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   Abstract 

 

In this study, we define unrestricted Pell and Pell – Lucas hyper-complex numbers. We choose 

arbitrary Pell and Pell – Lucas numbers for the coefficients of the ordered basis {𝑒0, 𝑒1, ⋯ , 𝑒𝑁−1} of 

hyper-complex 2𝑁-ons where 𝑁 ∈ {0,1,2,3,4} and call these hyper-complex numbers unrestricted 

Pell and Pell-Lucas 2N-ons. We give generating functions and Binet formulas for these type of 

hyper-complex numbers. We also obtain some generalization of well – known identities such as 

Catalan’s, Cassini’s and d’Ocagne’s identities. 
 

 

 

1. Introduction* 

 

Pell numbers and Pell – Lucas numbers are defined 

by the following recursive relations 

𝑃0 = 0, 𝑃1 = 1 and  𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2 for 𝑛 ≥ 2, 

and 

𝑄0 = 1, 𝑄1 = 1 and  𝑄𝑛 = 2𝑄𝑛−1 + 𝑄𝑛−2 for 𝑛 ≥ 2 

respectively. Pell numbers take their name from English 

mathematician John Pell after his studies on the equation 

𝑥2 − 𝑑𝑦2 = (−1)𝑛 where d is not a perfect square integer. 

Generating functions for the sequences {𝑃𝑛}𝑛=0
∞  and 

{𝑄𝑛}𝑛=0
∞  are 

∑ 𝑃𝑛𝑥𝑛 =
𝑥

1−2𝑥−𝑥2
∞
𝑛=0    and   ∑ 𝑄𝑛𝑥𝑛 =

2−𝑥

1−2𝑥−𝑥2
∞
𝑛=0  

respectively. Binet formulas for the Pell and Pell – Lucas 

numbers are 

𝑃𝑛 =
𝛾𝑛−𝛿𝑛

𝛾−𝛿
  and  𝑄𝑛 =

𝛾𝑛+𝛿𝑛

2
 

respectively, where 𝛾 = 1 + √2   and 𝛿 = 1 − √2  are the 

roots of the characteristic equation 𝑥2 − 2𝑥 − 1 = 0. The 

                                                           
* Corresponding Author: gbilgici@kastamonu.edu.tr 
 

positive root 𝛾 is known as “silver ratio” and plays a 

similar role to the golden ratio of Fibonacci and Lucas 

numbers. 

There are some interesting applications of Fibonacci 

and Pell numbers. For example, all repdigits are expressed 

as the products of a Fibonacci or a Pell number [1]. Pell 

sequence is used for solving some Diophantine equations 

[2]. 

Hyper-complex numbers are usually constructed by 

using Cayley-Dickson Process. Complex numbers, 

quaternions, octonions and sedenions with Pell and Pell-

Lucas numbers’ coefficients are investigated in this study.  

There are many studies about Pell and Pell-Lucas hyper-

complex numbers. We can refer to [3, 4, 5, 6, 7, 8, 9, 10, 

11] for Pell and Pell-Lucas quaternions, to [5, 8, 10] for 

Pell and Pell-Lucas octonions and to [5] for Pell and Pell-

Lucas sedenions. In all of these studies, authors choose the 

consecutive Pell and Pell-Lucas numbers as coefficients. 

The difference between this study and previous studies is 

that we choose random Pell and Pell-Lucas numbers as 

coefficients of hyper-complex numbers. A similar idea can 

be seen in [4]. In that study, the authors investigated the 
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unrestricted Pell and Pell-Lucas quaternions, which is a 

special case of our study. 

For 𝑁 = 0,1,2,3,4 and 𝑐 = (𝑐0 = 0, 𝑐1, … , 𝑐2𝑁−1) where 

𝑐1, 𝑐2, … , 𝑐2𝑁−1 are integers, unrestricted Pell and Pell-

Lucas 2𝑁-ons are defined by 

𝑃𝑁,𝑟
𝑐 = ∑ 𝑃𝑟+𝑐𝑖

2𝑁−1
𝑖=0 𝑒𝑖  and  𝑄𝑁,𝑟

𝑐 = ∑ 𝑄𝑟+𝑐𝑖
2𝑁−1
𝑖=0 𝑒𝑖 (1) 

respectively. Here multiplication rules of the standard basis 

{𝑒0 = 1, 𝑒1, 𝑒2, … , 𝑒2𝑁−1} of the hyper-complex numbers 

for 𝑁 = 0,1,2,3,4 are in the following table [12]. We set 

𝑖 ≡ 𝑒𝑖 for 𝑖 = 0,1, … ,15.  

