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Abstract
We find Ricci curvature bounds for pointwise semi-slant warped products submanifolds in
non-Sasakian generalized Sasakian space forms in this work, and analyze the equality case
of the inequality. The derived inequality is also used to develop a number of applications.
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1. Introduction
Alegre et al.[1] proposed the concept of a generalized Sasakian space form as a general-

ization of Sasakian space form, Kenmotsu space form and cosymplectic space form. They
used geometric constructions such as Riemannian submersions, warped products, and D-
conformal deformations to produce several non-trivial examples of generalized Sasakian
space forms. Many fascinating outcomes have been demonstrated in these ambient areas
since then [2–7,15–18,20].

On the other hand, since J. F. Nash’s famous theory of isometric immersion of a Rie-
mannian manifold into a suitable Euclidean space provides a powerful motivation to view
each Riemannian manifold as a submanifold in a Euclidean space, one of the most fun-
damental problems in submanifold theory is to find simple basic relationships between
intrinsic and extrinsic invariants of a Riemannian submanifold. The major extrinsic in-
variant is the squared mean curvature, whereas the key intrinsic invariants are the Ricci
curvature and the scalar curvature.

The theory of product manifolds contains crucial physical and geometrical ramifications,
in addition to Hermitian geometry. In physics, Einstein’s general relativity spacetime can
be thought of as a product of three-dimensional space and one-dimensional time, both
of which have their own metrics, and hence its topology is determined by these metrics.
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Kaluza Klein theory, brane theory, and gauge theory all have interesting applications of
product manifolds. In 1969, R. L. Bishop et al. [8] introduced a generalized case of
Riemannian product manifolds to study manifolds of negative sectional curvature called
warped product manifold. They defined warped products as follows:

Let us consider a Riemannian manifolds NT of dimension d1 with Riemannian metric g1,
Nθ of dimension d2 with Riemannian metric g2 and σ be positive differentiable functions
on NT . Consider the warped product NT × Nθ with its projections ι1 : NT × Nθ → NT

and ι2 : NT × Nθ → Nθ. Then, their warped product manifold M = NT ×σ Nθ is the
product manifold equipped with the structure

g(X, Y ) = g1(ι1∗X, ι1∗Y ) + (σ ◦ ι1)2g2(ι2∗X, ι2∗Y ),

for any vector fields X, Y on M , where ∗ denotes the symbol for tangent maps.
Due to its usefulness many research article has been published in this area [9–12,14,19,

21,22].
The major goal of this paper is to establish a relationship between Ricci curvature and

mean curvature vectors of warped product pointwise semi-slant submanifolods of non-
Sasakian generalized Sasakian space forms. Further, we derived some applications of the
result in physics.

2. Preliminaries
Let M̃ be a (2p+1)-dimensional almost contact metric manifold with an almost contact

structure (ϕ, ξ, η, g). The (1, 1) tensor field ϕ, the structure vector field ξ, the 1-form η,
and the Riemannian metric g on M̃ are all known to satisfy the relations

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ).

The above condition also imply that

ϕξ = 0, η(ϕX) = 0, η(X) = g(X, ξ),
g(ϕX, Y ) + g(X, ϕY ) = 0,

where X, Y ∈ TM̃ . Here, TM̃ denotes the Lie algebra of vector fields on M̃ .
Let (M̃, ϕ, ξ, η, g) be an almost contact metric manifold whose curvature tensor satisfies

R(X, Y )Z = f1{g(Y, Z)X − g(X, Z)Y }
+f2{g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X, ϕY )ϕZ}
+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ
−g(Y, Z)η(X)ξ}, (2.1)

for all vector fields X, Y, Z, where f1, f2, f3 are differentiable functions on M̃ , then
M̃(f1, f2, f3) is said to be a generalized Sasakian space form.

Remark 2.1. It’s worth noting that the generalized Sasakian space forms encompass the
following well-known spaces:

(1) Sasakian space forms and in this case

f1 = (c + 3)
4

, f2 = f3 = (c − 1)
4

.

(2) Kenmotsu space forms and in this case

f1 = (c − 3)
4

, f2 = f3 = (c + 1)
4

.
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(3) Cosymplectic space forms and in this case

f1 = f2 = f3 = c

4
.

