provides on  $N_r(B)^* N$ 

for all  $k, \ell, m \in N$  and all  $\beta, \gamma \in \Gamma$ .

Consequently, N is a nearness  $\Gamma$ -near ring.

Lemma 3.3 is obvious since  $N \subseteq N_r(B)^* N$ .

**Lemma 3.3** Every  $\Gamma$ -near ring is a nearness  $\Gamma$ -near ring.

From definition of nearness  $\Gamma$ -ring, it is clear that Lemma 3.4 is true.

**Lemma 3.4** Every nearness  $\Gamma$ -ring is a nearness  $\Gamma$ -near ring.

A nearness  $\Gamma$ -near ring is not always a  $\Gamma$ -near ring, and also a nearness  $\Gamma$ -near ring is not always a nearness  $\Gamma$ -ring.

Examples 3.5 and 3.6 are show that the opposites of the Lemma 3.3 and Lemma 3.4 are not true.

**Example 3.5** From Example 3.2 N is a nearness  $\Gamma$ -near ring. But N is not a  $\Gamma$ -near ring because of  $k_{01} + k_{10} = k_{11} \notin N$  for  $k_{01}, k_{10} \in N$ .

**Example 3.6** From Example 3.2 N is a nearness  $\Gamma$ -near ring. But N is not a nearness  $\Gamma$ -ring because of  $k_{10}k_{02}(k_{01} + k_{10}) \neq (k_{10}k_{02}k_{01}) + (k_{10}k_{02}k_{10})$  for  $k_{10}, k_{01} \in N$  and  $k_{02} \in \Gamma$ .

**Lemma 3.7** Let  $N \subseteq \mathcal{O}$  be a nearness  $\Gamma$ -near ring and  $0_N \in N$ . If  $0_N \gamma k \in N$  then

**Proof** (i) For all  $k \in N$  and all  $\gamma \in \Gamma$ ,

$$0_N \gamma k = (0_N + 0_N) \gamma k = 0_N \gamma k + 0_N \gamma k.$$

Since the near identity element is unique,  $0_N \gamma k = 0_N$ .

(ii) From (i),  $0_N \gamma \ell = 0_N$  for all  $k, \ell \in N$  and all  $\gamma \in \Gamma$ . Then

$$0_N = 0_N \gamma \ell = ((-k) + k) \gamma \ell = (-k) \gamma \ell + k \gamma \ell.$$

Since the inverse element is unique,  $(-k) \gamma \ell = -(k\gamma \ell)$ .

For all  $k, \ell \in N$  and all  $\gamma \in \Gamma$ , the equalities  $k\gamma 0_N = 0_N$  and  $k\gamma (-\ell) = -(k\gamma \ell)$  may not be provided.

**Definition 3.8** Let N be a nearness  $\Gamma$ -near ring. The set

$$N_0 = \{k \in N \mid k\gamma 0_N = 0_N, \ \gamma \in \Gamma \}$$

is called a zero symmetric part of N and the set

$$N_c = \{k \in N \mid k\gamma 0_N = k, \ \gamma \in \Gamma \}$$

is called a constant part of N.

If  $N = N_0$ , then N is called a zero symmetric nearness  $\Gamma$ -near ring. If  $N = N_c$ , then N is called a constant nearness  $\Gamma$ -near ring. The set of all zero symmetric nearness  $\Gamma$ -near rings is denoted by  $\mathcal{N}_0$  and the set of all constant nearness  $\Gamma$ -near rings is denoted by  $\mathcal{N}_c$ .

If the condition  $d\gamma(k+\ell) = d\gamma k + d\gamma \ell$  holds in  $N_r(B)^* N$  for all  $k, \ell \in N$  and all  $\gamma \in \Gamma$  then d is called a distributive element. Also, the set of all nearness  $\Gamma$ -near ring with the identity is represented as  $\mathcal{N}_1$  and the set of all distributive elements in N is represented as  $N_d$ . If  $N = N_d$ , then N is called a distributive nearness  $\Gamma$ -near ring.

**Definition 3.9** Let N be a nearness  $\Gamma$ -near ring and (S, +) be a subnearness group of (N, +). S is called a nearness  $\Gamma$ -subnear ring of N if  $S\Gamma S \subseteq N_r(B)^* S$ .

**Example 3.10** Let N be a nearness  $\Gamma$ -near ring. Then  $N_0$  and  $N_c$  are nearness  $\Gamma$ -subnear rings of N.

**Theorem 3.11** Let  $N, \Gamma \subseteq \mathcal{O}$ , N be a nearness  $\Gamma$ -near ring,  $S \subseteq N$  and  $N_r(B)^* S$  be an additive groupoid and  $\Gamma$ -groupoid. Then S is a nearness  $\Gamma$ -subnear ring of N iff  $-s \in S$  for all  $s \in S$ .

