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Abstract 

 
The present study is primarily aimed at the effects of boundary conditions on the numerical solutions of 

the laminar flow characteristics through an orifice plate inserted in a pipe with the aid of vorticity-

transport equations. For this purpose, orifice discharge coefficient was used as a main flow parameter. 

Discretization of vorticity-transport equations was made by using alternating direction implicit method. 

Two different boundary conditions were used to calculate vorticity values at the pipe walls and also three 

different boundary conditions were used to find vorticity values at the orifice corner points. The ratio of 

orifice diameter to the pipe diameter, , was kept constant and dimensionless orifice plate thickness 

L
*
 was selected as 1/12. The fluid flow was assumed to be two dimensional, axisymmetric, viscous, 

incompressible, steady, fully developed and laminar.  

 

Key words: Boundary conditions, discharge coefficient, laminar flow, orifice meter, vorticity transport 

equations. 

 

 

Orifis Etrafındaki Akışın Sayısal Yöntemlerle Çözümüne Sınır Şartlarının Etkisi 

 

Özet 
 

Bu çalışmada sınır şartlarının boru içerisine yerleştirilmiş orifis metre etrafındaki laminar akış yapısının, 

girdap-transport denklemleri yardımıyla, sayısal yöntem kullanılarak çözümüne etkisinin incelenmesi 

amaçlanmıştır. Bu amaç doğrultusunda orifis debi çıkış katsayısı ana parametre olarak kullanılmıştır. 

Girdap transport denklemlerinin ayrıklaştırılması implisit değişen yönler yöntemi kullanılarak yapılmıştır. 

Boru cidarında girdap değerlerini hesaplamak için iki farklı sınır şartı ve orifis metre köşe noktalarında 

girdap değerlerini hesaplamak için ise üç farklı sınır şartı kullanılmıştır. Orifis çapının boru çapına oranı 

sabit olup, 'dır ve boyutsuz orifis kalınlığının değeri, L
*
, ise 1/12’dir. Akış iki boyutlu, eksenel 

simetrik, viskoz, sıkıştırılamaz, daimi, tam gelişmiş ve laminar kabul edilmiştir 

 

Anahtar Kelimeler: Sınır şartları, debi çıkış katsayısı, laminar akış, orifis metre, girdap transport 

denklemleri. 
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1. INTRODUCTION 

Flow rate measurement of fluid flow is of great 

importance everywhere in industry. Because the 

quantity of fluid flowing through pipes must be 

known precisely in order to have economically 

optimum operations. As it is known that the orifice 

meter is one of the most frequently used flow 

measurement devices in industry. For this reason, 

measurement of flow rate obtained by using this 

device should be accurate. An error in metering the 

flow rate may cause substantial economic losses. 

For example, according to the statement of 

Morrison et al. [1], in USA one million orifices are 

used and because of the wrong measurements, 

large amount of economical losses occur per year. 

Considerable research efforts in the study of 

orifice flow have been devoted to applications 

involving flow meters. These orifices typically 

have diameter ratios (β) in the range of 0.2 to 0.75 

and orifice thickness/diameter ratios (L
*
) less than 

1 [2,3,19,22,23]. 

 

In laminar flow, the variation of discharge 

coefficient (
d

C ) is substantially rapid with the 

orifice thickness/diameter ratio (L
*
), orifice/pipe 

diameter ratio ( and Reynolds number (Re). It is 

known from the previous studies conducted on the 

orifice flow [3,13,14], the values of discharge 

coefficients change rapidly until Red 150. After 

this level of Reynolds number, the value of 

discharge coefficient varies approximately in 

between Cd= 0.72~0.77 for =0.6 [3]. 

 

Johansen [4] examined the characteristics of flow 

through orifice plate in two series of experiments. 

