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Abstract: In this study, we define conformal hemi-slant Riemannian maps from an almost Hermitian
manifold to a Riemannian manifold as a generalization of conformal anti-invariant Riemannian maps,
conformal semi-invariant Riemannian maps and conformal slant Riemannian maps. Then, we obtain
integrability conditions for certain distributions which are included in the notion of hemi-slant Riemannian
maps and investigate their leaves. Also, we get totally geodesic conditions for this type maps. Lastly, we

introduce some geometric properties under the notion of pluri-harmonic map.
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1. Introduction

Particularly, the concept of Riemannian submersions [6] and isometric immersions [5] were studied
by Falcitelli and Chen. Then, Riemannian submersions were studied in various types as an anti-
invariant, a semi-invariant, a slant and a hemi-slant [16]. Then, this concept generalized to the
notion of Riemannian map by Fischer [7]. Riemannian maps between Riemannian manifolds are
generalization of isometric immersions and Riemannian submersions. Let ® : (M1, g1) — (M2, 92)
be a smooth map between Riemannian manifolds such that 0 < rank® < min{dim(My),dim(Mz)}.

Then, the tangent bundle T'M; of M; has the following decomposition:
TM = ker®, & (ker®,)*.

Since rank® < min{dim(M;),dim(Ms)}, always we have (range®,)*. In this way, tangent

bundle TMy of Ms has the following decomposition:
TMs = (range®,) ® (range®,)*.

A smooth map ®: (M7, g1) — (M3, g2) is called Riemannian map at p; € My if the horizontal

restriction (I)ffpl : (ker®.p,, )t — (range®,) is a linear isometry. Hence, a Riemannian map
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satisfies the equation

91(X,Y) = 92(2..(X), . (Y)) (1)

for X,Y eT'((ker®.)*). So that isometric immersions and Riemannian submersions are particular
Riemannian maps, respectively, with ker®, = {0} and (range®.)* = {0} [6]. An important
application field of Riemannian maps is the eikonal equation. It acts as a bridge between geometric
optics and physical optics. Also, Riemannian maps and their applications studied by Garcia-Rio
and Kupeli in semi-Riemannian geometry [8].

Moreover, Sahin introduced any other types of Riemannian maps [13-16]. In further studies,
in particular Akyol, Sahin and Yanan searched this type submersions [1-3] and Riemannian maps
[18-21] under conformality case, see also [9]. We say that ® : (M™,gn) — (N",gn) is a
conformal Riemannian map at p € M if 0 < rank®., < min{m,n} and ®., maps the horizontal

space (ker(®.,)*) conformally onto range(®.,), i.e., there exist a number A*(p) # 0 such that

IN(Dap(X), () = A () g (X, Y) (2)

for X,Y e T'((ker(®«p)*). Also, ® is called conformal Riemannian if ® is conformal Riemannian
at each pe M [17].

An even-dimensional Riemannian manifold (M, gas, J) is called an almost Hermitian man-
ifold if there exists a tensor field .J of type (1,1) on M such that J? = —I where I denotes the

identity transformation of T'M and
g (X, Y) =g (JX,JY), VXY e I(TM). (3)

Let (M, gnr,J) is an almost Hermitian manifold and its Levi-Civita connection is V with respect

to gpr. If J is parallel with respect to V, i.e.,
(VxJ)Y =0, (4)

we say M is a Kdhler manifold [22].

Therefore, in Section 2; we present background concepts to be used in this paper. In
Section 3; we study conformal hemi-slant Riemannian maps from almost Hermitian manifolds
to Riemannian manifolds as a generalization of conformal semi-invariant Riemannian maps and
conformal slant Riemannian maps. In Section 4; we use the concept of pluriharmonicity to

introduce geometric properties.

2. Preliminaries

In this section, we give several definitions and results to be used throughout the study for conformal

hemi-slant Riemannian maps. Let ®: (M,g,,) — (N, g, ) be a smooth map between Riemannian
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manifolds. The second fundamental form of & is defined by

N M
(VE)(X,Y) = VE®. (V) - &, (VxY) (5)

for X,Y eT'(TM). The second fundamental form V®, is symmetric [10].