 

 

Table 1. Multiplication rules of the 2𝑁-ons for 𝑁 = 0,1,2,3,4. 

. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 -0 3 -2 5 -4 -7 6 9 -8 -11 10 -13 12 15 -14 

2 2 -3 -0 1 6 7 -4 -5 10 11 -8 -9 -14 -15 12 13 

3 3 2 -1 -0 7 -6 5 -4 11 -10 9 -8 -15 14 -13 12 

4 4 -5 -6 -7 -0 1 2 3 12 13 14 15 -8 -9 -10 -11 

5 5 4 -7 6 -1 -0 -3 2 13 -12 15 -14 9 -8 11 -10 

6 6 7 4 -5 -2 3 -0 -1 14 -15 -12 13 10 -11 -8 9 

7 7 -6 5 4 -3 -2 1 -0 15 14 -13 -12 11 10 -9 -8 

8 8 -9 -10 -11 -12 -13 -14 -15 -0 1 2 3 4 5 6 7 

9 9 8 -11 10 -13 12 15 -14 -1 -0 -3 2 -5 4 7 -6 

10 10 11 8 -9 -14 -15 12 13 -2 3 -0 -1 -6 -7 4 5 

11 11 -10 9 8 -15 14 -13 12 -3 -2 1 -0 -7 6 -5 4 

12 12 13 14 15 8 -9 -10 -11 -4 5 6 7 -0 -1 -2 -3 

13 13 -12 15 -14 9 8 11 -10 -5 -4 7 -6 1 -0 3 -2 

14 14 -15 -12 13 10 -11 8 9 -6 -7 -4 5 2 -3 -0 1 

15 15 14 -13 -12 11 10 -9 8 -7 6 -5 -4 3 2 -1 -0 

 

According to the context mentioned above, we regard 

1-ons: real numbers, 2-ons: complex numbers, 3-ons: 

quaternions, 4-ons: octonions and 5-ons: sedenions. From 

the definition (1) and the definitions of Pell and Pell-Lucas 

numbers following recursive relations can be found easily: 

𝑃𝑁,𝑟
𝑐 = 2𝑃𝑁,𝑟−1

𝑐 + 𝑃𝑁,𝑟−2
𝑐  and 𝑄𝑁,𝑟

𝑐 = 2𝑄𝑁,𝑟−1
𝑐 + 𝑄𝑁,𝑟−2

𝑐 . (2) 

The special cases for unrestricted Pell and Pell-Lucas 

2𝑁-ons are in the following table. 

 

Table 2. Special cases  

N 𝑐 Sequences 

0 (0) Classical Pell and Pell-Lucas numbers 

1 (0,1) Gaussian Pell and Pell-Lucas numbers 

2 (0,1,2,3) Pell and Pell-Lucas quaternions 

3 (0,1, … ,7) Pell and Pell-Lucas octonions 

4 (0,1, … ,15) Pell and Pell-Lucas sedenions 

 

Example 1. The octonion 𝑃8 + 𝑃12𝑒1 + 𝑃−16𝑒3 + 𝑃21𝑒7 

can be represent by 𝑃3,8
(0,4,−8,−24,−8,−8,−8,13)

 

 

The well-known identities 𝑃−𝑛 = (−1)𝑛+1𝑃𝑛 and 𝑄−𝑛 =

(−1)𝑛𝑄𝑛 give 

𝑃𝑁,−𝑟
𝑐 = (−1)𝑟+1 [ ∑ (−1)𝑐𝑖

2𝑁−1

𝑖=0

𝑃𝑟−𝑐𝑖
𝑒𝑖]  

and 

𝑄𝑁,−𝑟
𝑐 = (−1)𝑟 [ ∑ (−1)𝑐𝑖

2𝑁−1

𝑖=0

𝑄𝑟−𝑐𝑖
𝑒𝑖]. 

 

2. Binet Formulas and Generating Functions  

 

The next theorem gives the Binet formulas for the 

unrestricted Pell and Pell – Lucas 2𝑁-ons. 