In the first group, he made visual observations of 

the flow of water through orifices in a glass pipe 

by means of colouring matter injected into the 

stream. Photographs were also taken illustrating a 

number of typical conditions of flow sufficient to 

define the transitions leading to the establishment 

of complete turbulence. In this part of experiments, 

four sizes of orifice (do/D = 0.1, 0.25, 0.5, 0.75) 

were used and he observed similar flow 

characteristics in each case. In the second series of 

Johansen’s experiments, orifices were mounted in 

a length of smooth brass pipe and the discharge 

coefficients determined down to values of 

Reynolds number. In his pressure experiments, he 

determined the relation between the discharge 

through a pipe orifice and the differential head 

across the diaphragm for a series of sharp-edged 

orifices (do/D = 0.209, 0.400, 0.595, 0.794) over a 

range of  Reynolds numbers extending from over 

25000 down to less than unity. He used orifices of 

similar shape in both series of experiments. They 

were sharp edged, and bevelled at 45
o
 on the 

downstream side. 

 

An extensive experimental work has been carried 

out by Alvi et al. [5] on the loss characteristics and 

discharge coefficient of the sharp-edged orifices, 

quadrant-edged orifices and nozzles for Reynolds 

numbers in the range of 4

d
10Re20   with 

varying , keeping the orifice thickness/diameter 

ratio (L
*
) constant. A numerical algorithm for the 

solution of steady, viscous flow through a pipe 

orifice that allows a considerable flexibility in the 

choice of orifice plate geometry with a constant 

thickness has been discussed by Nigro et al. [6]. 

 

The description of the steady flow of an 

incompressible fluid through the orifice has been 

semi-empirically established for only certain flow 

conditions by Grose [7]. He has shown that the 

discharge coefficient was solely dependent upon 

the viscosity coefficient for 
0

Re  less than 16. 

Nallasamy [8] has studied the characteristics of the 

separated flow behind the obstacle for 
0

Re  values 

in the range of 1500Re0
0
 . He has examined 

the effects of thickness and height of the obstacle 

and the inlet velocity profile on the separated flow 

region. 

 

Numerical solution of Navier-Stokes equations has 

been obtained by Mills [9] for Reo values in the 

range of 0<Reo 50 having steady, axisymmetric, 

viscous, incompressible fluid flow with a fixed 

orifice/pipe diameter ratio of =0.5 and a fixed 

orifice thickness/diameter ratio L
*
. Mills [9] has 

stated that in view of the axisymmetric nature of 

the flow, it was no longer possible to use the same 

boundary conditions for both vertical and 

horizontal walls as can be assumed for two-

dimensional flow referred to a rectangular 

coordinate system. 

 

Coder and Buckley [10] have presented a 
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technique for the numerical solution of the 

unsteady Navier-Stokes equations for laminar flow 

through the orifice plate within a pipe. They 

accomplished the solution through the 

rearrangement of the equations of motion into a 

vorticity transport equation and a definition-of-

vorticity equation, which are solved by an implicit 

numerical method. They used an equation, which 

is proposed by Lester [11] to find vorticity on the 

pipe wall and orifice surface. In the present work, 

this equation was also used as a first boundary 

condition to obtain vorticity values on the pipe 

wall. 

 

Ma and Ruth [12] have presented a new numerical 

technique for treating the vorticity singularity of 

incompressible viscous flow around a re-entrant 

sharp corner. They have developed vorticity 

circulation method for contracting flow, which is 

characterized by the local flow acceleration and 

separation. They used boundary condition for 

vorticity, which was found by considering the 

continuity and no-slip constraints at the fluid/solid 

interface. In the present work, this boundary 

condition was also used as a second boundary 

condition to find vorticity values at the pipe wall. 

 

Şahin and Ceyhan [13] have investigated the flow 

characteristics through the square-edged orifice 

inserted in the pipe both numerically and 

experimentally. In their study, they have solved the 

governing equations by assuming the flow is 

steady, fully developed, laminar, incompressible, 

two-dimensional and axisymmetric with Reynolds 

numbers in the range of 0<Reo 144 and orifice 

thickness/diameter ratio in the range of 

1/16L
* 1. They have observed that the length 

of the separated flow region changes rapidly 

especially at low Reynolds numbers. 