Then, we define O’Neill’s tensor fields 7 and A for Riemannian submersions as

M M
AxY hVnxvY +vVpxhY, (6)

M M
TxY = hV,xvY +vV,xhY (7)

for X, Y eI'(TM) with the Levi-Civita connection ]g of gar [12]. As usual, we denote by v and
h the projections on the vertical distribution ker®, and the horizontal distribution (ker ®,)*,
respectively. For any X ¢ I'(TM), Tx and Ax are skew-symmetric operators on (I'(T'M),g)
reversing the horizontal and the vertical distributions. Also, T is vertical, Tx = Tyx, and A is
horizontal, Ax = Apx . Note that the tensor field 7 is symmetric on the vertical distribution [12].
Additionally, from (6) and (7) we have

M ~

VoV = TgV +vVyV, (8)
M M

VuvX = hVyX+ TUX, (9)
M M

VxV = AxV+0vVxV, (10)
M M

VxY = hVxY +AxY (11)

R M
for X,Y e'((ker ®.)*) and U,V e I'(ker®,), where VyV =vVyV [6].

If a vector field X on M is related to a vector field X on N, we say X is a projectable
vector field. If X is both a horizontal and a projectable vector field, we say X is a basic vector
field on M. From now on, when we mention a horizontal vector field, we always consider a basic
vector field [4].

On the other hand, let & : (M™,g,,) — (N", g, ) be a conformal Riemannian map between

Riemannian manifolds. Then, we have

(V) (X,Y) lranges, = X(InA).(Y)+Y (In))®,(X)

- gu (X, Y)D, (grad(ln X)), (12)
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N
where X,Y e I'((ker®.)*). Hence from (12), we obtain V& ®,(Y) as

TPOL(Y) = B (R 5 XA (V) £ Y ()P, (X)

g (X, Y)®, (grad(ln\)) + (V) (X,Y), (13)

where (V®,)*(X,Y) is the component of (V®P.)(X,Y) on (range®.)* for X,Y e I'((ker®.)*)
18, 19].
Lastly, a map ® from a complex manifold (M, g, J) to a Riemannian manifold (N, gn)

is a pluriharmonic map if ® satisfies the following equation
(Ve )(X,Y) +(VD.)(JX,JY) =0 (14)

for X, Y eI(TM) [11].

3. Conformal Hemi-slant Riemannian Maps

We define conformal hemi-slant Riemannian maps from almost Hermitian manifolds and give some

examples. We examine integrability and totally geodesicity conditions.

Definition 3.1 A conformal Riemannian map ® : (M, gnr,J) — (N,gn) is called a conformal
hemi-slant Riemannian map if the vertical distribution ker®, of ® admits two orthogonal com-
plementary distributions Dy and D, such that Dy is slant and D, is anti-invariant, i.e., we

have
ker®, =DyaD,. (15)
Hence, the angel 0 is called the hemi-slant angle of the conformal Riemannian map.
Here, if we denote the dimension of Dy and D, by my and m, , respectively, then we get:
i) If mg =0, then ® is a conformal anti-invariant Riemannian map [18].
ii) If m; =0 and 6 =0, then ® is a conformal invariant Riemannian map.
iii) If m, =0 and 6 #0, 7, then ® is a proper conformal slant Riemannian map [21].
iv) If 6 = 5, then ® is a conformal anti-invariant Riemannian map.

Now, we give some examples for conformal hemi-slant Riemannian maps.

Example 3.2 Every conformal slant submersion [3] from an almost Hermitian manifold to a

Riemannian manifold is a conformal hemi-slant Riemannian map with D, = {0} and (range®.)* =

{0}.
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Example 3.3 Every conformal hemi-slant submersion [9] from an almost Hermitian manifold to

a Riemannian manifold is a conformal hemi-slant Riemannian map with (range®,)* ={0}.

Example 3.4 Every conformal slant Riemannian map [21] from an almost Hermitian manifold

to a Riemannian manifold is a conformal hemi-slant Riemannian map with D, = {0}.

Example 3.5 Every conformal semi-invariant submersion [2] from an almost Hermitian manifold

to a Riemannian manifold is a conformal hemi-slant Riemannian map with 0 = 5 and (range®,)* =

{0}

Example 3.6 Every conformal semi-invariant Riemannian map [19] from an almost Hermitian

manifold to a Riemannian manifold is a conformal hemi-slant Riemannian map with 0 =7 .

If D, # {0} and 6 # 0, 5 ,then we say & is a proper conformal hemi-slant Riemannian map.

Hence, we give an explicit example to proper case.