Let M be an d-dimensional submanifold of a generalized Sasakian space form
M̃(f1, f2, f3) of dimension 2p + 1. Let ∇ and ∇̃ be the Levi-Civita connection on M
and M̃(f1, f2, f3) respectively. The Gauss and Weingarten equations are defined as

∇̃XY = ∇XY + ζ(X, Y ),

∇̃Xξ = −AN X + ∇⊥
XY,

for vector fields X, Y ∈ TM and N ∈ T ⊥M , where ζ, AN and ∇⊥ are the second funda-
mental form, the shape operator and the normal connection respectively. The equation

g(ζ(X, Y ), N) = g(AN X, Y ), X, Y ∈ TM, N ∈ T ⊥M

connects the second fundamental form with the shape operator.
Let R be the curvature tensor of M and let R̃ be the curvature tensor of M̃(f1, f2, f3),
then the Gauss equation is given by

R̃(X, Y, Z, W ) = R(X, Y, Z, W ) + g(ζ(X, Z), ζ(Y, W ))
−g(ζ(X, W ), ζ(Y, Z)) (2.2)

for X, Y, Z, W ∈ TM .
We can write

ϕX = PX + FX, (2.3)
and

ϕN = tN + fN, (2.4)

for any X ∈ TM and N ∈ T ⊥M , where PX(resp.tN) is the tangential component
and FX(resp.fN) is normal component of ϕX(resp.ϕN). When F is identically zero, a
submanifold M is said to be invariant, and when P is identically zero, it is said to be
anti-invariant.

Let {e1, . . . , ed} and {ed+1, . . . , e2p+1} be the tangent and normal orthonormal frames
on M , respectively. Then, the mean curvature vector field is given by

H = 1
d

d∑
i=1

ζ(ei, ei), d2||H||2 =
d∑

i,j

g(ζ(ei, ei), ζ(ej , ej)). (2.5)

Also, for Dθ1- minimality, we have

d2||H||2 =
2p+1∑

γ=d+1
(ζr

d1+1d1+1 + · · · + ζr
dd)2. (2.6)

Further, we set

ζγ
ij = g(ζ(ei, ej), eγ), ∥ζ∥2 =

d∑
i,j=1

g(ζ(ei, ej), ζ(ei, ej)). (2.7)

The second fundamental form, ζ, has various geometric features as a result of which we
have the following submanifold classes.

Definition 2.2. A submanifold is said to be totally geodesic submanifold if the second
fundamental form ζ vanishes identically, that is ζ = 0 .

Definition 2.3. A submanifold is said to be minimal submanifold if the mean curvature
vector H vanishes identically, that is H = 0.
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Let K(π) denotes the sectional curvature of a Riemannian manifold M of the plane section
π ⊂ TxM at a point x ∈ M . If {e1, . . . , ed} be the orthonormal basis of TxM and
{ed+1, . . . , e2p+1} be the orthonormal basis of T ⊥

x M at any x ∈ M , then

τ(x) =
∑

1≤i<j≤d

K(ei ∧ ej), (2.8)

where τ is the scalar curvature.
Then, in view of gauss equation, we have

K(ei ∧ ej) = K̃(ei ∧ ej) +
2p+1∑

γ=d+1

(
ζr

iiζ
r
jj − (ζr

ij)2
)
, (2.9)

where K(ei∧ej) and K̃(ei∧ej) denotes the sectional curvature of the plane section spanned
by ei and ej in the submanifold M and the ambient manifold M̃ , respectively, at a point
x.

Further,

2τ(x) = 2τ̃(TxM) + d2||H||2 − ||ζ||2, (2.10)

where

τ̃(TxM) =
∑

1≤i<j≤<d

K̃(ei ∧ ej)

is the scalar curvature of the d-plane section TxM in M̃ , this is achieved by adding across
the orthonormal frame of M ’s tangent space in the last equation.

Moreover, a k-Ricci curvature RicΠk of a k-plane section Πk(2 ≤ k ≤ d) at ea is defined
by

RicΠk =
∑
i ̸=a

Kai, (2.11)

for a fixed integer a ∈ {1, . . . , k}, where Kij denotes the sectional curvature of the 2-
plane section spanned by ei, ej and ea is a unit vector field from the orthonormal basis
{e1, . . . , ek} of the k-plane section Πk.