 

By considering the same flow geometry and 

assumptions, Şahin and Akıllı [14] have 

investigated the flow characteristics such as the 

length of separated flow region, velocity vectors, 

contours of stream function. They used finite 

element method having the Reynolds numbers in 

the range of 0<Reo 2000, orifice 

thickness/diameter ratio in the range of 

1/16L
* 1 and orifice/pipe diameter ratio in the 

range of 0.2     0.9 in their study. 

A study of laminar pulsating flow through a 45-

degree beveled pipe orifice has been performed 

using finite difference approximations to the 

governing stream function and vorticity transport 

equations by Jones and Bajura [15]. They have 

obtained the solution for  values varying from 0.2 

to 0.5 with 
0

Re  values in the range 64Re0
0
 . 

 

Gan and Riffat [16] have conducted a study on the 

pressure loss characteristics of square edged orifice 

and perforated plates. They have carried out tests 

to determine the pressure loss coefficient for thin 

plates in a square duct for a range of Reynolds 

numbers. They have used computational fluid 

dynamics (CFD) to predict the loss coefficient, and 

their results were compared with experimental 

results. They have conducted studies to understand 

the effect of plate thickness on the loss coefficient 

for the orifice plate using CFD. 

 

Ramamurthi and Nandakumar [17] conducted 

studies on the discharge coefficients for flow 

through small sharp-edged cylindrical orifices of 

diameters between 0.3 mm and 2 mm and aspect 

ratios between 1 and 50. They determined the 

characteristics of flow in the separated, attached 

and cavitated flow regions. They have shown that 

while the discharge coefficient scales with the 

Reynolds number and aspect ratio in the attached 

flow regions, the diameter influences the discharge 

coefficient in the separated flow region. They have 

indicated that the onset of cavitation in the orifice 

is dependent on the diameter and aspect ratio. 

They have also stated that the values of discharge 

coefficients for separated and cavitated flows do 

not depend on Reynolds number. The critical 

cavitation number is also dependent on the 

diameter and the aspect ratio of the orifice.  

 

Huang and Seymour [18] have investigated the 

effect of a corner singularity on the accuracy of the 

finite difference solution to the incompressible 

viscous flow equations. They have considered two 

problems that include corner singularities. The first 

concerned the flow of a viscous fluid in a channel 

driven by a constant pressure gradient, when the 

velocity satisfies a two-dimensional Poisson 

equation. The second was Stokes flow in a two-

dimensional region when the stream-function 

satisfies the biharmonic equation. For both 
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problems the boundaries of the domains contain 

corners. They stated that the stress or the vorticity 

is singular for corner angles greater than some 

critical value. They have shown that numerical 

approximations for the stream-function and 

velocity converge to the exact solutions despite the 

corner singularities using both a formal analysis 

and numerical results. 

 

Mishra et al. [19] have experimentally investigated 

various characteristics of the incompressible and 

compressible flows through rectangular 

microorifices entrenched in microchannels. Their 

discharge coefficient results in incompressible 

flow matches the results obtained at the 

macroscale. For the incompressible flows through 

microdevices a correlation estimating the 

discharge coefficient was provided. They have 

observed that the flow rate is controlled by the 

constriction element area rather than the 

microchannel area for the compressible flows 

through microdevices. 
 

Zimmermann [20] has conducted experiments to 

examine the influence of a disturbed pipe flow on 

the flow coefficient of a standard orifice plate. He 

presented that the existing standard should be 

revised as regards the definition of the fully 

developed turbulent flow profile and the selection 

of the required upstream lengths.  

