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USING AUDIO LOOPS FOR INSTRUMENT FAMILY RECOGNITION IN MACHINE 
LEARNING TASKS 

İsmet Emre YÜCEL1 
Taylan ÖZDEMİR2 

Abstract 

This paper introduces an instrument recognition approach with the aid of audio loops. The aim is to 
show a basic instrument recognition recipe for music technology researchers by investigating whether 
the DAW-based audio loops can be an alternative to researched-based available libraries such as 
McGill University master samples, UIOWA samples, IRMAS audio libraries. For that purpose, audio 
loops from Apple Jam Pack were preferred to create instrument classes (Families). The loops were 
arranged according to their related instrument classes. The class names are Bass, Drums and 
Percussions, Guitars, Keyboards, Strings, Synthesizers, and Winds. After the extraction of temporal 
and spectral audio features from those classes, a 5736x105 dimensional dataset emerged. Then this 
dataset was examined with 19 different supervised machine learning algorithms. The SVM Cubic 
classification algorithm provided the best accuracy (90.2%). The result shows that the audio loops 
with mid-term feature extraction can be used for instrument recognition tasks. 

Keywords: Instrument Recognition, Machine Learning, Audio Content Analysis, Music Information 
Retrieval, Music Technology, Usages of Audio Loops 

Introduction  

The Instrument Recognition studies have continued for more than three decades without losing importance. They 
are essential for many music information indexing and retrieval tasks. Sound recognition studies are examined in 
various disciplines such as biology, medical, surveillance, military, and multimedia, wherein speech, sound 
effects, and music-related retrieval tasks occur. Speech recognition studies were exclusive because of the 
industrial demand, and solutions were often used as guides while dealing with instrument recognition tasks. Over 
the years, the audio features, preference of the features, dimensionality reduction of features, and classification 
methods have been studied in instrument recognition literature. However, an instrument recognition scenario 
depends on the audio source types being sole-sourced, multiple-sourced, monophonic, or polyphonic. The aim 
of this study is to show how a loop-based audio dataset can be created and how the current machine learning 
algorithms perform with this dataset. 

Instrument Recognition is a subordinate field of Music Information Retrieval (MIR) studies and based on Audio 
Content Analysis (ACA) theories. It seems there are similarities between the MIR and ACA fields, but the MIR 
concerns a wide variety of digital formats, such as midi, scores, audio, and even their representational or semantic 
relationships in a coordinative way. On the other hand, the ACA specifically deals with audio formats. Automatic 
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audio alignment, organization of audio in a database, audio visualization, and intelligent audio processing are 
some subjects that the ACA involves. Lerch (2012:3) states that musical audio content has multi-faceted 
information that originates from the score (musical notation, form, structure), performance (musical expressions), 
and production (audio recording, effects, processing). The ACA has significant potential in terms of the audio 
industry, and Herrera et al. (1999) remarked that potential by suggesting to add the content-based audio 
descriptors scheme into the MPEG-7 standard. Also, the combination of music production with intelligent systems 
leads emergence of the Intelligent Music Production (IMP) field. The primary focus of this field is to find fully or 
semi-automatic solutions for music production stages. De Man et al. (2020:3) indicates that machine learning 
techniques are becoming an essential tool for IMP systems together with the knowledge of engineering, 
psychoacoustics, perceptual evaluation. 

A general framework for an instrument recognition system comprises those efforts, choosing a sample library, 
audio feature extraction to create a dataset, data-processing, and classification. After obtaining a sample library, 
each audio file should be revised for the research purpose while solving a specific machine learning problem.  In 
other words, the audio contents should correspond to their class to prevent any irregularities or duplicates on the 
feature vector. Further, the audio files may need pre-processing such as stereo-to-mono conversion, audio format 
conversion, downsampling, DC removal. Thus, audio pre-processing is a good routine before whenever the audio 
feature extraction step takes place. Next, the feature extraction process provides the creation of an audio dataset. 
In the dataset, because some features may be definite in different numerical ranges, data pre-processing (like 
scaling, normalization) is recommended. Then, the dataset is ready to be examined in supervised machine 
learning methods for instrument recognition. It should be kept in mind that the accuracy rate of a classification 
algorithm shows the feasibility of the dataset, but it does not mean the accuracy is always achievable when the 
instrument recognition system is tested with external audio files. 