**Proof** ( $\Rightarrow$ ) Let S be a nearness  $\Gamma$ -subnear ring of N. Then (S, +) is a nearness group and hence  $-s \in S$  for all  $s \in S$ .

(⇐) Let  $-s \in S$  for all  $s \in S$ . Since  $N_r(B)^*S$  is an additive groupoid, (S, +) is a nearness group from Theorem 2.6. Therefore, since  $N_r(B)^*S$  is a  $\Gamma$ -groupoid and  $S \subseteq N$ ,  $p\beta r, r\gamma s \in N_r(B)^*S$  and  $(p\beta r)\gamma s = p\beta (r\gamma s)$  property holds in  $N_r(B)^*S$  for all  $p, r, s \in S$  and all  $\beta, \gamma \in \Gamma$ .

Furthermore, since  $N_r(B)^* S$  is an additive groupoid,  $\Gamma$ -groupoid and N is a nearness  $\Gamma$ -near ring,  $(p+r)\beta s = (p\beta s) + (r\beta s)$  property holds in  $N_r(B)^* S$  for all  $p, r, s \in S$  and all  $\beta \in \Gamma$ .

Consequently, S is a nearness  $\Gamma$ -subnear ring of N.

**Definition 3.12** Let N be a nearness  $\Gamma$ -near ring and J be a subnearness group of (N, +). Let  $N_r(B)^*S$  be an additive groupoid and  $\Gamma$ -groupoid. Then J is called a nearness  $\Gamma$ -ideal of N if the following properties are satisfied:

(1)  $J\Gamma N = \{x\gamma k \mid x \in J, \gamma \in \Gamma, k \in N\} \subseteq N_r(B)^* J$ ,

(2)  $k\gamma(l+x) - k\gamma l \in N_r(B)^* J$  for all  $k, l \in N$ , all  $x \in J$  and all  $\gamma \in \Gamma$ .

Furthermore, J is called a right nearness  $\Gamma$ -ideal of N if only the condition (1) is satisfied. Also, J is called a left nearness  $\Gamma$ -ideal of N if only the condition (2) is satisfied.

**Example 3.13** From Example 3.2, let we consider nearness  $\Gamma$ -near ring  $N = \{k_{00}, k_{01}, k_{10}\}$  and J = N. Since J is an additive nearness subgroup of N,  $J\Gamma N = J$  by definition of the operation  $\mathcal{O} \times \Gamma \times \mathcal{O} \longrightarrow \mathcal{O}$  from Example 3.2 and  $J \subseteq N_r(B)^* J$ , J is a right nearness  $\Gamma$ -ideal of N. Also, since  $k\gamma (l + x) - k\gamma l \in N_r(B)^* J$  for all  $k, l \in N$ , all  $x \in J$  and all  $\gamma \in \Gamma$ , J is a left nearness  $\Gamma$ -ideal of N. Hence J is a nearness  $\Gamma$ -ideal of N.

**Remark 3.14** Every nearness  $\Gamma$ -ideal of N is also a nearness  $\Gamma$ -subnear ring of N.

**Theorem 3.15** Let  $N \subseteq \mathcal{O}$  be a nearness  $\Gamma$ -near ring,  $I, J \subseteq N$  and  $N_r(B)^*I$ ,  $N_r(B)^*J$  be additive groupoids and  $\Gamma$ -groupoids. If I, J are both right (left) nearness  $\Gamma$ -ideals of N and  $(N_r(B)^*I) \cap (N_r(B)^*J) = N_r(B)^*(I \cap J)$ , then  $I \cap J$  is also a right (left) nearness  $\Gamma$ -ideal of N.

**Proof** Since I and J are both right nearness  $\Gamma$ -ideals of N,  $I\Gamma N \subseteq N_r(B)^*I$  and  $J\Gamma N \subseteq N_r(B)^*J$ ,

$$(I \cap J) \Gamma N = \{ x\gamma k \mid k \in N, \gamma \in \Gamma, x \in I \cap J \}$$
  
=  $\{ x\gamma k \mid k \in N, \gamma \in \Gamma, x \in I \text{ and } x \in J \}$   
=  $\{ x\gamma k \mid k \in N, \gamma \in \Gamma, x \in I \} \cap \{ x\gamma k \mid k \in N, \gamma \in \Gamma, x \in J \}$   
=  $I\Gamma N \cap J\Gamma N$   
 $\subseteq (N_r (B)^*I) \cap (N_r (B)^*J)$   
=  $N_r (B)^* (I \cap J).$ 

Therefore  $(I \cap J) \Gamma N \subseteq N_r(B)^* (I \cap J)$ , that is,  $I \cap J$  is a right nearness  $\Gamma$ -ideal of N.

