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ABSTRACT

The basic macroeconomic targets of the Turkish economy for the year 2000
and thereafter are to reduce the interest rates to plausible levels and increase the total
production in a steady way. The goal of this study is to see if the Turkish government
can realize these targets for the year 2000. For this purpose, I employed, here in this
study, two widely used forecasting techniques; Box-Jenkins and exponential
smoothing procedures to forecast monthly future values of interest rates on deposits
and industrial production index. Forecast outputs indicate that interest rate tends to
decrease and industrial production index tends to increase. Therefore, it can be
concluded that these forecasting methodologies verify that government’s main macro
targets will be most likely realized for the year 2000.
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1. Introduction

Turkey has been in a transition from government control of large
segments of her economy to a market economy to closer tights to the world
economy for last two decades. This slow transition and deviations from long-
run goals led to usually undesirable macroeconomic indicators such as high
interest rates and unstable growth rates till the end of 1999.

Since the beginning of 2000, Turkish economy has been experiencing a
positive trend and optimistic expectations. Turkey's acceptance as a candidate
member by EU, taking steps towards having a consensus by both public and
private sectors to meet the basic requirements of EU membership, credible
announcements by government and central bank to implement the proper
monetary and fiscal policies formed a basis for optimistic expectations for the
Turkish economy in general. Increasing the total production in a steady way and
reduction the real interest rates to plausible levels are the government’s main
macroeconomic targets for the year 2000 and the following years.

In this study, forecasting analyses are carried out to see what will
happen to the interest rates and production index by using two different time
series methods i.e. Box-Jenkins and exponential smoothing methods. In Box-
Jenkins methodology, first, identification, estimation and diagnostic checking
procedures are applied to time series, then, future monthly observations of the
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series are forecasted. Same series are forecasted by choosing the best
exponential smoothing option among others.

2. Box-Jenkins Or ARIMA Procedure

ARIMA stands for autoregressive (AR) integrated (I) moving average
(MA). The general model for ARIMA can be written as

YV, =0V, +0,, ., +...+¢py,_p +e, +0e,_, +0,e,_, +...+6’qe,_q. )

This model is known as ARIMA (p, d, g). p is the number of lagged
values of y, d is the number of times y is differenced to make it stationary, and ¢
is the number of the lagged values of the error term. If the series is already
stationary, then the model becomes ARIMA  (p, 0,q) or ARMA (p, q). This
model is used to explain/forecast the series that is assumed to depends on its
past behavior (Kennedy, 1996, p.248). Before forecasting a series by Box-
Jenkins (BJ) (or ARMA) methodology, we need to follow the steps below.

a) Stationarity Test: We look at the graph of the series. If series tends to
drift somewhat with no obvious mean, we suspect that the series is
nonstationary. A time series with constant mean and constant variance over time
is called stationary. Besides, we examine the sample autocorrelation function
(SAF) of the series. A SAF that dies down very slowly is another implication of
nonstationarity (Montgomery, ef al., 1990, pp.255, 271).

After all, we can run Dicky-Fuller (DF), Augmented DF or Phillips-
Perron tests to see if the series is stationary. If the series is found nonstationary,
its first difference is taken. In case the series is still found nonstationary, a
higher order (i.e. second or third) difference is taken until series becomes
stationary.

b) Identification: Behavior of theoretical SAF and sample partial
autocorrelation function (SPAF) for stationary models is given the table below.

Model SAF SPAF

AR(p) Tails off Cuts off after lag p
MA(q) Cuts off after lag g Tails off
ARMA(p, q) Tails off Tails off

The expression tails off implies that function decays in an exponential,
sinusoidal, or geometric fashion, approximately, with nonzero values. Cuts off
indicate that function truncates abruptly with only a very few nonzero values
(Montgomery, et al., 1990, p.261).
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To determine the p and g values of an ARMA (p, q), we obtain the SAF
and SPAF of the series and examine the SAF coefficients (r,) and SPAF
coefficients (ry). The numbers of lags in SAF and SPAF are taken one-third or
one-fourth of the sample size in practice.