Audio features are the low-level statistical representation of audio data that constitutes the core of the ACA. Low-
level statistical information is a kind of metadata that only the computer-based systems interpret. Each audio 
feature (also called descriptor) is based on a specific mathematical theory and calculated in a predetermined 
sample range named a short-term window frame, and those frames overlap at a certain percentage. This 
overlapping of the successive windows is called “hop size.” Generally, the window frame length may range from 
128-2048 samples and hop defined as a percentage (like 50%), but it is application and system dependent. The 
“quasi-stationary” structure of the digital audio each frame needs applying a window function. Schuller (2013:45) 
mentioned the rectangular, Hamming, and Hanning window functions and indicated that the most popular one is 
the Hamming window function. The audio feature calculation happens in the time and frequency domains. Zero-
Crossing Rate (ZCR), RMS Energy, Energy Entropy are some time-domain features. Some frequency-domain 
features are Spectral Centroid, Spectral Spread, Spectral Entropy, Spectral Flux, Spectral Roll-off, MFCCs, 
Chroma Vector, and Harmonic Ratio. 

Zero-Crossing Rate (ZCR), RMS Energy, and Energy Entropy are calculated directly from the signal. ZCR 
calculates how frequently an audio signal changes its position between the positive and the negative parts in the 
time domain. It is beneficial to distinguish the character of the signal, whether noise-like or not, so it gives a clue 
about the timbre of the source. Typically, the ZCR value is low during silence or lower frequency parts of the 
signal. Thus, it becomes effective for detecting silent and voiced parts of a signal. 

Energy is the definition of the loudness of each successive frame of the signal. In speech signals, a high rate of 
alternation is observed between sequential frames. Herrera-Boyer et al. (2003) indicate that “one of the most 
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commonly used descriptors for musical, as well as non-musical, sound classification is energy.” (p. 10). Energy 
Entropy indicates rapid energy changes in an audio file. This feature is advantageous in onset detection. 
Giannakopoulos & Pikrakis (2014:77) highlighted the high potential of the Energy Entropy in genre classification. 

During the years, psycho-acoustic experiments on human sound perception led to discovering new audio timbral 
features. Those features are defined in the frequency domain, and they are based on the Fast Fourier Transform 
(FFT). Some frequency domain features are Spectral Centroid, Spectral Spread, Spectral Entropy, Spectral Flux, 
Spectral Roll-off, MFCCs, Chroma Vector, and Harmonic Ratio. 

The Spectral Centroid and Spread are two closely related audio features. The definition of the spectral centroid 
“is the center of ‘gravity’ of the spectrum.” (Giannakopoulos & Pikrakis, 2014:79). For the spectral centroid, a 
higher value means the audio file has a brighter character. On the other hand, the Spectral Spread defines how 
the spectrum of the signal propagated around the centroid. Lerch (2012:47) indicates that the higher spread 
values are observed at the transients for monophonic signals. 

The Spectral Entropy defines spectral shape providing minimum value for a continuous signal and maximum 
value for a short signal (peak). “Spectral entropy is computed in a similar manner to the entropy of energy, 
although, this time, the computation takes place in the frequency domain.”(Giannakopoulos & Pikrakis, 2014:81). 

The Spectral Flux is used “to detect spectral changes in the signal, one basically computes the difference between 
subsequent spectral vectors using a suitable distance measure.”(Müller, 2015:309). This feature describes the 
roughness of the signal. Schuller (2013) indicates that “Speech SF values are higher than music ones and the 
environment sound has the highest value. Also, the environmental sound changes dramatically between 
successive frames.” (p. 146).   