Let  $x \in I \cap J$ . Since I and J are both left nearness  $\Gamma$ -ideals of N, then  $k\gamma (l+x) - k\gamma l \in N_r (B)^* I$  and  $k\gamma (l+x) - k\gamma l \in N_r (B)^* J$  for all  $k, l \in N$  and all  $\gamma \in \Gamma$ . Therefore  $k\gamma (l+x) - k\gamma l \in (N_r (B)^* I) \cap (N_r (B)^* J)$  and so  $k\gamma (l+x) - k\gamma l \in N_r (B)^* (I \cap J)$  from the hypothesis. Hence  $I \cap J$  is a left nearness  $\Gamma$ -ideal of N.

**Corollary 3.16** Let  $N \subseteq \mathcal{O}$  be a nearness  $\Gamma$ -near ring,  $J_i \subseteq N$   $(1 \leq i \leq n, n \geq 2)$  and  $N_r(B)^*J_i$  be additive groupoids and  $\Gamma$ -groupoids. If  $J_i$  are right (left) nearness  $\Gamma$ -ideals of N and  $\bigcap_{1\leq i\leq n} N_r(B)^*J_i = N_r(B)^*(\bigcap_{1\leq i\leq n} J_i)$ , then  $\bigcap_{1\leq i\leq n} J_i$  is also a right (left) nearness  $\Gamma$ -ideal of N.

#### **Declaration of Ethical Standards**

The authors declare that the materials and methods used in their study do not require ethical committee and/or legal special permission.

# Authors' Contributions

Author [Baki Çokakoğlu]: Collected the data, contributed to research method or evaluation of data (%40).

Author [Mustafa Uçkun]: Thought and designed the research/problem, contributed to research method or evaluation of data, wrote the manuscript (%60).

# **Conflict of Interest**

The authors declare no conflicts of interest.

# References

- [1] Barnes W.E., On the  $\Gamma$ -rings of Nobusawa, Pacific Journal of Mathematics, 18, 411-422, 1966.
- [2] Clifford A., Preston G., The Algebraic Theory of Semigroups I. American Mathematical Society Mathematical Surveys. Providence, RI, USA: American Mathematical Society, 1961.
- [3] İnan E., Öztürk M.A., Near groups in nearness approximation spaces, Hacettepe Journal of Mathematics and Statistics, 41(4), 545-558, 2012.
- [4] İnan E., Öztürk M.A., Erratum and notes for near groups on nearness approximation spaces, Hacettepe Journal of Mathematics and Statistics, 43(2), 279-281, 2014.
- [5] İnan E., Öztürk M.A., Near semigroups on nearness approximation spaces, Annals of Fuzzy Mathematics and Informatics, 10(2), 287-297, 2015.
- [6] Kyuno S., On prime gamma rings, Pacific Journal of Mathematics, 75, 185-190, 1978.
- [7] Luh J., On the theory of simple  $\Gamma$ -rings, Michigan Mathematical Journal, 16, 65-75, 1969.
- [8] Naimpally S.A., Peters J.F., Topology with Applications: Topological Spaces via Near and Far, World Scientific, 2013.
- [9] Nobusawa N., On a generalization of the ring theory, Osaka Journal of Mathematics, 1, 81-89, 1964.
- [10] Öztürk M.A., İnan E., Nearness rings, Annals of Fuzzy Mathematics and Informatics, 17(2), 115-131, 2019.
- [11] Öztürk M.A., Uçkun M., İnan E., Near group of weak cosets on nearness approximation spaces, Fundamenta Informaticae, 133, 433-448, 2014.
- [12] Peters J.F., Near sets: General theory about nearness of objects, Applied Mathematical Sciences, 1(53-56), 2609-2629, 2007.
- [13] Peters J.F., Near sets: An introduction, Mathematics in Computer Science, 7, 3-9, 2013.
- [14] Peters J.F., Naimpally S.A., Applications of near sets, Notices of the American Mathematical Society, 59(4), 536-542, 2012.
- [15] Pilz G., Near-Rings: The Theory and Its Applications, North-Holland Publishing Company, 1983.
- [16] Satyanarayana B., A note on Γ-near-rings, Indian Journal of Mathematics, 41(3), 427-433, 1999.
- [17] Skowron A., Stepaniuk J., Tolerance approximation spaces, Fundamenta Informaticae, 27(2-3), 245-253, 1996.
- [18] Uçkun M., Genç A., Near-rings on nearness approximation spaces, Turkish Journal of Mathematics, 45, 549-565, 2021.
- [19] Uçkun M., İnan E., Erol R., Nearness Γ-rings, Fundamentals of Contemporary Mathematical Sciences, 1, 37-48, 2020.
- [20] Wolski M., Perception and classification: A note on near sets and rough sets, Fundamenta Informaticae, 101(1-2), 143-155, 2010.
- [21] Zassenhaus H., Über endliche fastkörper, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 11, 187-220, 1935/1936.