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Abstract: In this study, we define conformal hemi-slant Riemannian maps from an almost Hermitian

manifold to a Riemannian manifold as a generalization of conformal anti-invariant Riemannian maps,

conformal semi-invariant Riemannian maps and conformal slant Riemannian maps. Then, we obtain

integrability conditions for certain distributions which are included in the notion of hemi-slant Riemannian

maps and investigate their leaves. Also, we get totally geodesic conditions for this type maps. Lastly, we

introduce some geometric properties under the notion of pluri-harmonic map.
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1. Introduction

Particularly, the concept of Riemannian submersions [6] and isometric immersions [5] were studied

by Falcitelli and Chen. Then, Riemannian submersions were studied in various types as an anti-

invariant, a semi-invariant, a slant and a hemi-slant [16]. Then, this concept generalized to the

notion of Riemannian map by Fischer [7]. Riemannian maps between Riemannian manifolds are

generalization of isometric immersions and Riemannian submersions. Let Φ ∶ (M1, g1)Ð→ (M2, g2)

be a smooth map between Riemannian manifolds such that 0 < rankΦ <min{dim(M1), dim(M2)} .

Then, the tangent bundle TM1 of M1 has the following decomposition:

TM1 = kerΦ∗ ⊕ (kerΦ∗)⊥.

Since rankΦ < min{dim(M1), dim(M2)} , always we have (rangeΦ∗)⊥ . In this way, tangent

bundle TM2 of M2 has the following decomposition:

TM2 = (rangeΦ∗)⊕ (rangeΦ∗)⊥.

A smooth map Φ ∶ (Mm
1 , g1) Ð→ (Mn

2 , g2) is called Riemannian map at p1 ∈M1 if the horizontal

restriction Φh
∗p1 ∶ (kerΦ∗p1)

⊥ Ð→ (rangeΦ∗) is a linear isometry. Hence, a Riemannian map
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satisfies the equation

g1(X,Y ) = g2(Φ∗(X),Φ∗(Y )) (1)

for X,Y ∈ Γ((kerΦ∗)⊥) . So that isometric immersions and Riemannian submersions are particular

Riemannian maps, respectively, with kerΦ∗ = {0} and (rangeΦ∗)⊥ = {0} [6]. An important

application field of Riemannian maps is the eikonal equation. It acts as a bridge between geometric

optics and physical optics. Also, Riemannian maps and their applications studied by Garcia-Rio

and Kupeli in semi-Riemannian geometry [8].

Moreover, Şahin introduced any other types of Riemannian maps [13–16]. In further studies,

in particular Akyol, Şahin and Yanan searched this type submersions [1–3] and Riemannian maps

[18–21] under conformality case, see also [9]. We say that Φ ∶ (Mm, gM) Ð→ (Nn, gN) is a

conformal Riemannian map at p ∈ M if 0 < rankΦ∗p ≤ min{m,n} and Φ∗p maps the horizontal

space (ker(Φ∗p)⊥) conformally onto range(Φ∗p) , i.e., there exist a number λ2(p) ≠ 0 such that

gN(Φ∗p(X),Φ∗p(Y )) = λ2(p)gM(X,Y ) (2)

for X,Y ∈ Γ((ker(Φ∗p)⊥) . Also, Φ is called conformal Riemannian if Φ is conformal Riemannian

at each p ∈M [17].

An even-dimensional Riemannian manifold (M,gM , J) is called an almost Hermitian man-

ifold if there exists a tensor field J of type (1,1) on M such that J2 = −I where I denotes the

identity transformation of TM and

gM(X,Y ) = gM(JX,JY ),∀X,Y ∈ Γ(TM). (3)

Let (M,gM , J) is an almost Hermitian manifold and its Levi-Civita connection is ∇ with respect

to gM . If J is parallel with respect to ∇ , i.e.,

(∇XJ)Y = 0, (4)

we say M is a Kähler manifold [22].

Therefore, in Section 2; we present background concepts to be used in this paper. In

Section 3; we study conformal hemi-slant Riemannian maps from almost Hermitian manifolds

to Riemannian manifolds as a generalization of conformal semi-invariant Riemannian maps and

conformal slant Riemannian maps. In Section 4; we use the concept of pluriharmonicity to

introduce geometric properties.