Definition 2.4. A submanifold M of an almost contact manifold M̃ is said to be a
pointwise slant submanifold if for any x ∈ M and a nonzero vector X ∈ Mx, the angle
θ = θ(X) between ϕX and Mx is constant, where Mx := {X ∈ TxM |g(X, ξ(x)) = 0}.

Definition 2.5. A submanifold M of be an almost contact metric manifold M̃ is said to
be a pointwise semi-slant submanifold, if there exist two orthogonal distributions D1 and
D2 such that
(i) TM = D1 ⊕ D2 ⊕ ξ.
(ii) D1 is invariant.
(iii) D2 is a pointwise slant with a slant function θ.

Finally, we conclude the section with the following relation by B. Y. Chen [?]. According
to him, we have ∑

1≤i≤d1

∑
d1+1≤j≤d

K(ei ∧ ej) = d2
∆σ

σ
= d2

(
∆(lnσ) − ||∇σ||2

)
, (2.12)

where ∆ is the Laplacian operator.
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3. Ricci curvature on warped products NT ×σ Nθ

The proof of the major finding is the focus of this section.

Theorem 3.1. Let M = NT ×σ Nθ → M̃(f1, f2, f3) be an isometric immersion of an
d-dimensional pointwise semi-slant warped products submanifold M in non-Sasakian gen-
eralized Sasakian space form M̃(f1, f2, f3). Then, the following inequalities exist for each
unit vector ea ∈ TxM orthogonal to ξ:

(1) For each unit vector ea ∈ TxM orthogonal to ξ, we have
(i) If ea is tangent to NT , then

1
4

d2||H||2 ≥ Ric(ea) + d2
∆σ

σ

− f1(d + d1d2 − 1) − 3
2

f2 + f3(d2 + 1). (3.1)

(ii) If ea is tangent to Nθ, then

1
4

d2||H||2 ≥ Ric(ea) + d2
∆σ

σ

− f1(d + d1d2 − 1) − 3
2

f2cos2θ + f3(d2 + 1). (3.2)

where d1 and d2 are dimensions of NT and Nθ, respectively.
(2) If H⃗(x) = 0, then there is a unit tangent vector e◦ at each point x in M that

meets the equality condition in (1) then M is mixed totally geodesic and e◦ is in
the relative null space Nx at x and conversely.

(3) For the equality cases, we have
(a) the equality case of (3.1) holds identically for all unit tangent vectors to NT at

each x ∈ M then M is mixed totally geodesic and D-totally geodesic pointwise
semi-slant warped product submanifold in M̃(f1, f2, f3) and conversely,

(b) the equality case of (3.2) holds identically for all unit tangent vectors to Nθ

at each x ∈ M then M is mixed totally geodesic and either Dθ-totally geo-
desic pointwise semi-slant warped product or M is a Dθ-totally umbilical in
M̃(f1, f2, f3) with dimNθ = 2 and conversely,

(c) the equality case of (1) holds identically for all unit tangent vectors to M at
each x ∈ M then M is mixed totally geodesic submanifold, or M is a mixed
totally geodesic, totally umbilical and D-totally geodesic submanifolds with
dimNθ = 2 and conversely.

Proof. From (2.1) and (2.10), we derive

d2||H||2 = 2τ + ||ζ||2

−
[
f1

(
d(d − 1)

)
+ 3f2

(
(d1 − 1) + d2cos2θ

)
− 2f3(d − 1)

]
. (3.3)
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If we use a unit vector field ea ∈ {e1, . . . , ed} for a fixed index a ∈ {1, . . . , d}, then (3.3)
implies

d2||H||2 = 2τ +
2p+1∑

γ=d+1

[
(ζr

aa)2 + (ζr
11 + · · · + ζr

dd − ζγ
aa)2 + 2

∑
1≤i<j≤d

(ζγ
ij)2

]

− 2
2p+1∑

γ=d+1

∑
1≤i<j≤d(i,j ̸=a)

ζγ
iiζ

γ
jj

−
[
f1

(
d(d − 1)

)
+ 3f2

(
(d1 − 1) + d2cos2θ

)
− 2f3(d − 1)

]
= 2τ + 1

2

2p+1∑
γ=d+1

[
(ζγ

11 + · · · + ζγ
dd)2 + (ζγ

aa + (−ζγ
11 − · · · − ζr

dd)2 + (ζγ
aa)2

]

+ 2
2p+1∑

γ=d+1

∑
1≤i<j≤d

(ζγ
ij)2 − 2

2p+1∑
γ=d+1

∑
1≤i<j≤d(i,j ̸=a)