The coefficients r, and ry that lie outside the 95% confidence interval
will determine the AR (p) and MA (g). The 95% confidence interval is obtained

from the formula of (¥1.96 (1//n) . For instance, let us assume the number of
observations in a series be 100. Standard error and confidence interval in this

case would be 0.1 and —0.196 <r1,,r,, =0.196 respectively. Let us assume

that first coefficient of SAF, ry, is 0.435, second coefficient of SAF, r,, is 0.340,
first coefficient of SPAF, r;; is 0.435 and that all other coefficients are lower
than 0.196 in absolute values. Then tentative model would be ARMA (1,2) for
this series that is assumed to be stationary. In other words, coefficients of SAF
(1), SPAF (1) and SPAF (2) are statistically different from zero at the 95%
confidence interval. In the identification stage, we should take into account for
the seasonality of the series as well. If there is seasonality and nonstationarity in
the data, it is necessary to take the first difference of the already seasonally
differenced data (Enders, 1995, pp.115, 117).

¢) Estimation: In the example above, we use the regression of the series
on AR (D), MA (D) and MA (2). Namely,
y,=m+@y,_ +e +0e, , +0,e,_,.If the sample mean of the series is small

enough in comparison with the observations in the series, we may not include
constant term in regression (Montgomery, et al.1990, p. 270s). If there were
seasonality at quarterly data, model above would be

Vo=m+$y  +4,y, ., +e +be  +0e ., or
y,=m+¢y,  +e, +0e, +6,e, ,+0,e, , (Enders, 1995, pp.109-117). (2)

d)Diagnostic Checking:

i) Regression residuals should be white noise. In other words, Ljung-
Box-Q statistic value of the residuals should be less than chi-square tabled value
at desired significance level.

ii) Coefficients of AR (p) and MA (g) obtained from the regression
should be statistically different from zero.

iii) Model should be parsimonious that is, in its simplest form. This
condition implies that a simple model should be preferred to a higher level
model. Provided that ARMA (1,2) and, for instance, ARMA (1,6) meet all the
previous conditions mentioned above, ARMA (1,6) model might be eliminated
(Enders, 1995, p.96; Gaynor and Kirkpatrick, 1994, pp., 426, 431).

iv) Model should have a small root mean square error (standard error).
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3. Exponential Smoothing Procedure

Exponential Smoothing forecast for any period is a weighted average of
all the past values with weights declining geometrically. The basic exponential
smoothing model (ES) can be written as

yr:ayt_'_(l_a)yt—l’ (3)

where ), is smoothed average for time t, y,is actual value of the time
series in period t,y, ; is smoothed average for the previous time period and «

is smoothing constant, (0 < « <1). Therefore,

yr—l =Qy, ., + (1 - a)yt—z “4)
J_)r—z =y, , + (1 - a))_/r—3 )
Vg =0y, 5+ (1 - a)yt—4 (6)

Finally, substituting equation (4), (5) and (6) in equation (3), we obtain,
— 2 3 4_
Y =, +0{(1 _a)yr—l +0{(1 _a) Y2 +0{(1 _a) Vi3 +a(l—a) Viea (D)

We can also make appropriate substitutions for , ,,», s and so on

until y, can be expressed by its past weighted values. Suppose that sample size

is 10 representing the actual values for period 1, 2,.., 10 and that we are
interested in using ES to aid in analyzing these data. First equation to be

smoothed would be y, =ay, + (1 - 05)}1 . Since y, is not available at hand, we
take y,= yi as initial value. As indicated in equation (7), the weights decrease

exponentially (or geometrically), equation (7) is called exponentially distributed
or ES (Daniel and Terrell, 1995, p. 783).

Forecasting model by simple ES is
Fr+1 =y, + (1 - a)Fr > (3

where F,. is the forecast for period t+1, F| is the forecast for period t. When we
use simple ES, F,.; and F, would equaly,, ¥, , respectively. To start the
calculations, we let F, equal the actual value in period t, y, and hence
F, = y,(Anderson, et al., 1996, p.709). Another way of obtaining initial
forecast, F), is to take the mean of several past actual values of y, (Daniel and
Terrell, 1995, p.819, Montgomery, et al., 1990, p.87). In the same manner,
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Fr+2 =0t (1 - a)FHl =0yt (1 - a)yl ©)

Fr+3 =Y, t (1 - a)Fr+2 =yt 0{(1 - a)yHl + (1 - a)z Vi (10)

Hence, as is shown in equation (10), F.5 is a weighted average of the
first three actual values of the series. The sum of the coefficients, or weights, for
Vi, Vo1 and y, equals one. In general, forecast for any period is a weighted
average of all the past values.