2. Preliminaries
In this section, we give several definitions and results to be used throughout the study for conformal

hemi-slant Riemannian maps. Let Φ ∶ (M,g
M
)Ð→ (N,g

N
) be a smooth map between Riemannian

58



Şener Yanan / FCMS

manifolds. The second fundamental form of Φ is defined by

(∇Φ∗)(X,Y ) =
N

∇Φ
XΦ∗(Y ) −Φ∗(

M
∇XY ) (5)

for X,Y ∈ Γ(TM) . The second fundamental form ∇Φ∗ is symmetric [10].

Then, we define O’Neill’s tensor fields T and A for Riemannian submersions as

AXY = h
M
∇hXvY + v

M
∇hXhY, (6)

TXY = h
M
∇vXvY + v

M
∇vXhY (7)

for X,Y ∈ Γ(TM) with the Levi-Civita connection
M
∇ of gM [12]. As usual, we denote by v and

h the projections on the vertical distribution kerΦ∗ and the horizontal distribution (kerΦ∗)⊥ ,

respectively. For any X ∈ Γ(TM) , TX and AX are skew-symmetric operators on (Γ(TM), g)

reversing the horizontal and the vertical distributions. Also, T is vertical, TX = TvX , and A is

horizontal, AX = AhX . Note that the tensor field T is symmetric on the vertical distribution [12].

Additionally, from (6) and (7) we have

M
∇UV = TUV + ∇̂UV, (8)

M
∇UX = h

M
∇UX + TUX, (9)

M
∇XV = AXV + v

M
∇XV, (10)

M
∇XY = h

M
∇XY +AXY (11)

for X,Y ∈ Γ((kerΦ∗)⊥) and U,V ∈ Γ(kerΦ∗) , where ∇̂UV = v
M
∇UV [6].

If a vector field X on M is related to a vector field X
′ on N , we say X is a projectable

vector field. If X is both a horizontal and a projectable vector field, we say X is a basic vector

field on M . From now on, when we mention a horizontal vector field, we always consider a basic

vector field [4].

On the other hand, let Φ ∶ (Mm, g
M
)Ð→ (Nn, g

N
) be a conformal Riemannian map between

Riemannian manifolds. Then, we have

(∇Φ∗)(X,Y ) ∣rangeΦ∗ = X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X)

− gM(X,Y )Φ∗(grad(lnλ)), (12)
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where X,Y ∈ Γ((kerΦ∗)⊥) . Hence from (12), we obtain
N

∇Φ
XΦ∗(Y ) as

N

∇Φ
XΦ∗(Y ) = Φ∗(h

M
∇XY ) +X(lnλ)Φ∗(Y ) + Y (lnλ)Φ∗(X)

− gM(X,Y )Φ∗(grad(lnλ)) + (∇Φ∗)⊥(X,Y ), (13)

where (∇Φ∗)⊥(X,Y ) is the component of (∇Φ∗)(X,Y ) on (rangeΦ∗)⊥ for X,Y ∈ Γ((kerΦ∗)⊥)

[18, 19].

Lastly, a map Φ from a complex manifold (M,gM , J) to a Riemannian manifold (N,gN)

is a pluriharmonic map if Φ satisfies the following equation

(∇Φ∗)(X,Y ) + (∇Φ∗)(JX,JY ) = 0 (14)

for X,Y ∈ Γ(TM) [11].

3. Conformal Hemi-slant Riemannian Maps

We define conformal hemi-slant Riemannian maps from almost Hermitian manifolds and give some

examples. We examine integrability and totally geodesicity conditions.

Definition 3.1 A conformal Riemannian map Φ ∶ (M,gM , J) Ð→ (N,gN) is called a conformal

hemi-slant Riemannian map if the vertical distribution kerΦ∗ of Φ admits two orthogonal com-

plementary distributions Dθ and D� such that Dθ is slant and D� is anti-invariant, i.e., we

have

kerΦ∗ = Dθ ⊕D�. (15)

Hence, the angel θ is called the hemi-slant angle of the conformal Riemannian map.

Here, if we denote the dimension of Dθ and D� by mθ and m� , respectively, then we get:

i) If mθ = 0 , then Φ is a conformal anti-invariant Riemannian map [18].

ii) If m� = 0 and θ = 0 , then Φ is a conformal invariant Riemannian map.

iii) If m� = 0 and θ ≠ 0, π
2

, then Φ is a proper conformal slant Riemannian map [21].

iv) If θ = π
2

, then Φ is a conformal anti-invariant Riemannian map.

Now, we give some examples for conformal hemi-slant Riemannian maps.

Example 3.2 Every conformal slant submersion [3] from an almost Hermitian manifold to a

Riemannian manifold is a conformal hemi-slant Riemannian map with D� = {0} and (rangeΦ∗)� =

{0} .
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Example 3.3 Every conformal hemi-slant submersion [9] from an almost Hermitian manifold to

a Riemannian manifold is a conformal hemi-slant Riemannian map with (rangeΦ∗)� = {0} .