ζγ
iiζ

γ
jj

−
[
f1

(
d(d − 1)

)
+ 3f2

(
(d1 − 1) + d2cos2θ

)
− 2f3(d − 1)

]
. (3.4)

From here we got the two cases:

Case 1 : If ea is tangent to Nθ1 , then we require to fix a unit vector field from {e1, . . . , ed1}
to be ea, and consider ea = e1, hence from (2.9) and (2.11), we deduce that

d2||H||2 ≥ Ric(ea) + 1
2

2p+1∑
γ=d+1

(ζr
d1+1d1+1 + · · · + ζr

dd)2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(
2ζγ

11 − (ζγ
d1+1d1+1 + · · · + ζγ

dd)
)2

+
2p+1∑

γ=d+1

∑
1≤α<β≤d1

(ζγ
ααζγ

ββ − (ζγ
αβ)2) +

2p+1∑
γ=d+1

∑
d1+1≤s<t≤d

(ζγ
ssζγ

tt − (ζγ
st)2)

+
2p+1∑

γ=d+1

∑
1≤i<j≤d1

(ζγ
ij)2 −

2p+1∑
γ=d+1

∑
2≤i<j≤d

ζγ
iiζ

γ
jj

−
[
f1

(
d(d − 1)

)
+ 3f2

(
(d1 − 1) + d2cos2θ

)
− 2f3(d − 1)

]
+

[1
2

f1
(
(d − 1)(d − 2)

)
+ 3

2
f2

(
(d1 − 2) + d2cos2θ

)
− f3(d − 2)

]
+

[1
2

f1
(
d1(d1 − 1)

)
+ 3

2
f2(d1 − 1) − f3(d1 − 1)

]
+

[1
2

f1
(
d2(d2 − 1)

)
+ 3

2
f2d2cos2θ

]
. (3.5)
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A straight forward computations, equation (3.5) yields

d2||H||2 ≥ Ric(ea) + 1
2

d2||H||2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(
2ζγ

11 − (ζγ
d1+1d1+1 + · · · + ζγ

dd)
)2

+
2p+1∑

γ=d+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2

+
2p+1∑

γ=d+1

d1∑
β=2

ζγ
11ζγ

ββ −
2p+1∑

γ=d+1

d1∑
i=1

d∑
j=d1+1

ζγ
iiζ

γ
jj

− f1(d + d1d2 − 1) − 3
2

f2 + f3(d2 + 1)
]
. (3.6)

Alternatively, it can be effortlessly seen that

2p+1∑
γ=d+1

d1∑
β=2

ζγ
11ζγ

ββ = −
2p+1∑

γ=d+1
(ζγ

11)2 (3.7)

and

2p+1∑
γ=d+1

d1∑
i=1

d∑
j=d1+1

ζγ
iiζ

γ
jj =

2p+1∑
γ=d+1

d∑
j=d1+1

ζγ
11ζγ

jj . (3.8)

Using (3.7) and (3.8) in (3.6), we find

d2||H||2 ≥ Ric(ea) + 1
2

d2||H||2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(
2ζγ

11 − (ζγ
d1+1d1+1 + · · · + ζγ

dd)
)2

+
2p+1∑

γ=d+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2 −

2p+1∑
γ=d+1

(ζγ
11)2 +

2p+1∑
γ=d+1

d∑
j=d1+1

ζγ
11ζγ

jj

− f1(n + d1d2 − 1) − 3
2

f2 + f3(d2 + 1)
]
. (3.9)

Simplifying the fifth term in the right hand side of (3.9) and using (2.6), we have

1
2

2p+1∑
γ=d+1

(
2ζγ

11 − (ζγ
d1+1d1+1 + · · · + ζγ

dd)
)2

= 2
2p+1∑

γ=d+1
(ζγ

11)2 + 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2

− 2
2p+1∑

γ=d+1

(
ζγ

11(ζγ
d1+1d1+1 + · · · + ζγ

dd)

= 2
2p+1∑

γ=d+1
(ζγ

11)2 + 1
2

d2||H||2 − 2
2p+1∑

γ=d+1

d∑
j=d1+1

ζγ
11ζγ

jj). (3.10)
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We derive from (3.9) and (3.10) that