The Spectral Roll-off “is defined as the frequency below which a certain percentage (usually around 90%) of the 
magnitude distribution of the spectrum is concentrated.”(Giannakopoulos & Pikrakis, 2014:85). Lerch highlights 
that the behaviour of the Spectral Roll-off “at pauses in the input signal may require special consideration. While 
the result will equal zero for absolute silence, it may be quite large for noise, including pauses with low-level 
noise.”(Lerch, 2012:42). It makes the Spectral Roll-off functional for ACA applications. 

Mel-Frequency Cepstrum Coefficients (MFCC) is widely used in the representation of both speech and music 
signals. The cepstrum stands for the logarithmic transformation of the spectrum for a signal. MFCC uses the Mel 
scale, which mimics the human perception of pitch. In Eronen’s (2001:22) study, the results showed that “the mel-
frequency cepstral coefficients gave the best accuracy in instrument family classification, and would be the 
selection also for the sake of computational complexity.” 

The Harmonic Ration (HR) is an indicator that whether the audio file is periodic or aperiodic (noise-like). The 
periodicity does not fully explain the character of the regular signals such as voice and music. This situation leads 
to the usage of the term “quasi-periodic” for them. HR feature is used fundamental frequency estimation of a 
signal. 

The Chroma Vector is a representation of audio spectral energy in 12 bins as a matrix. “Each bin represents one 
of the 12 equal-tempered pitch classes of Western-type music (semitone spacing). Each bin produces the mean 
of log-magnitudes of the respective DFT coefficients.” (Giannakopoulos & Pikrakis, 2014:91). For musical signals, 
the bins are prominent in a short-term frame in chromagram.  
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Mid-term windowing (also called texture window) is a common technique to get a meaningful representation of 
the audio features, particularly for audio files longer than 1 second. It is especially preferred in the genre, musical 
similarity, and mood classifications. While the duration of short-term window frames is typically ranging between 
10-40 msec, for mid-term window frames, the duration is between 1-20 s. Accordingly, each short-term feature is 
extracted individually, then some statistical calculations are applied to the features at the mid-term frame. For an 
analogy, the short-term features are similar to letters, and the mid-term statistics stand for words or sentences. 
Arithmetic mean, median, standard deviation, and standard deviation by mean are some of the statistical methods 
which can be used while utilizing mid-term windowing.  

In most cases, a vast audio vector composes after a feature extraction process. Dimensionality reduction is 
necessary to acquire a more meaningful representation with a smaller dimension of the audio vector. Feature 
extraction and feature selection are two categories in dimensionality reduction. One of the most popular reduction 
methods is PCA (Principal Component Analysis), “In PCA data is projected into abstract dimensions that are 
contributed with different –but partially related- variables. Then PCA calculates which projections, amongst all 
possible, are the best for representing the structure of data.” (Herrera-Boyer et al., 2003:8). The Singular Value 
Decomposition Method, Fisher’s Linear Discriminant Analysis, The Kernel PCA, Laplacian Eigenmap, 
Independent component analysis (ICA), and Non-negative matrix factorization (NMF or NNMF) are other 
dimensionality reduction methods. For feature selection, there are three primary methods, which are filter, 
wrapper, and embedded. Agostini et al. (2003) indicated the performance of the identification system depends on 
feature choice. Essid et al. (2006a) worked on pairwise strategies for classification to find the most relevant 
features. 

Generally, unsupervised and supervised approaches are two main categories in machine learning. The 
supervised approach is suitable for instrument recognition applications because “supervised learning consists of 
understanding the relationship between a given set of features and a target value, also known as a label or class.” 
(Saleh, 2020:42). The term supervised means each class (or target) name known by the algorithm before starting 
the classification task. Each target description coincides with its feature row in a dataset. Conversely, an 
unsupervised method does not expect any target name but groups the samples according to their similarities. 
Bishop (2006) has sorted out the classification algorithms under those main topics: Linear models, Neural 
networks, Kernel Methods, Sparse Kernel Machines, Graphical Models, and Mixture Models. Over the years, 
various machine learning methods have been examined for instrument recognition tasks. K-Nearest Neighbours, 
Bayesian Classifiers, Discriminant Analysis, and Decision Tree are some of them. 