 

Theorem 2.1.  For 𝑁 = 0,1,2,3,4 and any integers 

𝑐1, 𝑐2, … , 𝑐2𝑁−1, the r-th unrestricted Pell and Pell-Lucas 

2𝑁-on are  

𝑃𝑁,𝑟
𝑐 =

𝛾̆𝛾𝑟 − 𝛿𝛿𝑟

𝛾 − 𝛿
 and 𝑄𝑁,𝑟

𝑐 =
𝛾̆𝛾𝑟 + 𝛿𝛿𝑟

2
 

where 

𝛾̆ = ∑ 𝛾𝑐𝑖

2𝑁−1

𝑖=0

𝑒𝑖  and 𝛿 = ∑ 𝛿𝑐𝑖

2𝑁−1

𝑖=0

𝑒𝑖 . 

respectively. 

 

Proof. From the definitions of unrestricted Pell 2𝑁-ons and 

the Binet formula for the Pell numbers, we have 

𝑃𝑁,𝑟
𝑐 = 𝑃𝑟 + 𝑃𝑛+𝑐1

𝑒1 + ⋯ + 𝑃𝑛+𝑐
2𝑁−1

𝑒2𝑁−1 
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          =
1

𝛾 − 𝛿
(𝛾𝑟 − 𝛿𝑟 + (𝛾𝑟+𝑐1 − 𝛿𝑟+𝑐1)𝑒1

+ (𝛾𝑟+𝑐2 − 𝛿𝑟+𝑐2)𝑒2

+                                              …

+ (𝛾𝑟+𝑐
2𝑁−1 − 𝛿𝑟+𝑐

2𝑁−1)𝑒2𝑁−1 

 

       =
1

𝛾 − 𝛿
[𝛾𝑟(𝛾𝑐1 + 𝛾𝑐2 + ⋯ + 𝛾

𝑐
(2𝑁−1))

+ 𝛿𝑟(𝛿𝑐1 + 𝛿𝑐2 + ⋯ + 𝛿
𝑐

(2𝑁−1))] 

The last equation gives the Binet formula for the 

unrestricted Pell 2𝑁-ons. Binet formula for the unrestricted 

Pell-Lucas 2𝑁-ons can be obtained similarly. ∎ 

 

Generating functions for the unrestricted Pell and Pell 

– Lucas 2𝑁-ons sequences are given in the next theorem. 

 

Theorem 2.2. The generating functions for the sequences 

{𝑃𝑁,𝑟
𝑐 }𝑟=0

∞   and   {𝑄𝑁,𝑟
𝑐 }𝑟=0

∞  are 

∑ 𝑃𝑁,𝑖
𝑐

∞

𝑖=0

𝑥𝑖 =
𝑃𝑁,0

𝑐 + 𝑥(𝑃𝑁,1
𝑐 − 2𝑃𝑁,0

𝑐 )

1 − 2𝑥 − 𝑥2
  

and  

∑ 𝑄𝑁,𝑖
𝑐

∞

𝑖=0

𝑥𝑖 =
𝑄𝑁,0

𝑐 + 𝑥(𝑄𝑁,1
𝑐 − 2𝑄𝑁,0

𝑐 )

1 − 2𝑥 − 𝑥2
. 

respectively.  

Since the proofs are very straightforward, we don’t give 

the proofs. Now we need to define the following set for 

later use. For 𝑖 ∈ {1,2, … , 2𝑁−1 − 1}, we define the set 

𝑆𝑖 = {(𝑗, 𝑘): 𝑒𝑖𝑒𝑗 = 𝑒𝑘 , 1 ≤ 𝑗, 𝑘 ≤ 2𝑁−1 − 1, 𝑖 ≠ 𝑗, 𝑖 ≠

𝑘 𝑣𝑒 𝑗 ≠ 𝑘}.   (3) 

By using this set, we give the following lemma. 

 

Lemma 2.3. For 𝑁 ∈ {0,1,2,3,4}, we have 

𝛾̆𝛿 = 𝑌𝑁
𝑐 + 2√2𝑍𝑁

𝑐  and  𝛿𝛾̆ = 𝑌𝑁
𝑐 − 2√2𝑍𝑁

𝑐                  (4)  

where 

𝑌𝑁
𝑐 = 2𝑄𝑁,0

𝑐 − ∑ (−1)𝑐𝑖

2𝑁−1

𝑖=0

 

and 

𝑍𝑁
𝑐 = ∑ 𝑒𝑖

2𝑁−1

𝑖=1

∑ (−1)𝑐𝑘

(𝑗,𝑘)∈𝑆𝑖

𝑃𝑐𝑗−𝑐𝑘
. 