 

The present study is primarily aimed at the effects 

of boundary conditions on the numerical solutions 

of the laminar flow characteristics through the 

orifice plate inserted in a pipe with the aid of 

vorticity-transport equation. By using vorticity-

transport equation, the mixed elliptic-parabolic 

Navier Stokes equations have been separated into 

one parabolic and one elliptic equation. This 

procedure requires that appropriate expressions for 

vorticity ( and stream function () be specified 

at the boundaries. The stability and accuracy of the 

solution depends on these boundary conditions. 

Although the governing equations are the same for 

all type of fluid flow geometries, the differences 

appearing in the numerical solution of governing 

equations of fluid flow come through the initial 

and boundary conditions [21]. Because of this 

reason, it is substantially important to use 

consistent boundary conditions in order to have 

accurate numerical solutions. The orifice flow, 

which has mathematically singular points and no-

slip boundary condition for the vorticity, is the 

special case for the present numerical studies with 

the aid of vorticity-transport equations. 

 

Governing equations was solved by means of a 

marching technique called alternating direction 

implicit method.  A computer code in FORTRAN 

language was developed for that purpose. Flow 

was assumed to be fully-developed, 

incompressible, viscous, axisymetric, steady and 

laminar. Orifice/pipe diameter ratio , which is 0.6 

and orifice thickness/diameter ratio L
*
, which is 

1/12, were kept constant throughout the 

calculations. 

 

2. GEOMETRY OF FLOW WITH 

OBSTACLE 

The square-edged orifice plate inserted in a 

circular pipe is shown in Figure 1. In this figure, 

cross sections 1 and 2 represent the locations of 

pressure taps used for the numerical calculation of 

the orifice discharge coefficient. The length 

between the location of the upstream tapping point 

and the inlet surface of the orifice was one 

diameter of the pipe, D. The length between the 

downstream pressure tapping and the inlet surface 

of the orifice was one half of the pipe diameter, 

D/2. Because fully developed flow condition was 

assumed at the inlet of the pipe, an orifice plate 

which is placed 4D from the inlet and 23D from 

the exit of the pipe was used as shown in Figure 3. 

The orifice plate used has a concentric hole. 
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Figure 1. Square-edged orifice meter inserted in a circular pipe 

 

A grid independency study was performed to find 

a grid that was sufficiently fine to provide accurate 

solutions. In order to check the grid independency 

of the computation, predictions of the discharge 

coefficient with various size of the mesh inserted 

in the flow field at a Reynolds number of 400 was 

carried out. Comparison of the discharge 

coefficient for different grid sizes is given in 

Figure 2. As seen from Figure 2, the value of 

orifice discharge coefficient does not change 

considerably by increasing number of nodes from 

56x3024 to higher values. So that, for the 

investigation of flow characteristics, the flow field 

was divided into 56 intervals in the vertical 

direction and 3024 intervals in the horizontal 

direction. 

 

 

Figure 2. Variation of the orifice discharge 

coefficient with various mesh sizes at the Reynolds 

Number of 400 

As it is well known that the orifice 

discharge coefficient is a function of the orifice 

thickness/diameter ratio (L
*
), orifice/pipe diameter 

ratio ( and Reynolds number (Re). In practice, 

the accuracy of the measurement of the volume 

flow rate strongly depends on the accurate 

measurement of the pressure differential, which is 

caused by the orifice plate. The relationship 

between the pressure differential and the volume 

flow rate can be characterized by the discharge 

coefficient (
d

C ). The orifice discharge coefficient 

for steady flow has been defined by applying the 

continuity and Bernoulli equations to flow 

geometry shown in Figure 1. 
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Here P
*
 is the dimensionless pressure difference 

between cross sections 1 and 2 shown in Figure 1.  