Method 

Building Dataset  

In this work, Apple Jam Packs were used to create an audio dataset. The available libraries which the researchers 
have are Jam Pack 1, Jam Pack Remix Tools, Jam Pack Rhythm Section, Jam Pack Symphony Orchestra, Jam 
Pack Voices, Jam Pack World Music folders, respectively. For the scope of this study, the Voices and Word Music 
folders were excluded. Each folder comprises more than 2000 pieces of audio loops with different types of 
instruments. Due to the irregular content, the folders are not suitable to use in a classification task directly. It was 
required to reorganize their content according to their instrument family. Therefore, the audio files from the loop 
library were arranged into seven instrument groups. The names of family groups are Bass, Drums and 
Percussions, Guitars, Keyboard, Strings, Synthesizers, and Winds.  
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The format of the audio files was stereo CAF3, which is not a standard audio file format. Thus, they were converted 
into mono wave files without editing the lengths. The information about those audio files and the instrument 
families is given in Table-1. 

Table 1: Instrument families (classes) in seven instrument groups and their properties.  

Classes Some Properties of the Audio Classes Min. Max. 
Length 

Number of 
Audio 
Files 

Bass Bass guitars, some distorted, Double basses (played with 
different techniques)  1-23 sec. 834 

Drums & 
Percussions 

Drum-sets (fills, different styles with many playing 
techniques), Electronic-Dance Drums, Drum-set with 
percussion(s), Drums Machines, Percussions (such as 
congas, Tambourine, and similar.) 

1-20 sec. 1965 

Guitars 

Acoustic, Nylon, Electric, with various styles (rock, metal, 
jazz and similar) and playing technique (fingers, plucked, 
strummed, slides, and similar), different effects (like 
distortion, wah-wah, reverb) 

1-32 sec. 1114 

Keyboards Organs, Clavinets, Wurlitzers, Rhodes, Acoustic and 
Electronic Pianos. 1-32 sec. 602 

Strings 
Mostly orchestral, sample-based, or real. Various playing 
techniques, some recordings are solo, some ensemble. The 
predominant effect is reverb. 

1-32 sec. 398 

Synthesizers 
Various Funk Synths, Synth basses, pads, some 
arpeggiated, mostly chords, some have effects (like delay, 
reverb).  

1-42 sec. 464 

Winds 
Brasses, Harmonica, Flutes, French and English Horns, 
Clarinets, Oboes. Some performances are solo but mostly 
played as groups. 

1-40 sec. 358 

Audio Feature Extraction  

The audio feature extraction is an inevitable process before conducting a machine learning task. Giannakopoulos 
and Pikrakis (2014) describe the audio feature extraction as “representing the properties of the original signals 
while reducing the volume of data.” (p. 59). Some frame-based information can be derived from the processed 
audio file and filtered for research.  

Generally, the audio feature extraction is a two-step process, short-term and mid-term. The short-term features, 
also called low-level features, are calculated at a particular window (FFT) length with a step size. Step size (also 
called hop size) is a length that determines the number of samples between each successive FFT window; for 
example, %25 refers to a quarter of the window size. The purpose of using consecutive steps (hop) is to achieve 
more detailed calculation results from an audio file. On the other hand, mid-term feature extraction allows 
obtaining a general perspective about an audio file. Giannakopoulos and Pikrakis (2014) explain the mid-term 
feature extraction as a process that “can be employed in a longer time-scale scenario, in order to capture salient 
features of the audio signal.” (p. 65). 
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There are a lot of Python libraries for MIR works. In this research, pyAudioAnalysis (Giannakopoulos, 2015) is 
preferred for the audio feature extraction task. Additionally, some modifications were applied to the library code 
to acquire median statistics of the features and saving the feature vector as a spreadsheet file to examine other 
machine learning platforms such as Matlab. As a result, the audio dataset had 5736x105 dimensions. 