Proof. We prove the case N = 4. The others can be proved 

similarly. We have 

𝑌4
𝑐 = 𝑄4,0

𝑐 + (−1)𝑐1+1 + (−1)𝑐2+1 + ⋯ 

                                                               +(−1)𝑐15+1 − 1.     (5) 

Each versor 𝑒𝑖 (i = 1,…,15) in 𝑍4
𝑐 contains seven terms. 

We have to calculate the sets 𝑆𝑖 for each versor 𝑒𝑖. From 

Table 1, we obtain 

𝑆1 = {(2,3), (4,5), (7,6), (8,9), (11,10), (13,12), (14,15)}, 

𝑆2 = {(3,1), (4,6), (5,7), (8,10), (9,11), (14,12), (15,13)}, 

𝑆3 = {(1,2), (6,5), (4,7), (10,9), (8,11), (15,12), (13,14)}, 

𝑆4 = {(5,1), (6,2), (7,3), (8,12), (9,13), (10,14), (11,15)}, 

𝑆5 = {(7,2), (1,4), (3,6), (12,9), (14,11), (8,13), (10,15)}, 

𝑆6 = {(5,3), (2,4), (1,7), (15,9), (12,10), (11,13), (8,14)} 

𝑆7 = {(6,1), (3,4), (2,5), (13,10), (12,11), (9,14), (8,15)}, 

𝑆8 = {(9,1), (10,2), (11,3), (12,4), (13,5), (14,6), (15,7)}, 

𝑆9 = {(11,2), (13,4), (14,7), (1,8), (3,10), (5,12), (6,15)}, 

𝑆10 = {(9,3), (14,4), (15,5), (2,8), (1,11), (6,12), (7,13)}, 

𝑆11 = {(10,1), (15,4), (13,6), (3,8), (2,9), (7,12), (5,14)}, 

𝑆12 = {(9,5), (10,6), (11,7), (4,8), (1,13), (2,14), (3,15)}, 

𝑆13 = {(12,1), (14,3), (10,7), (5,8), (4,9), (6,11), (2,15)}, 

𝑆14 = {(15,1), (12,2), (11,5), (6,8), (7,9), (4,10), (3,13)}, 

and 

𝑆15 = {(13,2), (12,3), (9,6), (7,8), (5,10), (4,11), (1,14)}. 

So we have 

𝑍4
𝑐 = [(−1)𝑐3𝑃𝑐2−𝑐3

+ (−1)𝑐5𝑃𝑐4−𝑐5
+ (−1)𝑐6𝑃𝑐7−𝑐6

+ (−1)𝑐9𝑃𝑐8−𝑐9
+ (−1)𝑐10𝑃𝑐11−𝑐10

+ (−1)𝑐12𝑃𝑐13−𝑐12
+ (−1)𝑐15𝑃𝑐14−𝑐15

]𝑒1 

+[(−1)𝑐1𝑃𝑐3−𝑐1
+ (−1)𝑐6𝑃𝑐4−𝑐6

+ (−1)𝑐7𝑃𝑐5−𝑐7

+ (−1)𝑐10𝑃𝑐8−𝑐10
+ (−1)𝑐11𝑃𝑐9−𝑐11

+ (−1)𝑐12𝑃𝑐14−𝑐12
+ (−1)𝑐13𝑃𝑐15−𝑐13

]𝑒2 

+[(−1)𝑐2𝑃𝑐1−𝑐2
+ (−1)𝑐5𝑃𝑐6−𝑐5

+ (−1)𝑐7𝑃𝑐4−𝑐7

+ (−1)𝑐9𝑃𝑐10−𝑐9
+ (−1)𝑐11𝑃𝑐8−𝑐11

+ (−1)𝑐12𝑃𝑐15−𝑐12
+ (−1)𝑐14𝑃𝑐13−𝑐14

]𝑒3 

+[(−1)𝑐1𝑃𝑐5−𝑐1
+ (−1)𝑐2𝑃𝑐6−𝑐2

+ (−1)𝑐3𝑃𝑐7−𝑐3

+ (−1)𝑐12𝑃𝑐8−𝑐12
+ (−1)𝑐13𝑃𝑐9−𝑐13

+ (−1)𝑐14𝑃𝑐10−𝑐14
+ (−1)𝑐15𝑃𝑐11−𝑐15

]𝑒4 

 