Example 3.4 Every conformal slant Riemannian map [21] from an almost Hermitian manifold

to a Riemannian manifold is a conformal hemi-slant Riemannian map with D� = {0} .

Example 3.5 Every conformal semi-invariant submersion [2] from an almost Hermitian manifold

to a Riemannian manifold is a conformal hemi-slant Riemannian map with θ = π
2

and (rangeΦ∗)� =

{0} .

Example 3.6 Every conformal semi-invariant Riemannian map [19] from an almost Hermitian

manifold to a Riemannian manifold is a conformal hemi-slant Riemannian map with θ = π
2

.

If D� ≠ {0} and θ ≠ 0, π
2

,then we say Φ is a proper conformal hemi-slant Riemannian map.

Hence, we give an explicit example to proper case.

Example 3.7 Define a map Φ ∶ R8 Ð→ R5 by

Φ(x1, x2, x3, x4, x5, x6, x7, x8) = e(x2, x3,
x6 + x7√

2
, x8,0)

with θ ∈ (0, π
2
) . We obtain the horizontal distribution

(kerΦ∗)� = {Z1 = e
∂

∂x2
, Z2 = e

∂

∂x3
, Z3 =

e√
2
( ∂

∂x6
+ ∂

∂x7
), Z4 = e

∂

∂x8
}

and the vertical distribution

kerΦ∗ = {W1 =
∂

∂x1
,W2 =

∂

∂x4
,W3 =

∂

∂x5
,W4 =

∂

∂x6
− ∂

∂x7
},

respectively. If the complex structure of R8 is J = (−a2, a1,−a4, a3,−a6, a5,−a8, a7) , we have

JW1 =
1

e
Z1, JW2 = −

1

e
Z2, JW3 =

√
2

2e
Z3 +

1

2
W4, JW4 = −

1

e
Z4 −W3.

Hence, we obtain D� = span{W1,W2} and Dθ = span{W3,W4} . So, Φ is a proper conformal

hemi-slant Riemannian map with slant angle θ = π
4

, λ = e and rankΦ = 4 .

For any W ∈ Γ(kerΦ∗) , we get

W = P̃W + Q̃W, (16)
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where P̃W ∈ Γ(Dθ) and Q̃W ∈ Γ(D�) , and have

JW = ϕW + ψW, (17)

where ϕW ∈ Γ(kerΦ∗) and ψW ∈ Γ((kerΦ∗)�) . Lastly, for Z ∈ Γ((kerΦ∗)�) , we have

JZ = BZ +CZ, (18)

where BZ ∈ Γ(kerΦ∗) and CZ ∈ Γ((kerΦ∗)�) . Hence, we obtain decomposition of (kerΦ∗)� as

(kerΦ∗)� = ψDθ ⊕ JD� ⊕ µ, (19)

where µ is the orthogonal complement of ψDθ ⊕JD� and it is invariant under J . From equations

(16)-(19), we obtain followings:

ϕDθ = Dθ, ϕD� = {0}, BψDθ = Dθ, BJD� = D� (20)

and

ϕ2 +Bψ = −I, ψϕ +Cψ = {0}, ϕB +BC = {0}, ψB +C2 = −I. (21)

The proof of the next theorem is exactly same with hemi-slant submanifolds like hemi-slant

Riemannian maps; see Theorem 3.6 of [15].

Theorem 3.8 Let Φ be a conformal Riemannian map from an almost Hermitian manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, Φ is a conformal hemi-slant Rieman-

nian map if and only if there exists a constant λ ∈ [0,1] and a distribution D on kerΦ∗ such

that

i) D = {W ∈ Γ(kerΦ∗)∣ϕ2W = λW} ,

ii) we have ϕW = 0 , for any W ∈ Γ(kerΦ∗) orthogonal to D .

Further, we have λ = − cos2 θ where θ is the slant angle of Φ .

The next expressions are easy to see their validity

gM(ϕU1, ϕU2) = cos2 θgM(U1, U2), (22)

gM(ψU1, ψU2) = sin2 θgM(U1, U2) (23)

for any U1, U2 ∈ Γ(Dθ) .