 

3. MATERIAL AND METHODS 

In this study, flow was assumed to be steady, 

viscous, fully developed, incompressible, laminar 

and axisymmetric. Equations governing this type 

of flow are expressed as follows; 

 

Navier-Stokes equations; 
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Continuity equation; 

0
z

V

r

V

r

V zrr 








 (3) 

 

On the other hand, since we investigate steady 

flow, time derivative in equations (2) should be 

taken as zero. But, in this case, vorticity transport 

equation obtained becomes nonlinear and elliptic 

partial differential equation. Because of the fact 

that stability can be obtained more quickly with 

parabolic equations, the time derivative of velocity 

components was left in equations (2) consciously. 

In this way, an elliptic type equation was 

converted into parabolic type equation. This 

addition of term has no physical meaning. Velocity 

components of the flow are expressed in terms of 

stream function as follows, 

z

ψ
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Following group of dimensionless parameters was 

used to obtain dimensionless form of the 

governing equations. 
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Vorticity transport equation (7) and stream 

function equation (8) can be written as follow by 

using governing equations (2.a, 2.b, 4 and 5) and 

the group of dimensionless parameters (6) shown 

above. 
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For the calculation of discharge coefficient, the 

static pressure distribution along the pipe should 

be calculated. Pressure distributions can be 

determined by integrating the dimensionless form 

of Navier-Stokes equations shown below with the 

aid of Simpson’s 1/3 integration rule. 
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4. DISCRETIZATION OF 

VORTICITY TRANSPORT 

EQUATIONS 

Notations for the determination of the flow 

geometry and boundary conditions were given in 

Figures 3 and 4. Here, (i) and (j) notations were 

used for terms in axial and radial directions, 

respectively. Pressure values, which were 

necessary for the calculation of discharge 

coefficient, were taken from the cross sections D-

D/2 as shown in Figure 1. 

 

Equation (7) was solved by means of a marching 

technique called alternating direction implicit 

method (ADI). In this method, values of 

(t+  t) 

were obtained in some fashion from the known 

values of 

(t). The solution of 


(t+  t) was 

achieved in a two step process, where intermediate 

values of 

 were found at an intermediate time, 
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(t+  t/2). In the first step, over a time interval t/2, 

the spatial derivatives in equation (7) were 

replaced with central differences, where only the z 

derivative was treated implicitly and the following 

equation was yielded;  
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The second step of the alternating direction 

implicit method scheme took the solutions of 
*
 

for time t+t, using the known values at time 

t+t/2. For this second step, the spatial derivatives 

in equation (7) were replaced with central 

differences, where the r derivative was treated 

implicitly. Hence, equation (7) can be presented 

as;  
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Equation (11) and (12) can be reduced to three 

diagonal matrix forms. Stream function equation 

was solved with the aid of successive relaxation 

method as follow; 
 

    ji,
*j

*2

1ji,
*

1ji,
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j
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*
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*1n
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* ω

4
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ψψ

8r

H
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 (13) 

5. INITIAL AND BOUNDARY 

CONDITIONS 

For the velocity values at the pipe walls, no slip 

boundary condition is applied. At the inlet of the 

pipe (AB), flow is assumed to be fully developed. 

Since the flow is axisymmetric, radial velocity 

component should be zero along the centreline of 

the pipe (AH).  Therefore, the value of stream 

function through the centreline becomes constant. 

If above conditions are satisfied, the value of 

stream function on the pipe wall (through BC, CI, 

IE, EF and FG) should also be constant. The 

following equation for the stream function can be 

written as the inlet boundary condition for laminar 

fully developed flow.  
















2

r
1rψ

2

2
*

**  (14) 

Here, equation (14) can be used for the calculation 

of stream function at the cross section AB. On the 

boundaries BC, CI, IE, EF and FG, the value of 

stream function becomes 
*ψ = 0.5. On the central 

axis, the value of stream function is equal to zero. 

The resulting equation for the vorticity at the inlet 

becomes; 

** 4rω   (15) 

According to this equation, vorticitiy value at the 

centreline (AH) is zero. At outlet (GH) derivatives 

of all flow variables are taken to be equal to zero. 