We can extend the basic/simple ES equation to an equation that
includes trend and/or seasonal components. A multiplicative seasonal model can
be written as,

Y, = (a+bt)Sl‘+efa (11)

where, y, is actual value for period 1, a is permanent component (or
deseasonalized average), b is unit trend component (slope or linear trend
component), S, is multiplicative seasonal factor and ¢, is random error
component. In multiplicative model, magnitudes of seasonal factor grow along
with the series. Forecasting equation for the next period is

Fo= (a, +b, )S17L+1 ’ (12)
and a forecast for k periods into the future can be written as
E+k = (at +btk)St—L+k’ (13)

where L is the number of time periods in a seasonal cycle. For instance, for a
monthly data, L is 12 (Daniel and Terrell, 1995, pp.823-824, Montgomery, et
al., 1990, pp.137-145). Equation (11) is frequently called Holt-Winters method.
Additive form of equation (11) is

y’ = a+b,+S,+e,,

where S, is additive seasonal factor (Montgomery, et al., 1990, pp.145-150). In
this model, magnitudes of seasonal factor do not grow along with the series.

4. Stationarity, Identification, Estimation and Diognasting Checking
Analyses for ARIMA Models

I used the monthly data on interest rates on deposits-twelve month
(85:1-00:7) and industrial production index (85:1-00:6). The source for these
series is Central Bank of Turkey Electronic Data Delivery System (EDDS). The
definitions for interest rates and production index in the source are
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TP.FA.FO7:12 Month and TP.UR4.TO1: Total, 1997=100 respectively. In this
section, several analyses are run to see if the series are stationary or not.
Correlograms and DF/ADF tests of the series will help us to see whether INT
and IP variables have constant mean and variance over time. Then we can
continue on forecasting analyses of these stationary series. I used EViews 2.0
and RATS 4.2 programs throughout this study.

4. INTEREST RATES (INT)

Table 4.1: DF/ADF %S5 critical ~ Q stat. for pofQ
DF/ADF test results for INT tests value residuals

a AX, — aXH +u, -0.582 -1.94 54.45 0.21
b AX, =a+aX,  +u, -0.989 -2.87 54.21 0.21
c AX, —a +bt+ OCX,_l +u, 0.113 -3.43 56.28 0.16

Figure IV.1a: INT SAF

1.2

1
0,8
0,6
04

02 ﬂﬂﬂﬂﬂﬂﬂ"ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂnnm

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

Figure IV.1b: INT SPAF
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Having examined unit root tests and correlograms, INT series were
found nonstationary. %S5 critical values exceed the computed DF test values in
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absolute terms and SAF for INT is dying down slowly as seen in Figure [V.la.
Q statistic of SAF at lag 47 is 2433.9. Chi-square value at %S5 significance level
for lag 50 is 67.50. Therefore, both DF results given in Table 4.1 and Figures
IV.1a and IV.1b conclude that INT series is not stationary.

Therefore, in order for us to be able to proceed the ARMA analysis, we
need to take differences of INT series until it becomes stationary. Section 1V.2
will go on analyzing for differenced INT.

4.2 DIFFERENCED INT (DINT)

Table 4.2a: DF/ADF tests %5 critical ~ Q stat. for p of Q
DF/ADF test results for DINT value residuals

a AX, — aXH +u, -9.621 -1.94 24.52 0.99
b AX, —a+ aX,_l +u, -9.600 -2.87 24.52 0.99

c AX, —a +bt+ aXt—l +u, -9.694 -3.43 25.86 0.99

Figure IV.2a: DINT SAF
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Figure IV.2b: DINT SPAF
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All DF test results show that DINT is stationary at %5 level. Q statistics
indicate that we do not need to add AX

Table 4.2a. Figure IV.2a gives SAF that is not dying slowly and Q statistic
value of DINT for lag 47 is 54.517, whereas chi-square value for 50 df at 0.05 is
67.504. These indicators also a verification for stationarity of the DINT time
series. Next step is the identification of differenced INT by the help of
correlograms. SAF and SPAF give us initial or tentative model in which the AR
and MA terms correspond the 1y and ry that exceed the confidence interval of
0.143. Hence the model here at second column is the tentative model.

