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Abstract
Let R be a ring, F a subbifunctor of the functor Ext1

R(−, −), WF a self-orthogonal class
of left R-modules respect to F . We introduce WF -Gorenstein modules G(WF ) as a gener-
alization of W-Gorenstein modules (Geng and Ding, 2011, [14]), F -Gorenstein projective
and F -Gorenstein injective modules (Tang, 2014 [27]). We introduce the notion of rel-
ative singularity category DWF

(R) with respect to WF . Moreover, we give a necessary
and sufficient condition such that the stable category G(WF ) and the relative singularity
category DWF

(R) are triangle-equivalence.
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1. Introduction
Let R be a left-noetherian ring with a unit. Denote by R-mod the category of finitely-

generated left R-modules and R-proj the full subcategory of finitely-generated projective
modules. Denote by Kb(R-mod) and Db(R-mod) the bounded homotopy category and
the bounded derived category of R, respectively. The singularity category of the ring
R is the quotient category Dsg(R) := Db(R-mod)/Kb(proj-R), where Kb(proj) is the
bounded homotopy category of finitely generated projective modules. The Buchweitz-
Happel Theorem [5,8,15] says that there is a triangle-embedding Φ : GP(R) → Dsg(R), and
Φ is an equivalence if R is Gorenstein. Recently, similar quotient triangulated categories
were also studied, such as DSg(R) := Db(R-Mod)/Kb(Proj) [4], Db(R-Mod)/Kb(Inj) [4],
Db(R-mod)/Kb(I) [15], where R-Mod (respectively, Proj, Inj, I) denotes the category of
all (respectively, projective, injective, finitely generated injective) R-modules over a ring
R. In [10], a more general notion of relative singularity categories Dω(A) := Db(A)/Kb(ω)
was introduced, where A is an arbitrary abelian category and ω ⊆ A is a self-orthogonal
additive subcategory. This notion unifies previous various quotient triangulated categories.
The author also introduced the Frobenius category of ω-Cohen-Macaulay objects, and
under certain conditions, he showed that the stable category of ω-Cohen-Macaulay objects
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is triangle-equivalent to Dω(A). If A is a module category, then the notion of ω-Cohen-
Macaulay objects coincides with the ω-Gorenstein modules, which was defined and studied
by Geng and Ding [14]. In this case, ω is a self-orthogonal class of modules.

In their series of papers [1–3], Auslander and Solberg applied relative homological alge-
bra to the study of representation theory of artin algebras. These three papers provide for
us certain foundational aspects of the theory of relative homological algebra in terms of
subbifunctors of the functor Ext1

Λ(−, −). Recently, Tang [27] defined F -Gorenstein pro-
jective and F -Gorenstein injective modules, and characterized F -Gorenstein algebra via
some relative Gorenstein dimensions. Buan has generalized in [7] the construction of the
Verdier quotient category to get a relative derived category Db

F (R), where he localized
with respect to F -exact complexes.

Let F be a subbifunctor of the functor Ext1
R(−, −), WF a self-orthogonal class of mod-

ules respect to F . The main purpose of this paper is to obtain the relative version of
the Buchweitz-Happel Theorem respect to the self-orthogonal class WF . Inspired by the
above work, we introduce the notion of WF -Gorenstein modules, which is a generalization
of W-Gorenstein modules, F -Gorenstein projective and F -Gorenstein injective modules.
Then we define the relative singularity category respect to WF to be the following Verdier
quotient triangulated category DWF

(R) := Db
F (R)/Kb(WF ). Let θ be the composite of

natural functors: G(WF ) ↪→ R-Mod −→ Db
F (R) −→ DWF

(R). It will induce a functor
θ : G(WF ) −→ DWF

(R). We show that θ is a triangle-equivalence if and only if the global
G(WF )-F dimension of R is finite (see Theorem 4.4).