Now, we give some integrability conditions for leaf of the distributions.
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Theorem 3.9 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold (M,gM , J)

to a Riemannian manifold (N,gN) . Then, the slant distribution Dθ is integrable if and only if

λ2{gM(TU1JV,ϕU2) − gM(TU2JV,ϕU1)} = gN(
N

∇Φ
U2
Φ∗(JV ) +Φ∗(AJV U2),Φ∗(ψU1))

− gN(
N

∇Φ
U1
Φ∗(JV ) +Φ∗(AJV U1),Φ∗(ψU2))

for any U1, U2 ∈ Γ(Dθ) and V ∈ Γ(D�) .

Proof Since gM is the Kähler metric from (9) and (17), we get

gM(
M
∇U1U2, V ) = −gM(TU1JV,ϕU2) − gM(h

M
∇U1JV,ψU2) (24)

for any U1, U2 ∈ Γ(Dθ) and V ∈ Γ(D�) . Now, using (5) and symmetry condition of ∇Φ∗ , we get

Φ∗(h
M
∇U1JV ) =

N

∇Φ
U1
Φ∗(JV ) +Φ∗(AJV U1). (25)

Putting (25) in (24), we have

gM(
M
∇U1U2, V ) = −gM(TU1JV,ϕU2)

− 1

λ2
gN(

N

∇Φ
U1
Φ∗(JV ) +Φ∗(AJV U1),Φ∗(ψU2)). (26)

Lastly, changing the roles of U1 and U2 in (26) we obtain the proof. ◻

The integrability condition of D� is the same with Theorem 3.8 in [15]. Note that, always

the distribution kerΦ∗ is integrable. Then, we have the following.

Theorem 3.10 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, the horizontal distribution (kerΦ∗)� is

integrable if and only if

i)

gN((∇Φ∗)(Z2,BZ1) − (∇Φ∗)(Z1,BZ2) +
N

∇Φ
Z1
Φ∗(CZ2) −

N

∇Φ
Z2
Φ∗(CZ1),Φ∗(ψU))

= λ2{gM(v
M
∇Z1

BZ2 +AZ1
CZ2 − v

M
∇Z2

BZ1 −AZ2
CZ1, ϕU)

−Z1(lnλ)gM(CZ2, ψU) −CZ2(lnλ)gM(Z1, ψU) +Z2(lnλ)gM(CZ1, ψU)

+CZ1(lnλ)gM(Z2, ψU) + ψU(lnλ)(gM(Z1,CZ2) − gM(Z2,CZ1))},

ii) Q̃{B{AZ1BZ2 + h
M
∇Z1CZ2 −AZ2BZ1 − h

M
∇Z2CZ1}} = 0
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are provided for any Z1, Z2 ∈ Γ((kerΦ∗)�) , U ∈ Γ(Dθ) and V ∈ Γ(D�) .

Proof We search gM([Z1, Z2], U) = 0 and gM([Z1, Z2], V ) = 0 for any Z1, Z2 ∈ Γ((kerΦ∗)�) ,

U ∈ Γ(Dθ) and V ∈ Γ(D�) . Firstly, using (10), (11) and (17), we get

gM([Z1, Z2], U) = gM(AZ1BZ2 + h
M
∇Z1CZ2 −AZ2BZ1 − h

M
∇Z2CZ1, ψU)

+ gM(v
M
∇Z1BZ2 +AZ1CZ2 − v

M
∇Z2BZ1 −AZ2CZ1, ϕU). (27)

We have (∇Φ∗)(Z1,BZ2) = −Φ∗(AZ1BZ2) from (5) and equality of Φ∗(h
M
∇Z1CZ2) from (13). In

(27), we obtain

gM([Z1, Z2], U) =
1

λ2
gN((∇Φ∗)(Z2,BZ1) − (∇Φ∗)(Z1,BZ2),Φ∗(ψU))

+ 1

λ2
gN(

N

∇Φ
Z1
Φ∗(CZ2) −

N

∇Φ
Z2
Φ∗(CZ1),Φ∗(ψU))

− Z1(lnλ)gM(CZ2, ψU) −CZ2(lnλ)gM(Z1, ψU)

+ ψU(lnλ)gM(Z1,CZ2) +Z2(lnλ)gM(CZ1, ψU)

+ CZ1(lnλ)gM(Z2, ψU) − ψU(lnλ)gM(Z2,CZ1)

+ gM(v
M
∇Z1BZ2 +AZ1CZ2 − v

M
∇Z2BZ1 −AZ2CZ1, ϕU). (28)

We get (i) from (28). Now, for (10) and (11) we obtain

gM([Z1, Z2], V ) = −gM(B{AZ1BZ2 + h
M
∇Z1CZ2}, V )

+ gM(B{AZ2BZ1 + h
M
∇Z2CZ1}, V ). (29)

From (16) and (29), we get (ii). ◻

In the rest of the section, we investigate totally geodesicity conditions on total manifold.