to any of DF equations above in

Table 4.2b: Estimates of DINT

AR(1,8) AR(8) AR(0) AR(0)
MA(1,2,6.8) MA(1,2,6.8) MA(1,2,6,8) MA(1,2,6)
m  -0.121(-0.292) -0.126(-0.297) -0.130(-0.295) -0.108(-0.288)
¢1 0.1741.851) e e e
¢8 -0.240(-2.474) -0.144(-1.141) e e
91 0.133(3.021) 0.244(4.483) 0.264(4.314) 0.254(3.757)
o, 0.240(4.157) 0.293(4.565) 0.308(4.711) 0.315(4.626)
) -0.291(- -0.230(-3.641) -0.236(-3.642) -0.253(-3.613)

6 641.61)
98 0.500(8.315) 0.396(3.956) 0.276(3.946) e
s.e.R 3.801 3.825 3.750 3.865
SSR 2471 2517 2546 2719
AIC 2.709 2.716 2.670 2.725
SBC 2.834 2.825 2.757 2.794
Q(n/4) 11.172(1.00) 11.603(1.000) 12.344(1.000) 22.739(0.997)
(lags = 44) (lags = 44) (lags =47) (lags = 47)

The values of estimated parameters, t statistics (in parentheses),
standard error of regression (s.e.R.), sum of squared residuals (SSR), Akaike
information criterion (AIC), Schwartz-Bayesian criterion (SBC), Q statistic for
the autocorrelation of the n residuals and significance levels of Q statistic (in
parentheses) are given in Table 4.2b.

At second column, except constant and AR (1), all are statistically
significant at 0.01 level. At third column, except constant and AR (8), all are
statistically significant at 0.01 level. At column four, except constant, all are
statistically significant at 0.01 level and at fifth column, except constant, all are
statistically significant at 0.01 level. When we excluded the constant term from
the equations, results did not change.

In terms of goodness-of-fit measures, except SSR, ARIMA (0,1,8)
model seems the best among others. The p values of t statistics for MA (1), MA
(2), MA (6) and MA (8) are less than 0.01 level. Residuals from this model are
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white noise. Insertion of MA (12) into the final model gave an insignificant
parameter. Then the final model to be forecast would be the one at column four

with the parameters of constant, MA (1), MA (2), MA (6) and MA (8).

4.3 INDUSTRIAL PRODUCTION INDEX (IP)

Table IV.3: DF/ %5 critical Qstat. for pofQ
DF/ADF test results for IP ADF value residuals

tests
a AX, =aX,, +u, 1.786 -1.94 34.46 0.78
b AX, =a+aX,  +u, -1.274 -2.87 52.89 0.12
c AX,=a +bt+aX,, +u, -3.152 -3.43 52.31 0.13

Figure IV.3a: IP SAF
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Figure IV.3b: IP SPAF
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ADF test results in absolute terms are less than the %5 critical values.
Therefore, equation a, b and ¢ give the result of nonstationary IP. Q statistics for
residuals from these equations suggested that ADF equations in which lag(s) of
differenced IP are employed are necessary, since these residuals initially were
found autocorrelated (not white noise). In other words, to be able to get white
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noise residuals, we added several lags of differenced IP in each equation shown
in Table 4.3a. For equation a, b and c, the lag numbers included are 18, 15 and
15 respectively. Figure IV.3a and IV.3b give the impression to us that industrial
production index time series is not stationary, since SAF for IP is dying down
slowly. Next section analyze the differenced IP (DIP).

4.4 DIFFERENCED IP (DIP)

Table 1V .4a: DF/AD %S5 critical ~ Qstat. for  pof Q

DF/ADF test results for DIP F tests value residuals

a AX, =aX, , +u, -2.484 -1.94 41.41 0.49

b AX, =a+aX, +u, -3.877 -2.87 52.86 0.12
-3.43 53.31 0.11

¢ AX,=a +bt+aX, +u, -394

Figure IV.4a: DIP SAF
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Figure 1V.4b: DIP SPAF
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Table 4.4a results in a stationary time series of DIP. Several lags of
differenced DIP were added in each equation shown in Table 4.4a to get the
white noise residuals. For equation a, b and c, the lag numbers included are 15,

94



Forecasting Macro Targets

14 and 14 respectively. Figure IV.4a also confirms the stationarity result with a

function dying down almost rapidly.

At second column in Table IV.4b, the only parameters of AR (4), AR
(10), AR (11), AR (12), AR (16), MA (1), MA (12) are found statistically
significant at below 0.05 level. MA (3) is significant at 0.06 level. Insertion of
AR (22) and MA (27) resulted in insignificant parameters of these two.