Example 3.7 Define a map ®:R® — R® by

Tg + X7
(D(Z'l,$2,$3,$4,$5,$6,$7,l‘8):€($2,$3, 7‘1:870)

V2

with 0 € (0,%). We obtain the horizontal distribution

0 0 e , 0 0 0
ker® ) ={Zi=e—,Zy=e—,7Z3=—(—+—),Zs=e—
( “r ) { ! ea$2 2 681'3 3 \/5 8x6 +8x7) : eal‘g}
and the vertical distribution
0 0 0 0 0
ker®, ={Wi=— Wy = — W3 = —, e
“r m Jrq 2 Oxy 8 oxs 4 drg Ox7

respectively. If the complex structure of RS is J = (=as, a1, —ay4, a3, —ag, as, —ag, ay), we have

1 1 2
IWi=1z, aws =1z, JW3=2f
e €

e

1 1
Z3+§W4, JW4=—*Z4—W3.
e

Hence, we obtain D, = span{W1,Wa} and Dy = span{Ws3,W4}. So, ® is a proper conformal

hemi-slant Riemannian map with slant angle 6 = 7, A=e and rank® =4.

For any W e '(ker®,), we get

W = PW + QW, (16)
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where PW e T'(Dy) and QW e T'(D,), and have
JW = W + W, (17)
where ¢W e T'(ker®,) and vW e I'((ker®,)*). Lastly, for Z e I'((ker®,)'), we have
JZ=BZ+CZ, (18)
where BZ € T'(ker®,) and CZ e I'((ker®.)*). Hence, we obtain decomposition of (ker®,)* as
(ker®,)" =yDy® JD, @ pu, (19)

where p is the orthogonal complement of ¥Dy @ JD, and it is invariant under J. From equations

(16)-(19), we obtain followings:
9Dy =Dy, ¢D,={0}, ByYDy=Dy, BJD, =D, (20)
and
¢*+ By =-I, pp+Cih={0}, ¢B+BC={0}, vB+C?=-I. (21)

The proof of the next theorem is exactly same with hemi-slant submanifolds like hemi-slant

Riemannian maps; see Theorem 3.6 of [15].

Theorem 3.8 Let ® be a conformal Riemannian map from an almost Hermitian manifold
(M,gnr,J) to a Riemannian manifold (N,gn). Then, ® is a conformal hemi-slant Rieman-

nian map if and only if there exists a constant A € [0,1] and a distribution D on ker®, such

that

i) D={W eT(ker®,)|p>W = \W},

it) we have ¢W =0, for any W e T'(ker®,) orthogonal to D.
Further, we have X = —cos? @ where 0 is the slant angle of ® .

The next expressions are easy to see their validity

gri(¢U1, ¢Us) = cos® Ogar (U1, Us), (22)

gr (YU, YUs) = sin® Ogar (Uy, Us) (23)

for any Uy,Us € T'(Dy).

Now, we give some integrability conditions for leaf of the distributions.
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Theorem 3.9 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold (M, g, J)

to a Riemannian manifold (N,gn). Then, the slant distribution Dy is integrable if and only if

N

N {gn (T, IV, Us) = gar (Tur, TV, ¢U1 ) } IN(VE, @ (JV) + (A Us), ®. (Y1)

N
gn (V5,2 (JV) + @ (AsvUn), 0. (Y12))

for any Uy, Uy e T(Dy) and V eT(D,).

Proof Since gjs is the Kahler metric from (9) and (17), we get

M M
g (Vu, U2, V') = —gn (Tu, JV, 9Us) = gne (hV 1, JV,9U3) (24)

for any Uy,Us € T'(Dy) and V e (D). Now, using (5) and symmetry condition of V&, , we get

M N
D, (hVi, JV) = V5, . (JV) + @, (AsvUy). (25)
Putting (25) in (24), we have
M
g (Vo U2, V) = —gu (T, JV, ¢U2)
1 N
- ﬁgN(vg'I}ld)*(JV) + O, (A Ur), . (YU3)). (26)
Lastly, changing the roles of U; and Us in (26) we obtain the proof. O

The integrability condition of D, is the same with Theorem 3.8 in [15]. Note that, always

the distribution ker®, is integrable. Then, we have the following.