Recall that Φ is said to be horizontally homothetic map if h(grad(lnλ)) = 0 [4] and Φ is said to

be totally geodesic map if (∇Φ∗)(E,F ) = 0 for all E,F ∈ Γ(TM) [16].

Theorem 3.11 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third

condition;

i) kerΦ∗ defines a totally geodesic foliation on M ,

ii) Φ is a horizontally homothetic map,
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iii)

N

∇Φ
JW1Φ∗(ψW2) = Φ∗(J[JW1,W2]) + (∇Φ∗)�(ψW1, ψW2)

+ Φ∗(TϕW1ϕW2 +AψW2ϕW1 +AψW1ϕW2)

for any W1,W2 ∈ Γ(kerΦ∗) .

Proof Using equations (5) and (13), we get

Φ∗(
M
∇JW1JW2) =

N

∇Φ
JW1Φ∗(JW2) − (∇Φ∗)(JW1, JW2)

=
N

∇Φ
JW1Φ∗(ψW2) −Φ∗(TϕW1ϕW2 +AψW2ϕW1 +AψW1ϕW2)

− ψW1(lnλ)Φ∗(ψW2) −ψW2(lnλ)Φ∗(ψW1)

+ gM(ψW1, ψW2)Φ∗(grad(lnλ)) − (∇Φ∗)�(ψW1, ψW2) (30)

for any W1,W2 ∈ Γ(kerΦ∗) . On the other hand, we get

Φ∗(
M
∇JW1JW2) = Φ∗(J[JW1,W2]) + J

M
∇W1JW2)

= Φ∗(J[JW1,W2]) −Φ∗(
M
∇W1W2). (31)

Putting (31) in (30), we obtain

Φ∗(
M
∇W1W2) = Φ∗(J[JW1,W2]) −

N

∇Φ
JW1Φ∗(ψW2)

+ Φ∗(TϕW1ϕW2 +AψW2ϕW1 +AψW1ϕW2)

+ ψW1(lnλ)Φ∗(ψW2) + ψW2(lnλ)Φ∗(ψW1)

− gM(ψW1, ψW2)Φ∗(grad(lnλ)) + (∇Φ∗)�(ψW1, ψW2). (32)

Suppose that (i) and (ii) are provided in (32). Then, we have

Φ∗(
M
∇W1W2) = 0

and
ψW1(lnλ)Φ∗(ψW2) + ψW2(lnλ)Φ∗(ψW1) − gM(ψW1, ψW2)Φ∗(grad(lnλ)) = 0.

Hence, we obtain

0 = Φ∗(J[JW1,W2]) −
N

∇Φ
JW1Φ∗(ψW2) + (∇Φ∗)�(ψW1, ψW2)

+ Φ∗(TϕW1ϕW2 +AψW2ϕW1 +AψW1ϕW2). (33)
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We get (iii) from (33). One can easily see that if (ii) and (iii) are provided in (32) we obtain

Φ∗(
M
∇W1W2) = 0 . So, (i) is satisfied. Lastly, we proof (ii). Suppose that (i) and (iii) are provided

in (32). Then, we obtain

0 = ψW1(lnλ)Φ∗(ψW2) + ψW2(lnλ)Φ∗(ψW1)

− gM(ψW1, ψW2)Φ∗(grad(lnλ)). (34)

For ψW1 ∈ Γ((kerΦ∗)�) in (34), we have

0 = λ2ψW2(lnλ)gM(ψW1, ψW1).

So, we obtain ψW2(lnλ) = 0 . It means λ is a constant on (kerΦ∗)� . Therefore, Φ is a horizontally

homothetic map. The proof is complete. ◻

In a similar way, we have the following.

Theorem 3.12 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third

condition;

i) (kerΦ∗)� defines a totally geodesic foliation on M ,

ii) Φ is a horizontally homothetic map,

iii)

N

∇Φ
JZ1Φ∗(CZ2) = Φ∗(J[Z1, JZ2]) − (∇Φ∗)�(CZ1,CZ2)

+ Φ∗(TBZ1BZ2 +ACZ1BZ2 +ACZ2BZ1)

for any Z1, Z2 ∈ Γ((kerΦ∗)�) .