Table 4.4b: Estimates of DIP

AR(1,3,4,5,8,9.10,11,12,16) AR(4,10,11,12,16) AR(4,10,11,12)
MA(1,3,12,13,14,15) MA(1.3,12) MA(1,3,12)
m 0.272(3.362) 0.191(1.583) 0.268(3.154)
¢ -0.089(-1.130) e e
1
¢ -0.098(-1.739) e e
3
¢4 -0.251(-3.035) -0.199(-2.591) -0.078(-1.557)
¢ -0.088(-1.521) e e
5
¢ -0.058(-1.035) e e
8
¢ -0.022(-0.422) e e
9
¢10 -0.159(-3.155) -0.142(-2.859) -0.131(-2.595)
¢11 0.108(2.025) 0.133(2.660) 0.129(2.527)
¢ 0.763(10.937) 0.771(13.497) 0.740(12.905)
12
¢16 0.187(2.295) 0.167(2.093) e
01 -0.465(-4.811) -0.516(-7.703) -0.552(-8.358)
0, -0.126(-1.515) -0.167(-2.500) -0.164(-2.538)
912 -0.315(-2.990) -0.270(-4.400) -0.240(-4.237)
-0.082(-0.756) e e
0,5 ( )
014 0.037(0.347) e e
0.005(0.067) e e
0, (0.067)
seR 4.165 4210 4.246
SSR 2637 2837 2975
AIC 2.948 2.927 2.937
SBC 3.263 3.093 3.083
Q(n/4) 40.783(0.033) 44.169(0.114) 59.37(0.008)
(lags =42) (lags=42) (lags =43)

At third column, the all parameters, except constant term, are significant
at 0.05 and 0.01 levels. When MA (25) was included in this model, it was not
found significant. All parameters at column four, except AR (4), are also

statistically significant.
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First model at second column would be a tentative model. The other
two models, hence, are alternative models to be tested. In terms of goodness-of-
fit measures, ARIMA (16,1,12) model seems the best to be forecast. Therefore
the final model would be the one at column three with the parameters of
constant, AR (4), AR (10), AR (11), AR (12), AR (16) and MA (1), MA (3) and
MA (12).

5.Exponential Smoothing Model Selection for INT And IP

Exponential smoothing procedure considers the nine possible
exponential smoothing techniques in a trend and/or seasonal model: No trend,
linear trend or exponential trend; no seasonal, additive seasonal and
multiplicative seasonal (RATS, 1992, 14-78,80). RATS chooses the best one
among other possibilities on the basis of least sum of squares and least Schwarz
criterion. Tables 4a. and 4b. gives the ultimate best choices for INT and IP.
These time series then will be forecast section VI by exponential smoothing
procedure by using the information obtained from these tables below.

Table 4a: Exponential Smoothing Model Selection for INT

TREND SEASONAL Sum Squares Schwarz
None None 2989.619 1501.773
None Additive 2909.432 1501.920
None Multiplicative 3091.208 1513.253
Linear None 2995.955 1507.400
Linear Additive 2918.372 1507.725
Linear Multiplicative 3099.865 1519.007
Exponential None 2850.841 1498.116
Exponential Additive 3.238149e+010 4541.252
Exponential Multiplicative 2995.083 1512.577

Model with TREND =Exponential , SEASONAL = None

Table 4b: Exponential Smoothing Model Selection for 1P

TREND SEASONAL Sum Squares Schwarz
None None 6826.859 1647.349
None Additive 3749.875 1541.134
None Multiplicative 3605.972 1533.855
Linear None 6683.461 1648.626
Linear Additive 3810.244 1549.330
Linear Multiplicative 3509.135 1534.018
Exponential None 6512.811 1643.815
Exponential Additive 3681.086 1542916
Exponential Multiplicative 3528.763 1535.055

Model with TREND =None , SEASONAL = Multiplicative
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6. Forecast Values of INT and IP

All T have done so far is just to establish the forecasting models. Now
we could reach the forecast values given in Tables VI.a and VL.b, by the help of
estimation results of these models obtained in previous sections.