Theorem 3.10 Let ® be a conformal hemi-slant Riemannian map from a Kdihler manifold
(M, gn,J) to a Riemannian manifold (N,gn). Then, the horizontal distribution (ker®.)* is

integrable if and only if
i)
N N
gn (V@) (Z2, BZy) = (V®.)(Z1, BZ2) + V5, @.(CZy) = V5, 8.(CZ1), 2. (V1))
) M M
=)\ {gM(UVZlBZQ +AZICZ2 - UVZszl — A22021,¢U)
~Z1(InA\)grr (CZa,pU) = CZa(In N)gns (Z1,9U) + Za(In N gar (CZ1,4pU)
+CZ1(InN)grr (Z2,9U) + U (InN) (grr (Z1,CZ2) = g (Z2,CZ1)) b,
- M M
it) Q{B{Az,BZs+hV 3,CZs—Az,BZ1 —hV z,CZ1}}=0
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are provided for any Z1,Zs € T'((ker®.)*), U e (Dy) and V eT'(D,).

Proof We search gp([Z1,22],U) =0 and gy ([Z1,Z2],V) = 0 for any Z1,Z5 € T'((ker®,)*),
UeT(Dy) and V e'(D,). Firstly, using (10), (11) and (17), we get

M M
9 ([Z1,22),U) = gu(Az,BZo+hV 2,07~ Az, BZy — hV 2,0 Z1,9U)

M M
+ gM(’UVZlBZQ +.AZICZ2—'UVZ2B21—A22021,¢U). (27)

M
We have (V®,.)(Z1,BZ3) = -®.(Az, BZ2) from (5) and equality of ®,(hV z, CZ3) from (13). In

(27), we obtain

gu([Z1,2:],U) = %gN((th)(Zz,BZﬂ—(V‘I)*)(Zthz),‘P*(wU))

1 N N
ﬁgzv(v%@’*(czz) ~V2,2.(C21), 2.(4U))

+

Zy(InX)gni (CZ2,9U) = CZz(In A)gni (Z1,9U)

+

YU N)gn (Z1,CZ) + Zo(In X)gn (CZ1,9U)

+

CZ1(InN)gr (Z2,9U) —9pU(InA)gm (Z2,CZ1)
M M
+ gM(UleBZ2 +AZICZ2—UVZQBZ1—AchZ1,¢U). (28)

We get (i) from (28). Now, for (10) and (11) we obtain

M
g ([Z1,22),V) = -gu(B{Az BZy+hV 7, CZy},V)

M
gu (B{Az,BZ1 + hV z,CZ1},V). (29)

+

From (16) and (29), we get (ii). ]

In the rest of the section, we investigate totally geodesicity conditions on total manifold.
Recall that @ is said to be horizontally homothetic map if h(grad(ln)) =0 [4] and @ is said to

be totally geodesic map if (V®.)(E,F) =0 for all E,F eI'(TM) [16].

Theorem 3.11 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold
(M,gnr,J) to a Riemannian manifold (N,gn). Then, any two conditions below imply the third

condition;
i) ker®, defines a totally geodesic foliation on M,
it) ® is a horizontally homothetic map,
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i)

N
Ve @ (YWa) = DL (J[TWi, Wa]) + (VO.) (YW1, Wa)

+ O (Tow, dWa + Apw, OW1 + Ayw, W2)
for any Wy, Ws € T'(ker®,).
Proof Using equations (5) and (13), we get

M N
O (Vyw, JW2) = Vi, @ (JWy) — (V) (JW1, JW)

N

= YWi(lnA)®, (v Wa) - pWa(In X))@, (YpWy)

+ g (VW1 W2) @ (grad(In X)) = (VO.) " (p Wi, ¥ W3)

for any W1, Wy e I'(ker®,). On the other hand, we get

M M
(I)*(VJWIJWQ) = ¢*(J[JW17W2:|) +JVW1JW2)

D, (J[JW1, Wa]) - CD*(AéW1W2)~

Putting (31) in (30), we obtain

M N
D, (Vw, Wa) O, (J[JW1, Wa]) = V* s, s (v W5)

+ (I)*(nwl ¢W2 + ‘Ad)WQ ¢W1 + ‘A¢W1 ¢W2)

+ YW (InA) Dy (YWa) + Yy Wa (In ) D, (¥W7)

- g (W1, YpWo)®, (grad(In X)) + (V&) (v W1, pWs).

Suppose that (i) and (ii) are provided in (32). Then, we have

M
D, (Viy, W) =0

and

PWi(In A) @, (pW2) + pWa(In M) @, (W) = gar (YW1, pW2) P, (grad(In A)) = 0.