Properties of Short-Term Features  

In this part, the window size of FFT is 0.04 seconds, the step of each window is 0.02 (%50 hop) seconds. For 
each audio file, the calculated audio features are Zero Crossing Rate, Energy, Energy Entropy, Spectral Centroid, 
Spectral Spread, Spectral Entropy, Spectral Flux, Spectral Roll-off, Harmonic Ratio, MFCC, and Chroma Vector. 
In the dataset, MFCC holds 13 columns, Chroma Vector contains 12 columns, and the others hold a single 
column. Therefore, audio features have been calculated at each short-term frame as 35 columns in total (Table-
2). 

Table 2: Audio Features and Number of Columns  

Features Number of Columns 
Zero-Crossing Rate Single 
Energy (Power) Single 
Entropy of Energy Single 
Spectral Centroid Single 
Spectral Spread Single 
Spectral Entropy Single 
Spectral Flux Single 
Spectral Roll-off Single 
Harmonic Ratio Single 
MFCC 13 
Chroma Vector 12+1 (mean of the bins) 

 

Properties of Mid-Term Features 

In the dataset, each audio file has various lengths, and because most of them exceed 1 second, the mid-term 
statistical approach is used to get quick results at the stages of feature extraction. The mid-term window length 
is 1 second, and the step size is 500 msec (%50 hop). The applied statistics on each mid-term frame were 
arithmetic mean, median, and standard deviation. 

Data Pre-processing  

Generally, data are represented in different ranges and types in a dataset. Nevertheless, in most situations, the 
diversity of data types and ranges cannot be interpreted by classification algorithms successfully. Because of 
that, datasets should be reviewed, cleaned, and prepared before the machine learning algorithm runs. Zheng and 
Casari (2018) indicate that some classifications that use smoothing functions at inputs (like regression-based 
models) are affected by scaling. Although in this dataset, all feature columns are represented as floating-point 
types, some columns range differently. Therefore, standard scaling was applied to the data in order to centralize 
every column around zero. 
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Classification 

For machine learning and its applications, the Matlab environment provides a versatile tool called Classification 
Learner, which comes within the “Statistical and Machine Learning Toolbox.” The tool allows working on 
supervised classification methods with various classifiers.  

Before starting classification, holdout validation is applied to the dataset to prevent overfitting. The held-out 
percentage is % 25, which means a quarter of each instrument group is divided for testing and the rest for the 
training. In this research, the deployed classification methods are Decision Trees, Discriminant Analysis, 
Bayesians, Support Vector Machines (SVM), K-Nearest Neighbour (K-NN). Thus, with several types of these 
classifiers, 19 numbers of algorithms were compared in this study.  

The Decision Tree is a famous classification and regression method. In this method, input data is tested with 
many basic conditional operators (if questions). The testing process resumes from top to bottom over different 
decision nodes. The term “decision node” is used for every conditional step, and each one can branch out to a 
new decision node. A “leaf” symbolizes a prediction result. One decision node can have multiple branches towards 
the other nodes and reaches the final leaf (prediction). Saleh (2020) highlighted that “Decision trees can handle 
both quantitative and qualitative features, considering that continuous features will be handled in ranges. 
Additionally, leaf nodes can handle categorical or continuous class labels; for categorical class labels, a 
classification is made, while for continuous class labels, the task to be handled is regression.” (p. 141). A 
fundamental decision tree diagram is given in Figure-1. 

 

 

Figure 1: A basic diagram for Decision Tree algorithm. Each decision nodes can have more than two branches 
(as yes, no and others). Leaves stand for the results or predictions.  
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Discriminant analysis is also known as Fisher discriminant analysis. It is based on binary classification (defined 
as K=2) but can be used for multivariate and multiclass (K>2) problems. Simply, a discriminant function assigns 
the input vector to a class (K), and the classes are represented on hyperplane surfaces. The hyperplane surface 
is divided by the boundaries that define classes. A basic demonstration of discriminant analysis is given in figure 
2. D1, D2, and D3 represent the classes. Xa and Xb points are classified in the D3 class. If x is a point between 
Xa and Xb, then the algorithm decides that x also belongs to the D3 class.  