Theorem 3.13 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, the slant distribution Dθ defines a to-

tally geodesic foliation on M if and only if

cos2 θTU1U2 = TU1BψU2

is provided for any U1, U2 ∈ Γ(Dθ) .
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Proof From definition of ∇Φ∗ and (17), we get

(∇Φ∗)(U1, U2) = Φ∗(J
M
∇U1JU2)

= Φ∗(
M
∇U1JϕU2) +Φ∗(

M
∇U1JψU2)

= Φ∗(
M
∇U1ϕ

2U2 +
M
∇U1ψϕU2) +Φ∗(

M
∇U1BψU2 +

M
∇U1CψU2) (35)

for any U1, U2 ∈ Γ(Dθ) . Now, from Theorem 3.8 and by using (20) in (34), we obtain

(∇Φ∗)(U1, U2) = − cos2 θΦ∗(TU1U2) +Φ∗(TU1BψU2). (36)

The proof is complete. ◻

Theorem 3.14 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third

condition;

i) D� defines a totally geodesic foliation on M ,

ii) λ is a constant on J(D�) ,

iii)
N

∇Φ
JV1Φ∗(JV2) = (∇Φ∗)�(JV1, JV2) −Φ∗(J[V2, JV1])

for any V1, V2 ∈ Γ(D�) .

Proof From the definition of ∇Φ∗ , we have

(∇Φ∗)(JV1, JV2) =
N

∇Φ
JV1Φ∗(JV2) −Φ∗(

M
∇JV1JV2)

=
N

∇Φ
JV1Φ∗(JV2) +Φ∗(J[V2, JV1] − J

M
∇V2JV1)

=
N

∇Φ
JV1Φ∗(JV2) +Φ∗(J[V2, JV1]) +Φ∗(

M
∇V2V1) (37)

for any V1, V2 ∈ Γ(D�) . Using (13) in (37), we obtain

Φ∗(
M
∇V2V1) = −

N

∇Φ
JV1Φ∗(JV2) −Φ∗(J[V2, JV1])

+ JV1(lnλ)Φ∗(JV2) + JV2(lnλ)Φ∗(JV1)

− gM(JV1, JV2)Φ∗(grad(lnλ)) + (∇Φ∗)�(JV1, JV2). (38)

Suppose that (i) and (iii) are satisfies in (38). So, we have

0 = Φ∗(
M
∇V2V1)
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and

0 = −
N

∇Φ
JV1Φ∗(JV2) −Φ∗(J[V2, JV1]) + (∇Φ∗)�(JV1, JV2).

Therefore, we obtain from (38)

0 = JV1(lnλ)Φ∗(JV2) + JV2(lnλ)Φ∗(JV1)

− gM(JV1, JV2)Φ∗(grad(lnλ)). (39)

Now, we obtain from (39)

0 = λ2JV2(lnλ)gM(JV1, JV1) (40)

for any V1 ∈ Γ(D�). So, we obtain JV2(lnλ) = 0 . It means λ is a constant on J(D�) . The proofs

of (i) and (iii) are easy to see from (38). ◻

Lastly, we present totally geodesicity of the map Φ .

Theorem 3.15 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold

(M,gM , J) to a Riemannian manifold (N,gN) . Then, the map Φ defines a totally geodesic

foliation on M if and only if

i) Φ is a horizontally homothetic map,

ii)

N

∇Φ
Z1Φ∗(Z2) = (∇Φ∗)�(Z1, Z2) −Φ∗(C{AZ1BZ2 + h

M
∇Z1CZ2})

− Φ∗(ψ{v
M
∇Z1BZ2 +AZ1CZ2}),

iii)

cos2 θTW1 P̃W2 = h
M
∇W1ψϕP̃W2 +ψTW1(ψP̃W2 + JQ̃W2)

+ Ch
M
∇W1(ψP̃W2 + JQ̃W2)

are provided for any Z1, Z2 ∈ Γ((kerΦ∗)�) and W1,W2 ∈ Γ(kerΦ∗) .

Proof Because of rank condition of the conformal hemi-slant Riemannian map Φ , we have

(∇Φ∗)(Z1, Z2) = (∇Φ∗)�(Z1, Z2) + (∇Φ∗)⊺(Z1, Z2) for any Z1, Z2 ∈ Γ((kerΦ∗)�) . We know that

(∇Φ∗)�(Z1, Z2) ∈ Γ((rangeΦ∗)�) and (∇Φ∗)⊺(Z1, Z2) ∈ Γ(rangeΦ∗) , see (12) and (13). Using

these equations, we obtain

(∇Φ∗)(Z1, Z2) =
N

∇Φ
Z1Φ∗(Z2) −Φ∗(

M
∇Z1Z2).