5.1. Vorticity Values at the Pipe Walls 

The flow of an incompressible fluid around a re-

entrant sharp corner is encountered in many 

engineering problems. A typical example is the 

orifice inserted pipe flow. It is well known that 

corner points are mathematically singular points 

for the vorticity and pressure fields because of the 

no-slip boundary condition on the fluid/solid 

interface [12].  
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Figure 3. The simulated pipe geometry and notation for the boundary conditions 

Mills [9] has commented that the same boundary 

condition cannot be used to calculate vorticity 

values for both vertical and horizontal walls for 

axisymmetric flow conditions. Lester [11] has 

considered vertical and horizontal walls separately 

for his calculations of the flow characteristics 

around orifice. 

 

Two different boundary conditions are used to 

calculate vorticity values at the pipe walls in this 

study. The first one (BCW1), which is derived by 

Lester [11], can be given as follows; 

 

For horizontal wall; 
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 (16) 

 For vertical wall; 

 

  *

1ji,

*

ji,

*

1ji,*

i

2

*

ji, ω
2

1
ψψ

rH

3
ω    (17) 

 

Second boundary condition (BCW2) can be 

obtained by considering the no-slip boundary 

condition at walls. Using the boundary BC as an 

example shown in Figure 3, we can expand *

1ji,ψ 
 

by applying Taylor series using the wall values of 

stream function, *

ji,ψ . Regardless of the wall 

orientation or boundary value of 
*ψ , vorticity 

value at the pipe wall can be written as follow; 

 
 ΔH0

H

ψψ

r

2
ω

2

*

1-w

*

w

*

i

*

ji, 


  (18) 

where H is the distance from (w) to (w-1), normal 

to the wall.  

 

 
Figure 4. Flow geometry 

 

5.2. Corner Treatments of Vorticity 

The need for the corner vorticity (
*

cω ) arises from 

the use of finite difference approximation for 

vorticity values at the neighbouring points. 

However, there are several alternatives for the 

evaluation of c. The no-slip wall condition for 

vorticity (
*

wω ) can be applied in a number of 

ways to calculate the value of 
*

cω . In this study, 

only the first order formulations for c were 

considered, consistent with the wall equation (18). 

Three different methods were used for handling 

the value of orifice corner vorticity. These are: 
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1 - Discontinuous Values of Vorticity (DVV): 

Referring to Figure 5, two different vorticity 

values a and b are calculated by 

2

*

jc1,ic

*

jcic,

*

jc

*

a
H

ψψ

r

2
ω


  (19) 

and 

2

*

1jcic,

*

jcic,

*

jc

*

b
H

ψψ

r

2
ω


  (20) 

respectively. 

 

When the corner vorticity 
*

cω

 

is applied in a 

difference equation about node C just upstream of 

the contraction, 
*

a

*

c ωω   is used, however, 

*

b

*

c ωω   is employed for the case of downstream 

calculations of node (ic,jc). 

 

2 - Average of the Wall Vorticity Values (AWV): A 

single corner vorticity equal to the average of two 

wall values is used in this method which is 

presented as; 

 
Figure 5. Notations used for the calculation of the 

vorticity values at the corner points of the orifice 

plate 
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
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3 - ψ - Symmetry About the Corner Point (SCP): 

Assuming the stream function is symmetric about 

the corner point, i.e. *

jc1,ic

*

jc1,ic ψψ    and 

**

1jcic, 1jcic,
ψψ




, the corner vorticity is then 

evaluated from; 
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
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
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
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2
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*

c
H

ψψ

H

ψψ

r

2
ω

1jcic,jcic,jc1,icjcic,  (22) 

 

6. RESULTS AND DISCUSSIONS 

In this work, the effects of the various types of 

boundary conditions, which were used to calculate 

vorticity values at the solid boundaries and orifice 

corner points, on the numerical solution of the 

orifice flow were investigated. For this purpose, 

five different boundary conditions were used. Two 

of them were used in order to calculate the 

vorticity values at the pipe walls and the last three 

boundary conditions were used for the calculation 

of vorticity values at the orifice corner points.   
 