Hence, we obtain

N
0 = O (JJW,Wa]) =V w, Bu(pW) + (VL) (YW1, W)

+ O (Tow, OWa + Apw, oW1 + Ay, oW2).

Vo @u (WW2) = @ (Tow, dWa + Apw, oW1 + Ay, oWo)

(32)

(33)
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We get (iii) from (33). One can easily see that if (ii) and (iii) are provided in (32) we obtain

M
D, (Vw,W2) =0. So, (i) is satisfied. Lastly, we proof (ii). Suppose that (i) and (iii) are provided

in (32). Then, we obtain

0 = YWi(InX)®, (pWa) +pWo(InX) P, (1p W)

= gu (YW1, 9 W2)®.(grad(In X)). (34)

For Wy e T'((ker®,)*) in (34), we have

0= N2 ypWyo(In N)gas (WW7,pWh).

So, we obtain ¥Ws(InA) = 0. It means A is a constant on (ker®,)*. Therefore, ® is a horizontally

homothetic map. The proof is complete. |

In a similar way, we have the following.

Theorem 3.12 Let ® be a conformal hemi-slant Riemannian map from a Kdihler manifold
(M,gur,J) to a Riemannian manifold (N,gn). Then, any two conditions below imply the third

condition;
i) (ker®.)* defines a totally geodesic foliation on M,
it) ® is a horizontally homothetic map,
i)

N
V2,2,0.(CZy) = ©,(J[21,T7Z5]) - (V®,)(CZy,CZy)

+ @*(TBZIBZQ + ACZIBZQ + ACZ2le)
for any Z1,Z5 € T ((ker®,)*).

Theorem 3.13 Let & be a conformal hemi-slant Riemannian map from a Kdihler manifold
(M, g, J) to a Riemannian manifold (N,gn). Then, the slant distribution Dy defines a to-

tally geodesic foliation on M if and only if
cos? 0Ty, Uy = Ty, BYUs

is provided for any Uy,Us € T'(Dy).
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Proof From definition of V®, and (17), we get

M
(VO.)(Ur,Us) = @u(JVy,JU2)

M M
. (Vu, JoUz) + @.(V, JYUs)
Mo, M M M
= (Vi 97Uz + Vi, ¥gls) + @4 (Ve BYUs + Vi, CyUz)
for any Uy,Us € T'(Dy). Now, from Theorem 3.8 and by using (20) in (34), we obtain

(V®,)(Uy,Us) = —cos? 0%, (Ty, Us) + @, (Ty, BypUs).

The proof is complete.

Theorem 3.14 Let ® be a conformal hemi-slant Riemannian map from a Kdihler manifold

(M,gur,J) to a Riemannian manifold (N,gn). Then, any two conditions below imply the third

condition;
i) D, defines a totally geodesic foliation on M ,

it) X is a constant on J(D,),

N

iii) V5, @ (JVa) = (VO (JV1, JVa) = @, (J[Va, JV1])
for any V1,Vo e (D,).
Proof From the definition of V®,, we have

N M
(V) (JV1, IVe) = V5, 0.(JVa) = B (V g1, T V2)

N M
Ve @, (JV2) + @, (J[Va, JVi] = IV, V1)

N M
Ve @u(JVa) + @, (J[Va, JVA]) + . (Vy, V)

for any V4,Va e I'(D,). Using (13) in (37), we obtain

M N
. (Vi,Vi) = -V 0.(JV2) - @.(J[Va, JW1])

+

JVi(In N, (JVa) + JVa(In \) @, (JV7)

g (JV1, JVo)®, (grad(In X)) + (VO ) (JV1, V).

Suppose that (i) and (iii) are satisfies in (38). So, we have

M
0= q)x—(VVQ‘/l)
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and

N
0=-V® 1, ®.(JV2) = ®u(J[Va, JVi]) + (VL) (JVA4, JVR).

Therefore, we obtain from (38)

0 = JVi(In\)®,(JVa) + JVa(In \)®, (JV7)
- g (JVi, JVa)®, (grad(ln \)). (39)
Now, we obtain from (39)
0=XJVo(In N gar (JVi, JV1) (40)

for any V4 € I'(D,). So, we obtain JVa(InA) = 0. It means A is a constant on J(D,). The proofs
of (i) and (iii) are easy to see from (38). ]

Lastly, we present totally geodesicity of the map ®.