+[(−1)𝑐2𝑃𝑐7−𝑐2
+ (−1)𝑐4𝑃𝑐1−𝑐4

+ (−1)𝑐6𝑃𝑐3−𝑐6

+ (−1)𝑐9𝑃𝑐12−𝑐9
+ (−1)𝑐13𝑃𝑐14−𝑐11

+ (−1)𝑐13𝑃𝑐8−𝑐13
+ (−1)𝑐15𝑃𝑐10−𝑐15

]𝑒5 

+[(−1)𝑐3𝑃𝑐5−𝑐3
+ (−1)𝑐4𝑃𝑐2−𝑐4

+ (−1)𝑐7𝑃𝑐1−𝑐7

+ (−1)𝑐9𝑃𝑐15−𝑐9
+ (−1)𝑐10𝑃𝑐12−𝑐10

+ (−1)𝑐13𝑃𝑐11−𝑐13
+ (−1)𝑐14𝑃𝑐8−𝑐14

]𝑒6 

+[(−1)𝑐1𝑃𝑐6−𝑐1
+ (−1)𝑐4𝑃𝑐3−𝑐4

+ (−1)𝑐5𝑃𝑐2−𝑐5

+ (−1)𝑐10𝑃𝑐13−𝑐10
+ (−1)𝑐11𝑃𝑐12−𝑐11

+ (−1)𝑐14𝑃𝑐9−𝑐14
+ (−1)𝑐15𝑃𝑐8−𝑐15

]𝑒7.   

 

The last equation and Eq.(5) give the first equation in 

Eq.(4) for N = 4. ∎ 

 

3. Some Identities  

 

In this section, we give generalizations for some well-

known identities about Pell and Pell-Lucas hyper-complex 

numbers. We use 𝑃𝑟
𝑐 and 𝑄𝑟

𝑐  instead of  𝑃𝑁,𝑟
𝑐  and 𝑄𝑁,𝑟

𝑐  

respectively for abbreviation.  

 



Öznur BAYRAKCI ÖZSOY et al. / Koc. J. Sci. Eng., 5(2): (2022) 112-116 

115 

Theorem 3.1. (Vajda’s identity). For any integers 

𝑛, 𝑟, 𝑠, 𝑐0, 𝑐1, 𝑐2, … , 𝑐2𝑁−1, we have 

 

𝑃𝑛+𝑟
𝑐 𝑃𝑛+𝑠

𝑐 − 𝑃𝑛
𝑐𝑃𝑛+𝑟+𝑠

𝑐 = (−1)𝑛𝑃𝑟(𝑃𝑠𝑌𝑁
𝑐 − 2𝑄𝑠𝑍𝑁

𝑐 )      (6) 

 

and 

𝑄𝑛+𝑟
𝑐 𝑄𝑛+𝑠

𝑐 − 𝑄𝑛
𝑐𝑄𝑛+𝑟+𝑠

𝑐 = 2(−1)𝑛+1𝑃𝑟(𝑃𝑠𝑌𝑁
𝑐 − 2𝑄𝑠𝑍𝑁

𝑐 ). 

(7) 

 

Proof. From the Binet formula for the unrestricted Pell 2𝑁-

ons, we get 

𝑃𝑛+𝑟
𝑐 𝑃𝑛+𝑠

𝑐 − 𝑃𝑛
𝑐𝑃𝑛+𝑟+𝑠

𝑐  

   =
1

(𝛾 − 𝛿)2
[(𝛾̆𝛾𝑛+𝑟 − 𝛿𝛿𝑛+𝑟)(𝛾̆𝛾𝑛+𝑠 − 𝛿𝛿𝑛+𝑠)

− (𝛾̆𝛾𝑛 − 𝛿𝛿𝑛)(𝛾̆𝛾𝑛+𝑟+𝑠 − 𝛿𝛿𝑛+𝑟+𝑠)] 