Vorticity transport equation has been solved by 

using alternating direction implicit method. 

Numerical results obtained in the present work 

were compared with the mean values of 

experimental results taken from the open literature.  

 

The need for the calculation of vorticity values at 

no-slip boundaries arises from the use of vorticity 

transport equation method for the solution of 

governing equations. Because, vorticity transport 

equation is solved directly in terms of two 

variables, which are vorticity and stream function. 

The corner points of the orifice plate are 

mathematically singular points for the vorticity 

and pressure fields. Because of this reason, various 

types of boundary conditions derived in different 

ways are suggested to calculate vorticity values at 

the solid boundaries and mathematically singular 

points. 

 

Notations used for the boundary conditions in this 

study are as follows: i) BCW1: The first boundary 

condition used to find vorticity values at the pipe 

wall which is given by equation (16) and (17), ii) 

BCW2: The second boundary condition used to 

find vorticity values at the pipe wall which is given 

by equation (18), iii) DVV: “Discontinuous value 

of vorticity” method used for calculation of the 

vorticity values at the orifice corner points and 
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given by equation (19) and (20), iv) AWV: 

“Average value of vorticity” method used for 

calculation of the vorticity values at the orifice 

corner points and given by equation (21), v)  SCP: 

“-symmetry condition about the corner points” 

method used for the calculation of the vorticity 

values at the orifice corner points and given by 

equation (22). 

 

Due to the rapid change of flow characteristics, the 

flow through the orifice plate were investigated for 

Reynolds numbers in the range of 0<Red 1000. It 

was seen that the boundary conditions are 

important parameters to which attention should be 

given. Therefore, the variations of discharge 

coefficient as a function of Reynolds number are 

calculated by using five different boundary 

conditions. These results are presented in Figures 

6a and 6b. In these figures, while the boundary 

condition used for the calculation of vorticity 

values at the pipe wall is kept constant, the 

boundary condition used for the calculation of  

vorticity values at the orifice corner points is 

changed. Comparison of the results obtained by 

using combination of boundary conditions (AWV, 

SCP, DVV) used for the orifice corner points and 

boundary condition (BCW1) given in equations 

(16) and (17), with the experimental results of 

Johansen [4] is shown in Figure 6a. As seen in this 

figure, the boundary condition that shows the best 

conformity with the experimental results is the 

combination of BCW1 and AWV. 

 

 
(a) 

 
(b) 

Figure 6. Variation of orifice discharge coefficient with Reynolds number for various boundary condition 

combinations 
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In addition to that, the results of other combined 

boundary conditions have a good agreement with 

the previous experimental results of Johansen [4] 

for Reynolds numbers Red 200. At higher values 

of Reynolds numbers such as Red>200, the largest 

difference between numerically obtained results 

and experimental results is approximately 6%. 

Numerical results obtained by using BCW2, AWV, 

SCP and DVV were compared with experimental 

results as shown in Figure 6b. Here, it is seen that 

the best conformity is given by the combination of 

boundary conditions BCW2 and AWV. However, 

the maximum difference between the results of 

these combination of boundary conditions and 

experimental results of Johansen [4] is nearly 3% 

for the range of Reynolds numbers 30 Red  110. 

In addition, the combination of SCP boundary 

condition with BCW2 gives the most lack of 

conformity by the rate of 9% difference with the 

previous experimental results for the range of 

200Red 1000. If Figures 6a and 6b are 

considered together, it is observed that the most 

suitable method for the calculation of vorticity 

values at the corner points of orifice is the average 

value of vorticity method (AWV).  