In machine learning, some classification methods are based on Bayesian probabilistic functions. In Bayesian 
classification theory, “the optimal classification decision can be achieved based on the knowledge of the 
distributions of feature vectors and the prior probabilities of the classes.” (Tulyakov & Govindaraju, 2013). 
According to Nisbet et al. (2018:184), the advantages of this algorithm is fast during the training and classification, 
and more not sensitive unimportant variables. But disadvantages the algorithm assumes all variables are 
independent, which means interaction between them is excluded. 

 

SVM (Support Vector Machine) algorithm has been used to solve different classification problems since the 90s. 
Izenman (2008) highlights the extensive usage of the algorithm as “SVMs have been successfully applied to 
classification problems as diverse as handwritten digit recognition, text categorization, cancer classification using 

 

Figure 2 Discriminant analysis demonstration it a hyperplane surface. D1, D2, and D3 represents the 
classes. Xa, Xb, and x are definite in the D3. 
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microarray expression data, protein secondary-structure prediction, and cloud classification using satellite-
radiance profiles.” (p. 369) SVM method depends on a kernel function to map the feature vectors to kernel space. 
The kernel type can be linear, quadratic, cubic, or gaussian based. There are two strategies for the solution of 
multiclass problems, one-versus-rest, and one-versus-one. These strategies depend on the application. 

The k-NN (K-Nearest Neighbourhood) is one of the simplest machine learning algorithms. Albon (2016) describes 
the k-NN as a “lazy learner” and states that “it does not technically train a model to make predictions. Instead, an 
observation is predicted to be the class of that of the largest proportion of the k nearest observations.” (p. 251). 
This technique strongly depends on a distance (dissimilarity) measure function such as Euclidean. The parameter 
k stands for the number of neighbours, and it changes according to the dataset and the number target (class) in 
an application.  

The solution of instrument recognition problems changes according to the source types being single or multiple 
sources. While the term “single-sourced” denotes that only one instrument performs in the audio file, “multiple-
sourced” means that more than one instrument plays simultaneously.  Approaches used for single-sourced 
instrument recognition tasks also provide a foundation for solving multiple-sourced instrument identification 
problems, but audio source separation has an essential role in that kind of task. In instrument recognition for 
polyphonic sources, Essid et al. (2006b) proposed hierarchical taxonomy. Heittola et al. (2009) provide a solution, 
using a source-filter model and an augmented non-negative matrix factorization algorithm for sound separation, 
and attained 59% accuracy for six-note polyphony. 

Moreover, recent works in instrument recognition for polyphonic sources have concentrated on deep learning 
methods since they outperform other available state-of-the-art machine learning approaches. They also provide 
more accurate results in different fields such as image speech recognition and source recognition. Han et al. 
(2017) state the importance of identifying musical instruments in polyphonic recordings, musical genre 
classification, and music transcription and proposed the (CovnNet) a Deep Convolutional Neural Networks (DNN) 
instrument recognition system. On the other hand, Yu (2020) proposed a system that combines DNN with the 
principal classification with the assistance of auxiliary classification. This system aims to find the predominant 
instrument which plays simultaneously in polyphonic music. According to the researchers, the proposed system 
performs 10.7% and 16.4% better than CovnNet.  

As mentioned above, before conducting an instrument recognition task, the first objective is to find an appropriate 
audio sample library. In previous studies, researchers have utilized free audio libraries such as McGill University 
master samples, UIOWA samples, and IRMAS dataset or custom-made audio libraries for instrument recognition 
studies. However, audio loops bundled with Digital Audio Workstations (DAW) or other commercially available 
libraries can also be an excellent alternative to the free libraries mentioned above.  

This work aims to provide a basic instrument recognition recipe for music technology researchers and investigate 
whether the DAW-based audio loops are usable or not. The research objectives are to find an audio loop library 
and organize them as instrument families, building a dataset from those instrument families by audio features 
extraction methods, and estimating the best-supervised machine learning algorithm for this dataset.  

Results 

Accuracies of the classification algorithms are given in Table-3. According to the table, while the SVM Cubic 
algorithm provides the best classification result, % 90.2, SVM Fine-Gaussian gives the worst classification result, 
% 48.6. 
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Table 3: The overall success rates of classification algorithms.   