  =
1

(𝛾 − 𝛿)2
[(𝛾̆)2𝛾2𝑛+𝑟+𝑠 + (𝛿)2𝛿2𝑛+𝑟+𝑠

− (𝛾̆𝛿)̆𝛾𝑛+𝑟𝛿𝑛+𝑠 − (𝛿̆𝛾)̆𝛾𝑛+𝑠𝛿𝑛+𝑟

− (𝛾̆)2𝛾2𝑛+𝑟+𝑠 − (𝛾)̆2𝛿2𝑛+𝑟+𝑠

+ (𝛾̆𝛿)̆𝛾𝑛𝛿𝑛+𝑟+𝑠 + (𝛿̆𝛾)̆𝛾𝑛+𝑟+𝑠𝛿𝑛] 

  =
(𝛾𝛿)𝑛

(𝛾 − 𝛿)2
[−(𝛾̆𝛿)̆𝛾𝑟𝛿𝑠 − (𝛿̆𝛾)̆𝛾𝑠𝛿𝑟 + (𝛾̆𝛿)̆𝛿𝑟+𝑠

+ (𝛿̆𝛾)̆𝛾𝑟+𝑠] 

 =
(−1)𝑛

(𝛾 − 𝛿)2
[(𝛾𝑟 − 𝛿𝑟)(−(𝛾̆𝛿)̆𝛿𝑠 + (𝛿̆𝛾)̆𝛾𝑠)] 

 =
(−1)𝑛𝑃𝑟

(𝛾 − 𝛿)
[(𝛿̆𝛾)̆𝛾𝑠 − (𝛾̆𝛿)̆𝛿𝑠] 

 =
(−1)𝑛𝑃𝑟

2√2
[(𝑌𝑁

𝑐 − 2√2𝑍𝑁
𝑐 )𝛾𝑠 − (𝑌𝑁

𝑐 − 2√2𝑍𝑁
𝑐 )𝛿𝑠]. 

The last equation gives Eq.(6). Eq.(7) can proved similarly. 

∎ 

 

If we take 𝑠 = −𝑟 and use the identities 𝑃𝑟𝑃−𝑟 =

−(−1)𝑟𝑃𝑟
2 and 2𝑃𝑟𝑄−𝑟 = (−1)𝑟𝑃2𝑟 , we obtain Catalan’s 

identities for the unrestricted Pell and Pell – Lucas 2𝑁-ons 

given in the next theorem. 

 

Theorem 3.2. (Catalan’s identities) For 𝑁 ∈ {0,1,2,3,4} 

and any integers 𝑛, 𝑟, 𝑐1, 𝑐2, ⋯ , 𝑐2𝑁−1, we have 

𝑃𝑛+𝑟
𝑐 𝑃𝑛−𝑟

𝑐 − [𝑃𝑛
𝑐]

2
= (−1)𝑛+𝑟+1(𝑌𝑁

𝑐𝑃𝑟
2 + 𝑍𝑁

𝑐 𝑃2𝑟)   (8) 

and 

𝑄𝑛+𝑟
𝑐 𝑄𝑛−𝑟

𝑐 − [𝑄𝑛
𝑐]

2
= 2(−1)𝑛+𝑟(𝑌𝑁

𝑐𝑃𝑟
2 + 𝑍𝑁

𝑐 𝑃2𝑟).  (9) 

 

If we take 𝑟 = 1 in Theorem 3.2, we obtain Cassini’s 

identities the unrestricted Pell and Pell – Lucas 2𝑁-ons. 

 

Theorem 3.3. (Cassini’s identities) For 𝑁 ∈ {0,1,2,3,4} 

and any integers  𝑟, 𝑐1, 𝑐2, ⋯ , 𝑐2𝑁−1, we have 

𝑃𝑛+1
c 𝑃𝑛−1

c − [𝑃𝑛
c]2 = (−1)𝑛(𝑌𝑁

𝑐 + 2𝑍𝑁
𝑐 )       (10) 

and 

𝑄𝑛+1
𝑐 𝑄𝑛−1

c − [𝑄𝑛
c ]2 = −2(−1)𝑛(𝑌𝑁

𝑐 + 2𝑍𝑁
𝑐 )   (11) 

 

 

The following theorem gives the d’Ocagne’s 

identities for the unrestricted Pell and Pell – Lucas 2𝑁-ons. 