Theorem 3.15 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold
(M,gpr,J) to a Riemannian manifold (N,gn). Then, the map ® defines a totally geodesic

foliation on M if and only if

i) ® is a horizontally homothetic map,

i)
N M
Ve, ®.(Z2) = (VD.)(Z1,Z2) - ®.(C{Az BZs+hV 7,CZ5})
M
- (b*(’lp{UVZIBZQ-FAZICZQ}),
i)
~ M ~ ~ ~
cos? 0Ty, PWo = hVw, YwdpPWy + Ty, (WPWy + JQW>)

M ~ ~
ChVWl (leWQ + JQWQ)

+

are provided for any Z1,Zs € T'((ker®,)*) and Wy, Ws e T'(ker®,).

Proof Because of rank condition of the conformal hemi-slant Riemannian map ®, we have
(V(I),.)(Zl,ZQ) = (v@x.)l(Zl,ZQ) + (v(b*)T(Zl’ZQ) for any Zl,Zg € F((kerti)*)l). We know that
(V) (Z1,Z3) € T'((range®,)*) and (V®,)"(Z1,Z;) € T'(ranged,), see (12) and (13). Using

these equations, we obtain

N M
(VO.)(Z1,Z5) = V®2,0,(Z) - 0.(Vz Zo).
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Since (V®.)(Z1,722) =0,

N
0 = V(bZl@*(ZZ) - (Vq)*)l(ZhZQ)

M

+ q)*(CAZlBZQ +’¢1}VZ1BZ2)
M

+ O, (VA7 CZs +CthICZQ)

- Zl(lnA)(I)*(Zg) - ZQ(IH)\)(I)*(Zl)

+ gum(Z1,Z5)P.(grad(ln))). (42)

From (42), we have

N M
V2, ®.(Z2) = (VO.)(Z1,25) - . (C{Az,BZy + hV 5,CZy})

. (b{vV 5, BZs + Ay, CZs)) (43)
and
0 = Zi(InN)®.(Za) + Zo(In )@, (Z1)
= 9u(Z1,Z2)®.(grad(lnA)). (44)
In (44), for any Z; e T'((ker®.)*) we get
0 = NZi(In\)ga(Z2, Z1) + A Zo(In \)gar (Z1, Z1)
- Ngum(Zy,Z2)Z1(InX)
= NZy(InN)gu(Z1, Z1). (45)
So, from (45) we obtain Zs(InA) = 0. It means ® is a horizontally homothetic map. We obtain

(ii) and (i) from (43) and (45), respectively. In a similar way, we get

M ~ ~
(VD,)(Wi, Wa) O, (JVw, JPWa + JQW>)

M 9 ~ M ~
= O, (Vw,¢"PWa+ Vi, v PW>)
- M -
+ O (VTw, Y PWy + ChV w, oy PWy)
- M -
+ q)*(’(/)TWIJQW2+ChVW1JQW2)

~ M ~
= —cos? 00, (Tw, PWs) + @, (hVw, o PWy)

+ B, (VTw, (YPWay + JQWS))

b B (ChYw, (WP, + JQW2)) (46)
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for any Wy, Ws e I'(ker®,). We obtain (iii) from (46). The proof is complete. ]

4. Pluriharmonic Conformal Hemi-slant Riemannian Maps

In this section, we use the notion of pluriharmonic map on the distributions of a conformal hemi-
slant Riemannian map to introduce their geometric properties. @ is said to be Dy-pluriharmonic
map (D, , ker®,, (ker®,)* or mixzed-pluriharmonic, respectively) if

(VO (E,F)+ (V®,)(JE,JF) =0

for E,F eT'(Dy) (D,, kerd,, (ker®,)* or (ker®,)* x kerd,, respectively) [19].

Theorem 4.1 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold (M, g, J)

to a Riemannian manifold (N,gn). Then, any two conditions below imply the third condition;
i) ® is a Dy -pluriharmonic map,
it) X is a constant on Y(Dy) and (V. )* (YU, vUs) =0,
iii) sin® 0T, Uz + Ayr, oUr + Ay, dUs = 0
for any Uy,Us e I'(Dy).
Proof Using definition of Dy-pluriharmonic map and symmetry condition of V®,, we get

0 = (VO)(U1,Uz) + (VP,)(¢U1, 9U2) + (V) (U2, 9U1)

+ (V) (YU, ¢Uz) + (V) (YU, ¢Uz) (47)
for any Uy,Us € I'(Dp). From Theorem 3.8 and (12), we obtain
0 = —sin?0®.(Ty,Us) - @, (Apr, dUs + Ay, dUs)