1
2

d2||H||2 ≥ Ric(ea) +
2p+1∑

γ=d+1
(ζγ

11)2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2

+
2p+1∑

γ=d+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2 −

2p+1∑
γ=d+1

d∑
j=d1+1

ζγ
11ζγ

jj

− f1(d + d1d2 − 1) − 3
2

f2 + f3(d2 + 1). (3.11)

On simplification of (3.11), one can get

1
4

d2||H||2 ≥ Ric(ea) +
2p+1∑

γ=d+1
(ζγ

11 − 1
2

(ζγ
d1+1d1+1 + · · · + ζγ

dd))2

+ d2
∆σ

σ
− f1(d + d1d2 − 1) − 3

2
f2cos2θ1 + f3(d2 + 1)

= Ric(ea) + d2
∆σ

σ

− f1(d + d1d2 − 1) − 3
2

f2 + f3(d2 + 1), (3.12)

which proves the required inequality (3.1).

Case 2 : If ea is tangent to Nθ2 , then we need to fix a unit vector field from
{ed1+1, . . . , e2q = ed}, we fix ea as unit vector field say ea = ed. Then from (3.4), we
get

d2||H||2 ≥ Ric(ea) + 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(
(ζγ

d1+1d1+1 + · · · + ζγ
dd) − 2ζγ

dd

)2

+
2p+1∑

γ=d+1

∑
1≤α<β≤d1

(ζγ
ααζγ

ββ − (ζγ
αβ)2) +

2p+1∑
γ=d+1

∑
1≤i<j≤d

(ζγ
ij)2

+
2p+1∑

γ=d+1

∑
d1+1≤s<t≤d

(ζγ
ssζγ

tt − (ζγ
st)2) −

2p+1∑
γ=d+1

∑
1≤i<j≤d−1

ζγ
iiζ

γ
jj

−
[
f1

(
d(d − 1)

)
+ 3f2

(
(d1 − 1) + d2cos2θ

)
− 2f3(d − 1)

]
+

[1
2

f1
(
(d − 1)(d − 2)

)
+ 3

2
f2

(
(d1 − 1) + (d2 − 1)cos2θ

)
− f3(d − 2)

]
+

[1
2

f1
(
d1(d1 − 1)

)
+ 3

2
f2(d1 − 1) − f3(d1 − 1)

]
+

[1
2

f1
(
d2(d2 − 1)

)
+ 3

2
f2d2cos2θ

]
. (3.13)
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Analogous to Case 1, we obtain

d2||H||2 ≥ Ric(ea) + 1
2

d2||H||2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(
(ζγ

d1+1d1+1 + · · · + ζγ
dd) − 2ζγ

dd

)2

+
2p+1∑

γ=d+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2 +

2p+1∑
γ=d+1

d−1∑
t=d1+1

ζγ
ddζγ

tt

−
2p+1∑

γ=d+1

d1∑
i=1

d−1∑
j=d1+1

ζγ
iiζ

γ
jj − f1(d + d1d2 − 1) − 3

2
f2cos2θ + f3(d2 + 1). (3.14)

Also, it is easy to see that

2p+1∑
γ=d+1

d1∑
i=1

d−1∑
j=d1+1

ζγ
iiζ

γ
jj = 0. (3.15)

From equations (3.14) and (3.15), we get

d2||H||2 ≥ Ric(ea) + 1
2

d2||H||2 + d2
∆σ

σ

+ 1
2

2p+1∑
γ=d+1

(
(ζγ

d1+1d1+1 + · · · + ζγ
dd) − 2ζγ

dd

)2

+
2p+1∑

γ=d+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2 +

2p+1∑
γ=d+1

d−1∑
t=d1+1

ζγ
ddζγ

tt

− f1(d + d1d2 − 1) − 3
2

f2cos2θ + f3(d2 + 1). (3.16)