 

By considering Figures 6a and 6b together, the 

best method for the calculation of vorticity values 

at the pipe wall can be evaluated. Results obtained 

by using combinations of AWV with BCW1 and 

BCW2 boundary conditions presents good 

agreement with the experimental results in all 

ranges of Reynolds numbers considered. In 

addition, the present numerical results obtained 

with the combination of SCP with BCW1 and 

BCW2 boundary conditions are also in a good 

agreement with previous experimental results at 

low Reynolds numbers in the range 0 < Red < 100. 

But, as the Reynolds number increases this 

agreement becomes deteriorated. Additionally, 

combination of BCW1-SCP boundary conditions 

gives better results than the combination of BCW2-

SCP boundary conditions. Finally, combinations of 

boundary conditions DVV with BCW1 and BCW2 

provide good results between Reynolds numbers in 

the range of 0 Red  300. But this conformity 

gradually deteriorates as the Reynolds number 

increases. Consequently, the combination of 

BCW1 and AWV boundary conditions gives the 

best conformity with the experimental results 

among all boundary conditions used presently. 

Conclusions driven from the present work support 

conclusions of Mills [9] who stated that the same 

boundary condition cannot be used for both 

vertical and horizontal walls in the cylindrical 

coordinates.  

 

Examining all distributions of the discharge 

coefficient, maximum difference between 

numerical results of discharge coefficients 

computed from various boundary conditions at 

Reynolds number Red=100 is approximately 3%. If 

the similar comparison is done at Reynolds 

number of Red=1000, the maximum conformity 

with the experimental results is provided by the 

combination of BCW1 and AWV boundary 

combinations. On the other hand, the maximum 

difference between the present results and the 

experimental results is given by the combination of 

BCW2 and SCP boundary conditions. 

 

7. CONCLUSIONS 

This study was conducted to investigate the effects 

of different boundary conditions on the numerical 

solutions of the laminar flow through the orifce 

plate inserted in the pipe. Throughout the 

calculations, the orifice/pipe diameter ratio was 

taken as =0.6 and the orifice plate 

thickness/diameter ratio L
* 

was taken as 1/12. 

Governing equations were converted in the form of 

vorticity-transport equations and then solved by 

using alternating direction implicit method. 

 

Among the boundary conditions used in the 

present work, combination of BCW1 and AWV 

boundary conditions gives the best agreement with 

the experimental results. On the other hand, the 

maximum discrepancy in comparison with the 

experimental results is given by the combination of 

BCW2 and SCP boundary conditions. 

 

8. NOMENCLATURE 

Cd : Orifice discharge coefficient 

do : Diameter of orifice plate  

D : Diameter of pipe  

R : Radius of pipe 

L : Orifice thickness  
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L
*
 : Orifice thickness/diameter ratio (

o
d

L
) 

P : Pressure  

P
*
 

: Dimensionless pressure (
2

max
ρV

2

1

P
) 

Q : Volume flow rate  

r : Radial coordinate  

r
*
 : Dimensionless radial coordinate (

R

r
) 

t  : Time  

t
*
 : Dimensionless time (

R

Vt
) 

Reo : Reynolds number based on orifice 

diameter (
μ

dVρ
o

) 

Red : Reynolds number based on pipe 

diameter (
μ

DVρ
) 

Vr : Radial velocity 

Vr
*
 : Dimensionless radial velocity (

V

V
r ) 

Vz : Axial velocity 

Vz
*
 : Dimensionless axial velocity (

V

V
z ) 

Vmax : Maximum velocity 

V  : Average velocity 

 : Vorticity 



 : Dimensionless vorticity (

V

ωR
) 

z : Axial coordinate 

z
*
 : Dimensionless axial coordinate (

R

z
) 



: Ratio of orifice diameter to the pipe 

diameter )
D

d
( o

 

H : Distance between two grids 

t : Time step 

 : Density 

ψ  : Stream function 

ψ *
 : Dimensionless stream function (

2RV

ψ
) 
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