(41)
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Since (∇Φ∗)(Z1, Z2) = 0 ,

0 =
N

∇Φ
Z1Φ∗(Z2) − (∇Φ∗)�(Z1, Z2)

+ Φ∗(CAZ1BZ2 +ψv
M
∇Z1BZ2)

+ Φ∗(ψAZ1CZ2 +Ch
M
∇Z1CZ2)

− Z1(lnλ)Φ∗(Z2) −Z2(lnλ)Φ∗(Z1)

+ gM(Z1, Z2)Φ∗(grad(lnλ)). (42)

From (42), we have

N

∇Φ
Z1Φ∗(Z2) = (∇Φ∗)�(Z1, Z2) −Φ∗(C{AZ1BZ2 + h

M
∇Z1CZ2})

− Φ∗(ψ{v
M
∇Z1BZ2 +AZ1CZ2}) (43)

and

0 = Z1(lnλ)Φ∗(Z2) +Z2(lnλ)Φ∗(Z1)

− gM(Z1, Z2)Φ∗(grad(lnλ)). (44)

In (44), for any Z1 ∈ Γ((kerΦ∗)�) we get

0 = λ2Z1(lnλ)gM(Z2, Z1) + λ2Z2(lnλ)gM(Z1, Z1)

− λ2gM(Z1, Z2)Z1(lnλ)

= λ2Z2(lnλ)gM(Z1, Z1). (45)

So, from (45) we obtain Z2(lnλ) = 0 . It means Φ is a horizontally homothetic map. We obtain

(ii) and (i) from (43) and (45), respectively. In a similar way, we get

(∇Φ∗)(W1,W2) = Φ∗(J
M
∇W1

JP̃W2 + JQ̃W2)

= Φ∗(
M
∇W1ϕ

2P̃W2 +
M
∇W1ψϕP̃W2)

+ Φ∗(ψTW1ψP̃W2 +Ch
M
∇W1ψP̃W2)

+ Φ∗(ψTW1JQ̃W2 +Ch
M
∇W1JQ̃W2)

= − cos2 θΦ∗(TW1 P̃W2) +Φ∗(h
M
∇W1ψϕP̃W2)

+ Φ∗(ψTW1
(ψP̃W2 + JQ̃W2))

+ Φ∗(Ch
M
∇W1(ψP̃W2 + JQ̃W2)) (46)
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for any W1,W2 ∈ Γ(kerΦ∗) . We obtain (iii) from (46). The proof is complete. ◻

4. Pluriharmonic Conformal Hemi-slant Riemannian Maps

In this section, we use the notion of pluriharmonic map on the distributions of a conformal hemi-

slant Riemannian map to introduce their geometric properties. Φ is said to be Dθ -pluriharmonic

map (D� , kerΦ∗ , (kerΦ∗)� or mixed -pluriharmonic, respectively) if

(∇Φ∗)(E,F ) + (∇Φ∗)(JE,JF ) = 0

for E,F ∈ Γ(Dθ) (D� , kerΦ∗ , (kerΦ∗)� or (kerΦ∗)� × kerΦ∗ , respectively) [19].

Theorem 4.1 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold (M,gM , J)

to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third condition;

i) Φ is a Dθ -pluriharmonic map,

ii) λ is a constant on ψ(Dθ) and (∇Φ∗)�(ψU1, ψU2) = 0 ,

iii) sin2 θTU1U2 +AψU2ϕU1 +AψU1ϕU2 = 0

for any U1, U2 ∈ Γ(Dθ) .

Proof Using definition of Dθ -pluriharmonic map and symmetry condition of ∇Φ∗ , we get

0 = (∇Φ∗)(U1, U2) + (∇Φ∗)(ϕU1, ϕU2) + (∇Φ∗)(ψU2, ϕU1)

+ (∇Φ∗)(ψU1, ϕU2) + (∇Φ∗)(ψU1, ψU2) (47)

for any U1, U2 ∈ Γ(Dθ) . From Theorem 3.8 and (12), we obtain

0 = − sin2 θΦ∗(TU1U2) −Φ∗(AψU2ϕU1 +AψU1ϕU2)

+ ψU1(lnλ)Φ∗(ψU2) +ψU2(lnλ)Φ∗(ψU1)

− gM(ψU1, ψU2)Φ∗(grad(lnλ)) − (∇Φ∗)�(ψU1, ψU2). (48)