Now consider

1
2

2p+1∑
γ=d+1

(
(ζγ

d1+1d1+1 + · · · + ζγ
dd) − 2ζγ

dd

)2
+

2p+1∑
γ=d+1

d−1∑
t=d1+1

ζγ
ddζγ

tt

= 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2 + 2
2p+1∑

γ=d+1
(ζγ

dd)2 −
2p+1∑

γ=d+1

d∑
j=d1+1

ζγ
ddζγ

jj

−
2p+1∑

γ=d+1

d−1∑
j=d1+1

ζγ
ddζγ

jj +
2p+1∑

γ=d+1

d−1∑
t=d1+1

ζγ
ddζγ

tt

= 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2 + 2
2p+1∑

γ=d+1
(ζγ

dd)2

−
2p+1∑

γ=d+1

d∑
j=d1+1

ζγ
ddζγ

jj −
2p+1∑

γ=d+1
(ζγ

dd)2

= 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2 +
2p+1∑

γ=d+1
(ζγ

dd)2 −
2p+1∑

γ=d+1

d∑
j=d1+1

ζγ
ddζγ

jj . (3.17)
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Further, with the help of (3.16) and (3.17), we conclude

1
2

d2||H||2 ≥ Ric(ea) +
2p+1∑

γ=d+1
(ζγ

dd)2 −
2p+1∑

γ=d+1

d∑
j=d1+1

ζγ
ddζγ

jj

+ 1
2

2p+1∑
γ=d+1

(ζγ
d1+1d1+1 + · · · + ζγ

dd)2 + d2
∆σ

σ

+
2(p−l)∑
γ=d+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2 +

2p+1∑
γ=2(p−l)+1

d1∑
i=1

d∑
j=d1+1

(ζγ
ij)2

− f1(d + d1d2 − 1) − 3
2

f2cos2θ + f3(d2 + 1). (3.18)

Applying the same approach as in Case 1’s proof, equation (3.18) leads to

1
4

d2||H||2 ≥ Ric(ea) +
2p+1∑

γ=d+1
(ζγ

dd − 1
2

(ζγ
d1+1d1+1 + · · · + ζγ

dd))2

+ d2
∆σ

σ
− f1(d + d1d2 − 1) − 3

2
f2cos2θ + f3(d2 + 1)

= Ric(ea) + d2
∆σ

σ

− f1(d + d1d2 − 1) − 3
2

f2cos2θ + f3(d2 + 1), (3.19)

which is the required inequality (3.2).
Now, we will verify the equality case of the inequalities. To begin, note that the relative

null space, Nx, of the submanifold Md in the complex space form M̃m at a point x ∈ Md

was defined in [13] as:

Nx = {X ∈ TxM : ζ(X, Y ) = 0 ∀ Y ∈ TxM}. (3.20)

For ◦ ∈ {1, . . . , d}, a unit vector e◦ to Md ar x satisfies the equality sign of (3.1) identically
then the following three conditions hold

∑d1
a=1

∑d
A=d1+1(ζγ

aA)2 = 0,

∑d
j=1
j ̸=◦

(ζγ
◦j)2 = 0,

2ζγ
◦◦ = ζγ

d1+1d1+1 + · · · + ζγ
dd, γ ∈ {d + 1, . . . , 2p + 1}

(3.21)

and conversely. The first requirement in (3.21) leads to mixed totally geodesy, however
the last two conditions, as well as the pointwise semi-slant warped product submanifolds,
lead to the conclusion that e◦ is in the relative null space Nx. This proves assertion since
the converse is trivial (2).

For all unit tangent vectors to Nθ1 at x for a pointwise semi-slant warped product
submanifold the equality sign of (3.1) holds then

∑d1
a=1

∑d
A=d1+1(ζγ

aA)2 = 0,

∑d
j=1

∑d
j=1

(j ̸=a)
(ζγ

aj)2 = 0,

2ζγ
aa = ζγ

d1+1d1+1 + · · · + ζγ
dd, a ∈ {1, . . . , d1}

(3.22)

and conversely.
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The final requirement of the above condition means that

ζγ
aa = 0, ∀a ∈ {1, . . . , d1} (3.23)

since Md is a warped product bi-slant submanifold.
Moreover, it is easy to verify that Md is D-totally geodesic pointwise semi-slant warped

product submanifold in M̃2p+1(f1, f2, f3) using the second condition in (3.22), and (3.23),
while the mixed totally geodesy derives from the first condition in (3.22), proving (a) in
assertion (3).