Table 4.a: Forecast Values of INT

Actual values Forecast by ARIMA Forecast by Esmooth
2000:1 37.4 - -—--
2000:2 38.9 ---- -
2000:3 374 - -
2000:4 38.6 - -—--
2000:5 36.0 - -—--
2000:6 36.9 - -—--
2000:7 35.1 - -
2000:8 na 28.18 34.31
2000:9 na 29.26 34.13
2000:10 na 31.28 33.94
2000:11 na 30.92 33.76
2000:12 na 30.86 33.58

na: not available

Table 4.b: Forecast Values of IP

Actual values Forecast by ARIMA Forecast by Esmooth
2000:1 85.30 - -
2000:2 93.80 - -
2000:3 93.50 - -
2000:4 96.90 - -—--
2000:5 103.70 - -
2000:6 104.50 - -—--
2000:7 na 100.19 97.49
2000:8 na 95.62 96.91
2000:9 na 103.02 106.60
2000:10 na 107.10 111.95
2000:11 na 110.86 110.90
2000:12 na 104.78 107.22

na: not available

Indeed, as we figure out from the tables above, monthly interest rate
tends to decrease and monthly industrial production index tends to increase as
compared the trends of these variables over indicated sample periods.

7.Conclusion

I employed, here in this study, two widely used forecasting techniques,
ARIMA and exponential smoothing procedures to forecast monthly interest
rates and industrial production index. First variable, interest rates, is one of the
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leading indicators for monetary sector and the second variable, production
index, is one of the leading indicators for real sector.

Government targets for the year 2000 are to realize a stable reduction in
interest rates and a steady increase in real output. After we estimated the models
by ARIMA and Exponential smooth methodologies, we obtained the forecast
values of interest rates and production index. Provided that we are in a %95
confidence interval, we can say that these forecasting methodologies verify that
government’s main macro targets will be most likely realized for 2000.

One can, however, carry out also some other forecasting methods such
as forecasting from system equations or combined forecasting methods. Or, one
can divide the samples into two sub periods in which different policy structures
existed and then employ the several forecasting methodologies. These, of
course, require another studies that should be done in the future.

OZET

Tirkiye ekonomisinin 2000 yili ve sonrasi i¢in temel makro hedefleri,
faiz oranlarinin kabul edilebilir bir seviyeye diisiiriilmesi ve toplam iiretimde
sabit bir bliylimenin saglanmasidir. Bu ¢alismanin amaci, hiikiimetin 2000 yili
icin ilgili hedefleri gerceklestirip gerceklestiremeyecegini gorebilmektir. Bu
amagla, bu ¢aligmada, mevduat faiz oranlar1 ve sanayi tiretim endeksinin aylik
gelecek degerlerini tahmin etmek igin Box-Jenkins ve exponential smoothing
metodlart  kullanilmaktadir. Tahmin sonuglari, faiz oranlarinin diisme
egiliminde ve sanayi {retim endeksinin yiikselme egiliminde olduklarinm
gostermektedir. Boylece, kullanilan tahmin teknikleri, hiikiimetin, biiylik
olasilikla, temel hedeflerini 2000 yili igin gergeklestirebilecegini
dogrulamaktadir.

REFERENCES

ANDERSON, R. David, DENNIS J. Sweeney and THOMAS A. Williams
(1996), Statistics for Business and Economics, 6™ Edition, West
Publishing Company, New York.

CBT, EDDS, http://tcmbf40.tcmb.gov.tr/cgi-bin/famecgi?cgi=$cbtweb
&DIL=UK, August 20-30, 2000.

DANIEL, W. Wayne and JAMES C. Terrell (1995), Business Statistics for
Management and Economics, 7™ Edition, Houghton Mifflin Company,
Boston, Toronto.

DOAN, A. Thomas (1992), RATS User’s Manual, Version 4.0, 2" Printing,
Estima, Evanston IL.

98



Forecasting Macro Targets

ENDERS, Walter (1995), Applied Econometric Time Series, John Wiley &
Sons, Inc., New York.

GAYNOR, E. Patricia and RICKY C. Kirkpatrick, Time Series Modeling and
Forecasting in Business and Economics, McGraw Hill Inc., New York,
International Editions, 1994.

KENNEDY, Peter (1996), 4 Guide to Econometrics, 31 Edition, Blackwell
Publishers, Oxford, UK.

MONTGOMERY, C. Douglas, LYNWOOD A. Johnson and JOHN S. Gardiner
(1990), Forecasting & Time Series Analysis, 2™ Edition, McGraw Hill
Inc., New York, International Editions.

99