 

Theorem 3.4. (d’Ocagne’s identities) For 𝑁 ∈ {0,1,2,3,4} 

and any integers  𝑚, 𝑛, 𝑐1, 𝑐2, ⋯ , 𝑐2𝑁−1, we have 

𝑃𝑚
𝑐 𝑃𝑛+1

c − 𝑃𝑚+1
c 𝑃𝑛

c = (−1)𝑛(𝑌𝑁
𝑐𝑝𝑚−𝑛 + 2𝑍𝑁

𝑐 𝑞𝑚−𝑛)   (12) 

and 

𝑄𝑚
c 𝑄𝑛+1

c − 𝑄𝑚+1
c 𝑄𝑛

c = −2(−1)𝑛(𝑌𝑁
𝑐𝑝𝑚−𝑛 + 2𝑍𝑁

𝑐 𝑞𝑚−𝑛). 

(13) 

 

Proof. By using the Binet formula for the unrestricted Pell 

2𝑁-ons, we obtain 

𝑃𝑚
𝑐 𝑃𝑛+1

c − 𝑃𝑚+1
c 𝑃𝑛

c

=
1

8
[(𝛾̆𝛾𝑚 − 𝛿𝛿𝑚)(𝛾̆𝛾𝑛+1

− 𝛿𝛿𝑛+1)        

− (𝛾̆𝛾𝑚+1 − 𝛿𝛿𝑚+1)(𝛾̆𝛾𝑛 − 𝛿𝛿𝑛)] 

=
1

8
(−𝛾̆𝛿𝛾𝑚𝛿𝑛+1 − 𝛿𝛾̆𝛾𝑛+1𝛿𝑚 + 𝛾̆𝛿𝛾𝑚+1𝛿𝑛

+ 𝛿𝛾̆𝛾𝑛𝛿𝑚+1) 

=
(−1)𝑛

8
[𝛾̆𝛿(𝛾 − 𝛿)𝛾𝑚−𝑛 − 𝛿𝛾̆(𝛾 − 𝛿)𝛿𝑚−𝑛] 

=
(−1)𝑛

2√2
[𝛾̆𝛿𝛾𝑚−𝑛 − 𝛿𝛾̆𝛿𝑚−𝑛] 

=
(−1)𝑛

2√2
[(𝑌𝑁

𝑐 + 2√2𝑍𝑁
𝑐 )𝛾𝑚−𝑛 − (𝑌𝑁

𝑐 − 2√2𝑍𝑁
𝑐 )𝛿𝑚−𝑛] 

The last identity gives Eq.(12). Eq.(13) can be obtained 

similarly. ∎ 

 

We give many identities in the next theorem, which 

can be proved by using the Binet formulas or definitions of 

the unrestricted Pell and Pell – Lucas 2𝑁-ons and well-

known identities for the classical Pell and Pell-Lucas 

numbers. 

 

Theorem 3.5. For 𝑁 ∈ {0,1,2,3,4} and any integers 

 𝑚, 𝑛, 𝑐1, 𝑐2, ⋯ , 𝑐2𝑁−1, we have 

 

𝑃𝑚
𝑐 + 𝑃𝑚−1

𝑐 = 𝑄𝑚
𝑐 , 

𝑄𝑚
𝑐 + 𝑄𝑚−1

𝑐 = 2𝑃𝑚
𝑐 , 

𝑃𝑚
𝑐 + 𝑄𝑚

𝑐 = 𝑃𝑚+1
𝑐 , 

𝑃𝑚+1
𝑐 + 𝑃𝑚−1

𝑐 = 2𝑄𝑚
𝑐  

𝑄𝑚+1
𝑐 + 𝑄𝑚−1

𝑐 = 4𝑃𝑚
𝑐 , 

𝑄𝑚+𝑛
𝑐 + (−1)𝑛𝑄𝑚−𝑛 = 2𝑞𝑛𝑄𝑚

𝑐 , 

𝑃𝑚+𝑛
𝑐 + (−1)𝑛𝑃𝑚−𝑛

𝑐 = 2𝑞𝑛𝑃𝑚
𝑐 , 

𝑃𝑚−𝑛
𝑐 = (−1)𝑛(𝑃𝑛−1𝑃𝑚

𝑐 − 𝑃𝑛𝑃𝑚−1
𝑐 ), 

[𝑄𝑚
𝑐 ]