The equality sign of (3.2) holds identically for all unit tangent vectors to Nθ at x for a
pointwise semi-slant warped product submanifold then the following conditions are met

∑d1
a=1

∑d
A=d1+1(ζγ

aA)2 = 0,

∑d
j=1

∑d
A=d1+1
(j ̸=A)

(ζγ
Aj)2 = 0,

2ζγ
AA = ζγ

d1+1d1+1 + · · · + ζγ
dd, A ∈ {d1 + 1, . . . , d}

(3.24)

and conversely.
Md is a mixed totally geodesic submanifold of M2p+1(f1, f2, f3), according to the first

condition in the preceding relation.
The third condition of the aforementioned relations offers two options:

ζγ
AA = 0, (3.25)

or, dimNθ = 2.
If (3.25) is true, Md is a Dθ-totally geodesic warped product submanifold in

M̃2p+1(f1, f2, f3), based on the second condition in (3.24). This is the first situation
in part (b) of the theorem’s statement (3).

In the other case, consider that Md in M̃2p+1(f1, f2, f3) is not Dθ-totally geodesic
warped product submanifold and dimNθ = 2.. As a result, we can conclude from the
second condition of (3.24) that Md is a Dθ-totally umbilical warped product submanifold
in M̃2p+1(f1, f2, f3), it is the second scenario in this part. As a result, portion (b) of (3)
is fully demonstrated.

To demonstrate (c), we first combine (3.22) and (3.23). As a result, we can make use of
sections (a) and (b) of (3). Assume that dimNT ̸= 2 in the first instance of this section.

Since (a) of statement (3) implies that Md is D-totally geodesic and (b) of statement
(3) implies that Md is Dθ-totally geodesic submanifold in M̃2p+1(f1, f2, f3). As a result,
Md is a totally geodesic submanifold in M̃2p+1(f1, f2, f3).

In the other case, let the first situation is not true. As a consequence, parts (a) and (b)
immediately show that Md is mixed totally geodesic and D-totally geodesic submanifold
in M̃2p+1(f1, f2, f3) with dimNθ = 2.

To demonstrate that Md is a totally umbilical submanifold in M̃2p+1(f1, f2, f3), it
is sufficient to know that Md is Dθ-totally umbilical warped product submanifold in
M̃2p+1(f1, f2, f3) from (b) and D-totally geodesic from (a), which leads to the claim of
part (c). As a result, the theorem has been fully shown. □

4. Some applications of the result
In this section we discuss various applications of the main results.
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4.1. Results on warped products pointwise semi-slant submanifolds re-
lated with compact NT

From theory of integration we recall that if M is an orientable compact invariant sub-
manifold, then for the volume element dV of M∫

M
∆σdV = 0, (4.1)

Using this fact we arrive to the following result.

Theorem 4.1. Let M = NT ×σ Nθ → M̃(f1, f2, f3) be an isometric immersion of an d-
dimensional pointwise semi-slant warped products submanifold M in non-Sasakian gener-
alized Sasakian space form M̃(f1, f2, f3) with compact NT and q ∈ Nθ. Then, the following
inequalities exist for each unit vector ea ∈ TxM orthogonal to ξ:

(1) If ea is tangent to NT , then∫
NT ×{q}

(1
4

d2|H|||2 − Ric(ea)
)
dV

≥
[
f3(d2 + 1) − f1(d + d1d2 − 1) − 3

2
f2

]
vol(NT ). (4.2)

(2) If ea is tangent to Nθ, then∫
NT ×{q}

(1
4

d2|H|||2 − Ric(ea)
)
dV

≥
[
f3(d2 + 1) − f1(d + d1d2 − 1) − 3

2
f2cos2θ

]
vol(NT ). (4.3)

where vol(NT ) is the volume NT .

Proof. For compact NT , from (3.1), we have∫
NT ×{q}

1
4

d2|H|||2dV ≥
∫

NT ×{q}
Ric(ea)

)
dV

+
∫

NT ×{q}
d2

∆σ

σ

+
[
f3(d2 + 1) − f1(d + d1d2 − 1) − 3

2
f2

]
vol(NT ), (4.4)

for each q ∈ Nθ.
Using Hopf’s lemma and (2.12), we obtain∫

NT ×{q}

1
4

d2|H|||2dV ≥
∫

NT ×{q}
Ric(ea)

)
dV − d2

∫
NT ×{q}

||∆(lnσ)||2dV

+
[
f3(d2 + 1) − f1(n + d1d2 − 1) − 3

2
f2

]
vol(NT ), (4.5)

which implies the required inequality (4.2). Similarly we find the inequality (4.3). □