Classification Model Type Accuracy 

Tree 

Fine  % 74.8 

Medium  % 70.7 

Coarse  % 64.7 

Discriminant 
Linear  % 78.2 

Quadratic  % 82.2 

Bayesian 
Naive  % 67.8 

Kernel Naive  % 70.2 

SVM 

Linear % 83.2 

Quadratic  % 89.5 

Cubic % 90.2 

Fine Gaussian % 48.6 

Medium Gaussian % 88.2 

Course Gaussian % 76 

KNN 

Fine % 83.8 

Medium  % 79 

Coarse % 70.0 

Cosine % 80.8 

Cubic % 76.7 

Weighted % 81.6 
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The confusion matrix of the best classification (SVM-Cubic) result is given in Figure-3. In the confusion matrix, 
True Positive Rates (TPR) represents overall accuracy for each instrument family, and False Negative Rates 
(FNR) shows the classification mistakes. According to the matrix, the algorithm attained a 99% achievement result 
for the Bass class, and the misclassification rate is 33.3% for the Synths class. 

 

Conclusion  

A loop-based audio dataset has been created for instrument family recognition tasks with the mid-term statistical 
approach. Seven instrument families were created: Bass, Drums/Percussions, Guitars, Keyboards, Strings, 
Synths, and Winds. For this dataset, the SVM-cubic classification algorithm scored high precision results; for Bass 
99%, Drums/Percussions 96.1%, Guitars 94.6%, Keyboards 83.3%, Strings 79%, Winds 77.5%, and Synthesizers 
66.7% accuracy attained. The overall classification accuracy is 90.2%. 

These results show that the approach in this paper can be useful when classifying a wide range of audio files with 
various durations from different audio classes (instrument families). The size of each class and lengths of 
individual audio files does not affect the classification result drastically. So, the matter is not quantity but the 
quality of each audio file’s content and how they represent the audio instrument family. Due to the higher 
classification accuracy results, the audio features seem sufficient to distinguish for given instrument families, at 

 

Figure-3: Confusion matrix for SVM-Cubic. In left side percentages of success and misclassification 
rates for each instrument family are shown in a comparative way. In the right side, True Positive 

Rates (TPR) and False Negative Rates (FNR) gives a general clue about misclassifications. 
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least for Drums, Bass, and Guitar samples.  Therefore, mid-term audio features for the classification of audio files 
excerpted from audio loops work pretty well. However, the dataset obtained in this study may not provide the 
same accuracy when tested with external audio files because of the diversity of musical styles, playing, recording 
techniques. Of course, large-scale datasets with various classes may be preferred to solve different instrument 
recognition problems, but one must keep in mind that extensive datasets cause a significant drop in the 
classification speed and may also severely affect the accuracy. In that kind of scenario, the deployment of 
dimensionality reduction techniques may become inevitable to determine the best result with fewer audio features. 

In terms of quality, given in Table-1, the audio files in instrument groups have various properties. In the Synth 
class, the audio files have some audio effects, very distinct characters, and, recorded as chords. There are two 
concerns here. The first one is that the audio effects change the timbral character of the audio files. Thus, an 
instrument family class with that kind of audio file will be affected in that situation. The second one is that a wide 
variety of instrument types cause inconsistent feature structure for a class, especially created by the different 
synthesizing techniques such as additive, subtractive, granular, wave-shaping, physical modelling. These 
concerns may explain why the synth family classification provides the worst result (TPR 66.7%) in this experiment. 
Of course, these are upfront subjects for further research. 

The Strings family consists of solo, ensemble, sample base, or real recordings in various reverberant 
environments. As previously mentioned, the reverberation, especially in the ensemble recordings, drastically 
changes the timbral character of the instrument family. Similarly, the winds family samples coincide with many 
distinctive instrument recordings in terms of timbres, and some of them are recorded as groups. This situation 
explains the low accuracy rate of those audio families, given in Figure-3. 

As a result, the DAW-based audio loops are a practical choice for dataset creation in instrument recognition tasks. 
However, the instrument family categorization must be considered carefully, and the audio files from a loop library 
placed into the related family group in that sense. 
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