2
− 2[𝑃𝑚

𝑐 ]
2

= (−1)𝑚𝑌𝑁
𝑐 
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𝑃𝑛
𝑐 + 𝑃𝑛−1

𝑐 = 𝑄𝑛
𝑐 , 

𝑄𝑛
𝑐 + 𝑄𝑛−1

𝑐 = 2𝑃𝑛
𝑐 , 

𝑃𝑛
𝑐 + 𝑄𝑛

𝑐 = 𝑃𝑛+1
𝑐 , 

2𝑃𝑛
𝑐 + 𝑄𝑛

𝑐 = 𝑄𝑛+1
𝑐 , 

2𝑄𝑛
𝑐 + 3𝑃𝑛

𝑐 = 𝑃𝑛+2
𝑐  

3𝑄𝑛
𝑐 + 4𝑃𝑛

𝑐 = 𝑄𝑛+2
𝑐  

𝑄𝑛+1
𝑐 − 𝑄𝑛

𝑐 = 2𝑃𝑛
𝑐 , 

𝑃𝑛+1
𝑐 + 𝑃𝑛−1

𝑐 = 2𝑄𝑛
𝑐 , 

𝑄𝑛+1
𝑐 + 𝑄𝑛−1

𝑐 = 4𝑃𝑛
𝑐 

𝑃𝑛
𝑐 + 𝑃𝑛+1

𝑐 + 𝑃𝑛+3
𝑐 = 2𝑃𝑛+2

𝑐  

𝑄𝑛
𝑐 + 𝑄𝑛+1

𝑐 + 𝑄𝑛+3
𝑐 = 3𝑄𝑛+2

𝑐 , 

𝑃𝑛+1
𝑐 − 𝑃𝑛−1

𝑐 = 2𝑃𝑛
𝑐 

𝑄𝑛+1
𝑐 − 𝑄𝑛−1

𝑐 = 2𝑄𝑛
𝑐 , 

𝑃𝑛+2
𝑐 + 𝑃𝑛−2

𝑐 = 6𝑃𝑛
𝑐 , 

𝑄𝑛+2
𝑐 + 𝑄𝑛−2

𝑐 = 6𝑄𝑛
𝑐  

𝑃𝑛+2
𝑐 − 𝑃𝑛−2

𝑐 = 4𝑄𝑛
𝑐 , 

𝑄𝑛+2
𝑐 − 𝑄𝑛−2

𝑐 = 8𝑃𝑛
𝑐 , 

2𝑃𝑛
𝑐 + 𝑄𝑛

𝑐 = 𝑄𝑛+1
𝑐 , 

2𝑃𝑛
𝑐 + 𝑄𝑛+2

𝑐 = 3𝑄𝑛+1
𝑐 , 

𝑃𝑛+1
𝑐 + 𝑄𝑛−1

𝑐 = 3𝑃𝑛
𝑐 

𝑄𝑛
𝑐𝑄𝑛+1

𝑐 − 2𝑃𝑛
𝑐𝑃𝑛+1

𝑐 = (−1)𝑛[𝑌𝑁
𝑐 − 4𝑍𝑁

𝑐 ], 

𝑃𝑛
𝑐𝑃𝑛+3

𝑐 − 𝑃𝑛+1
𝑐 𝑃𝑛+2

𝑐 = (−1)𝑛+1[2𝑌𝑁
𝑐 − 6𝑍𝑁

𝑐 ], 

𝑄𝑛
𝑐 𝑄𝑛+3

𝑐 − 𝑄𝑛+1
𝑐 𝑄𝑛+2

𝑐 = (−1)𝑛[4𝑌𝑁
𝑐 − 12𝑍𝑁

𝑐 ], 

𝑃𝑛
𝑐𝑄𝑛−1

𝑐 − 𝑄𝑛
𝑐𝑃𝑛−1

𝑐 = (−1)𝑛−1[𝑌𝑁
𝑐 + 2𝑍𝑁

𝑐 ]. 

 

4. Conclusions  

 

There are many studies on hyper-complex numbers, 

such as quaternions, octonions and sedenions, whose 

coefficients are Pell and Pell-Lucas numbers. Current study 

differs from all of them by the choice of coefficients. 

Placing successive Pell and Pell-Lucas numbers in order 

for the coefficients of versors is common. Our definition 

provides to select arbitrary Pell or Pell-Lucas numbers for 

the coefficients of versors. We call this kind of hyper-

complex numbers unrestricted Pell and unrestricted Pell-

Lucas hyper-complex numbers. After introducing these 

numbers, we present Binet-like formulas for them and 

using Binet formulas, we obtain a numbers of identities for 

Pell and Pell-Lucas quaternions, octonions and sedenion. 

Although we limit N to 1 to 4, one can easily realize that 

there is no need such a restriction actually.  
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