4.2. Results on warped product poimtwise semi-slant submanifolds with
harmonic function

Theorem 4.2. Let M = NT ×σ Nθ → M̃(f1, f2, f3) be an isometric immersion of an
d-dimensional pointwise semi-slant warped products submanifold M in non-Sasakian gen-
eralized Sasakian space form M̃(f1, f2, f3). Then, if the warping functions σ is harmonic
function, the following inequalities exist for each unit vector ea ∈ TxM orthogonal to ξ:
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(1) If ea is tangent to NT , then

1
4

d2|H|||2 ≥ Ric(ea)

− f1(d + d1d2 − 1) − 3
2

f2 + f3(d2 + 1). (4.6)

(2) If ea is tangent to Nθ, then

1
4

d2|H|||2 ≥ Ric(ea)

− f1(d + d1d2 − 1) − 3
2

f2cos2θ + f3(d2 + 1). (4.7)

Proof. If σ1 and σ2 are harmonic functions, then ∆σ = 0. Using this fact with (3.1) and
(3.2) yields the results. □

4.3. Results on doubly warped product poimtwise bi-slant submanifolds
related to Hessian functions

Let ϕ be a positive differentiable C∞-differentiable function. Then the Hessian tensor
of function ϕ is a symmetric 2-covariant tensor field on Md defined by

Hϕ : X(M) × X(M) → F(M) (4.8)

such that

Hϕ(X, Y ) = Hϕ
ijXiY j , (4.9)

for any X, Y ∈ X(M), where Hϕ
ij can be expressed as

Hϕ
ij = ∂2ϕ

∂xi∂xj
− Γk

ij

∂ϕ

∂xk
. (4.10)

Let us assume that ϕ = lnσ. Then as a consequence of the Theorem 3.1 and the above
relation, we conclude the following result.

Theorem 4.3. Let M = NT ×σ Nθ → M̃(f1, f2, f3) be an isometric immersion of an
d-dimensional pointwise semi-slant warped products submanifold M in non-Sasakian gen-
eralized Sasakian space form M̃(f1, f2, f3). Then, the following inequalities exist for each
unit vector ea ∈ TxM orthogonal to ξ:

(1) If ea is tangent to NT , then

1
4

d2|H|||2 ≥ Ric(ea) + d2
traceHϕ

σ

− f1(d + d1d2 − 1) − 3
2

f2 + f3(d2 + 1). (4.11)

(2) If ea is tangent to Nθ, then

1
4

d2|H|||2 ≥ Ric(ea) + d2
traceHϕ

σ

− f1(d + d1d2 − 1) − 3
2

f2cos2θ + f3(d2 + 1). (4.12)
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4.4. Results on warped product poimtwise semi-slant submanifolds re-
lated to Dirichlet energy functions

A great motivation of bound of Ricci curvature is to express the Dirichlet energy of the
warping functions σ, which is a helpful instrument in physics. On a compact manifold M ,
the Dirichlet energy of any function ς is defined as:

E(ς) = 1
2

∫
M

||∇ς||2dV, (4.13)

where dV denotes the volume element and ∇ς the gradient of ς.

Theorem 4.4. Let M = NT ×σ Nθ → M̃(f1, f2, f3) be an isometric immersion of an d-
dimensional pointwise semi-slant warped products submanifold M in non-Sasakian gener-
alized Sasakian space form M̃(f1, f2, f3) with compact NT and q ∈ Nθ. Then, the following
inequalities exist for each unit vector ea ∈ TxM orthogonal to ξ:

(1) If ea is tangent to NT , then

d2E(lnσ) ≥ 1
2

∫
NT ×{q}

(
Ric(ea) − 1

4
d2|H|||2

)
dV

+ 1
2

[
f3(d2 + 1) − f1(d + d1d2 − 1) − 3

2
f2

]
vol(NT ). (4.14)

(2) If ea is tangent to Nθ, then

d2E(lnσ) ≥ 1
2

∫
NT ×{q}

(
Ric(ea) − 1

4
d2|H|||2

)
dV

+ 1
2

[
f3(d2 + 1) − f1(d + d1d2 − 1) − 3

2
f2cos2θ

]
vol(NT ). (4.15)

where vol(NT ) is the volume NT .

Proof. Making use of (4.13) into (4.5) we obtain the desired inequality (4.14). To obtain
the inequality (4.15), first we integrate (3.2) over NT × {q}. Then making use of Hopf’s
lemma and (4.13) we get the required inequality (4.15). □
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