+ UL (InN) D, (YUs) + YUz (In N, (LU

- gu (UL PU2) @ (grad(In X)) = (VO ) (UL, YUa). (48)
Now, suppose that (i) and (ii) are provided in (48). So, we have
(V) (U1, U2) + (V,)(JU1, JU2) =0,

PUL(In A) @, (YU2) + Uz (In A) @, (YU) = gar (PU1, PU2) @ (grad(InA)) = 0

and

(V2.)*(¢U,9Us) =0,

70



Sener Yanan / FCMS

respectively. Hence, we easily obtain (iii) from (48). If we suppose that (ii) and (iii) are provided
in (48), we obtain (i) from (47) such that ® is a Dp-pluriharmonic map. Lastly, we suppose that

(i) and (iii) are provided in (48), we get

0 = YPUi(InN)D,(YUz) + pUz(In X) P, (4pU1)

— g (UL, pU2) P, (grad(In X)) = (V) (YU, pUsz). (49)

We obtain (V®,)*(¢Uy,»Us) =0 from (49). For any U, € I'(¢)(Dy)), we obtain

0= A2pUs(In \)gar (YU, UL ). (50)

So, from (50) we get ¥Us(InA) = 0. It means A is a constant on ¢ (Dy). (ii) is provided. The

proof is all. O

Similarly, we have the following theorems.

Theorem 4.2 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold (M, g, J)

to a Riemannian manifold (N,gn). Then, any two conditions below imply the third condition;
i) D, defines a totally geodesic foliation on M ,
it) ® is a D, -pluriharmonic map,
iii) X is a constant on J(D.) and (V®.)*(JV1,JV2) =0
for any V1,Vo e I(D,).

Note that D, -pluriharmonic map and J(D,)-pluriharmonic map give same results for a
conformal hemi-slant Riemannian map. Since D, is an anti-invariant distribution, we obtain the

result from the definition of pluriharmonic map.

Theorem 4.3 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold (M, gy, J)

to a Riemannian manifold (N,gn). Then, any two conditions below imply the third condition;
i) ® is a ker®, -pluriharmonic map,
it) ® is a horizontally homothetic map and (V®.)* (YpW1,vWs) =0,
iii) sin® 0Ty, Wa = Agpw, oW1 + Apw, oW

for any Wy, Ws e T'(ker®,).

Theorem 4.4 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold (M, gy, J)

to a Riemannian manifold (N,gn). Then, any three conditions below imply the fourth condition;
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i) (ker®,)* defines a totally geodesic foliation on M,
it) ® is a (ker®,)* -pluriharmonic map,

iti) ® is a horizontally homothetic map,

N
w) V25, ®,(Z2) =®.(Tpz,BZo+ Acz,BZy + Acz,BZ,) + (V®,) (CZy,CZy)

for any Z1,Z5 € T((ker®,)*).

Theorem 4.5 Let ® be a conformal hemi-slant Riemannian map from a Kahler manifold (M, g, J)

to a Riemannian manifold (N,gn). Then, any two conditions below imply the third condition;
i) ® is a mized-pluriharmonic map,
it) ® s a horizontally homothetic map and (V®.)*(CZ,yW) =0,
iii) AzW + Tpz¢oW + Ayw BZ + Acz¢W =0
for any Z eT'((ker®,)*) and W e '(kerd,).
Proof From definition of mixed-pluriharmonic map, we obtain
0 = -0, (AzW)+ (VPN (CZ,YpW)
- O, (Tpz¢W + Ayw BZ + Acz¢W)
+ CZ(In NP, (¢W) + W (lnA\)®,.(CZ)
- gu(CZ,pW)®.(grad(ln X)) (51)
for any Z e I'((ker®,)*) and W e I'(ker®,). Now, we only proof (ii). Suppose that (i) and (iii)
are provided in (51). We obtain easily (V®.)*(CZ,vW) =0 and get
0= XYW (In\)grn(CZ,CZ) (52)
for CZ eT'((ker®,)*) and
0=A\CZ(InA)gnr (YW, W) (53)

for YW e T'((ker®,)*). So, we have yW(InA) = 0 and CZ(In\) = 0 from (52) and (53),
respectively. They means A is a constant on horizontal distribution. Hence, ® is a horizontally

homothetic map. (ii) is provided. ]
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