Now, suppose that (i) and (ii) are provided in (48). So, we have

(∇Φ∗)(U1, U2) + (∇Φ∗)(JU1, JU2) = 0,

ψU1(lnλ)Φ∗(ψU2) + ψU2(lnλ)Φ∗(ψU1) − gM(ψU1, ψU2)Φ∗(grad(lnλ)) = 0

and

(∇Φ∗)�(ψU1, ψU2) = 0,
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respectively. Hence, we easily obtain (iii) from (48). If we suppose that (ii) and (iii) are provided

in (48), we obtain (i) from (47) such that Φ is a Dθ -pluriharmonic map. Lastly, we suppose that

(i) and (iii) are provided in (48), we get

0 = ψU1(lnλ)Φ∗(ψU2) +ψU2(lnλ)Φ∗(ψU1)

− gM(ψU1, ψU2)Φ∗(grad(lnλ)) − (∇Φ∗)�(ψU1, ψU2). (49)

We obtain (∇Φ∗)�(ψU1, ψU2) = 0 from (49). For any ψU1 ∈ Γ(ψ(Dθ)) , we obtain

0 = λ2ψU2(lnλ)gM(ψU1, ψU1). (50)

So, from (50) we get ψU2(lnλ) = 0 . It means λ is a constant on ψ(Dθ) . (ii) is provided. The

proof is all. ◻

Similarly, we have the following theorems.

Theorem 4.2 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold (M,gM , J)

to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third condition;

i) D� defines a totally geodesic foliation on M ,

ii) Φ is a D� -pluriharmonic map,

iii) λ is a constant on J(D�) and (∇Φ∗)�(JV1, JV2) = 0

for any V1, V2 ∈ Γ(D�) .

Note that D� -pluriharmonic map and J(D�)-pluriharmonic map give same results for a

conformal hemi-slant Riemannian map. Since D� is an anti-invariant distribution, we obtain the

result from the definition of pluriharmonic map.

Theorem 4.3 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold (M,gM , J)

to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third condition;

i) Φ is a kerΦ∗ -pluriharmonic map,

ii) Φ is a horizontally homothetic map and (∇Φ∗)�(ψW1, ψW2) = 0,

iii) sin2 θTW1
W2 = AψW2

ϕW1 +AψW1
ϕW2

for any W1,W2 ∈ Γ(kerΦ∗) .

Theorem 4.4 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold (M,gM , J)

to a Riemannian manifold (N,gN) . Then, any three conditions below imply the fourth condition;
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i) (kerΦ∗)� defines a totally geodesic foliation on M ,

ii) Φ is a (kerΦ∗)� -pluriharmonic map,

iii) Φ is a horizontally homothetic map,

iv)
N

∇Φ
Z1Φ∗(Z2) = Φ∗(TBZ1BZ2 +ACZ1BZ2 +ACZ2BZ1) + (∇Φ∗)�(CZ1,CZ2)

for any Z1, Z2 ∈ Γ((kerΦ∗)�) .

Theorem 4.5 Let Φ be a conformal hemi-slant Riemannian map from a Kähler manifold (M,gM , J)

to a Riemannian manifold (N,gN) . Then, any two conditions below imply the third condition;

i) Φ is a mixed-pluriharmonic map,

ii) Φ is a horizontally homothetic map and (∇Φ∗)�(CZ,ψW ) = 0,

iii) AZW + TBZϕW +AψWBZ +ACZϕW = 0

for any Z ∈ Γ((kerΦ∗)�) and W ∈ Γ(kerΦ∗) .

Proof From definition of mixed -pluriharmonic map, we obtain

0 = −Φ∗(AZW ) + (∇Φ∗)�(CZ,ψW )

− Φ∗(TBZϕW +AψWBZ +ACZϕW )

+ CZ(lnλ)Φ∗(ψW ) + ψW (lnλ)Φ∗(CZ)

− gM(CZ,ψW )Φ∗(grad(lnλ)) (51)

for any Z ∈ Γ((kerΦ∗)�) and W ∈ Γ(kerΦ∗) . Now, we only proof (ii). Suppose that (i) and (iii)

are provided in (51). We obtain easily (∇Φ∗)�(CZ,ψW ) = 0 and get

0 = λ2ψW (lnλ)gM(CZ,CZ) (52)

for CZ ∈ Γ((kerΦ∗)�) and

0 = λ2CZ(lnλ)gM(ψW,ψW ) (53)

for ψW ∈ Γ((kerΦ∗)�) . So, we have ψW (lnλ) = 0 and CZ(lnλ) = 0 from (52) and (53),

respectively. They means λ is a constant on horizontal distribution. Hence, Φ is a horizontally

homothetic map. (ii) is provided. ◻
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