The highlight of the present paper is that we prove the sufficiency of our main theorem
in a completely different way than in [5]. Let R be an Artin ring. If every finitely gener-
ated injective left R-module has finite projective dimension and every finitely generated
projective right R-module has finite injective dimension, then R is a Gorenstein ring. Us-
ing this fact, Bergh, Oppermann and Jorgensen proved in [5] that R is Gorenstein if the
functor Φ : GP(R) → Dsg(R) is dense. In this paper, we introduce the G(WF ) dimension
for complexes. We prove that if the functor θ is dense, then G(WF )-dimM• < ∞ for
any M• ∈ Db

F (R). Finally, by the fact that R is Gorenstein if and only if every finitely
generated left R-module has finite Gorenstein dimension (see [18, Theorem]), we recover
the known results.

The paper is organized as follows. In Section 2, we collect preliminary notions that
will be used throughout the paper. In Section 3, we give the definition and study some
elementary properties of WF -Gorenstein modules G(WF ). In Section 4, we prove our main
result. Finally, we give some applications of our main result for Gorenstein homological
modules with respect to a semidualizing bimodule.

2. Preliminaries
In this section, we recall some known notions and facts needed in the sequel. Throughout

this paper, R is a ring with identity and all modules considered will be unital modules.
For any ring R, we denote the category of left R-modules by R-Mod.

2.1. Complexes
In this paper, the category of chain complexes of R-modules will be denoted by C(R).

A complex X• will be denoted by

X• = · · · −→ Xn−1 dn−1
−→ Xn dn

−→ Xn+1 −→ · · · .

Denote by f : X• → Y • the cochain map in C(R). Given a complex X• and an integer
m, X•[m] denotes the complex such that X•[m]n = Xm+n with boundary operators
(−1)mdm+n. The n-th cycle module of X• is defined as ZnX• := Kerdn. The n-th
boundary module of X• is defined as BnX• := Imdn−1. Recall that X• is called acyclic
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(or exact) if H i(X•) = 0 for any i ∈ Z, and f is called a quasi-isomorphism if H i(f)
is an isomorphism for any i ∈ Z. K∗(R) is the homotopy category of R-Mod, where
∗ ∈ {blank, −, b}. A bounded complex X• = (Xn, dn)n∈Z is said to be negative if Xn = 0
for all n ≥ 0. Denote by K<0(R) the full subcategory of K(R) whose objects are isomorphic
to a negative complex in C(R). Similarly, we have the subcategory K>0(R). We will use
the formula HomK(R)(X•, Y •[n]) = HnHomR(X•, Y •) for any X•, Y • ∈ C(R) and n ∈ Z.

Given a complex X• and an integer i ∈ Z, we denote by

σ≥iX• : 0 → Xi di

→ Xi+1 di+1
→ Xi+2 → · · ·

the hard left truncation of X•, and

σ≤iX• : · · · → Xi−2 di−2
→ Xi−1 di−1

→ Xi di

→ 0
the hard right truncation of X•. Set σ>iX• := σ≥i+1X

• and σ<iX• := σ≤i−1X
•. The

soft left truncation, τ≥iX•, of X• at i and the soft right-truncation, τ≤iX•, of X• at i are
given by:

τ≥iX• := 0 → Cokerdi−1 di

→ Xi+1 di+1
→ Xi+2 → · · ·

and
τ≤iX• := · · · → Xi−2 di−2

→ Xi−1 di−1
→ Kerdi → 0,

where the differential di is the induced map on residue classes.

2.2. F-exact sequences
Suppose F is an additive subbifunctor of the additive bifunctor Ext1

R(−, −) : R-Modop×
R-Mod → Ab, a short exact sequence η : 0 −→ X

f−→ Y
g−→ Z −→ 0 in R-Mod is said

to be F -exact if η is in F(Z, X). Moreover, f is called an F -monomorphism and g is
called an F -epimorphism. Each additive subbifunctor F corresponds a class of short
exact sequences that is closed under the operations of pushout, pullback, Baer sums and
direct sums. For more details, we refer the reader to [25].

In what follows, F always denotes an additive subbifunctor of the additive bifunctor
Ext1

R(−, −). An exact sequence X• = · · · −→ Xn−1 fn−1
−→ Xn fn

−→ Xn+1 fn+1
−→ · · · in R-Mod

is called an F -exact sequence provided that 0 −→ Imf i −→ Xi+1 −→ Imf i+1 −→ 0
is F -exact for all i ∈ Z. A left R-module P (respectively, I) is said to be F -projective
(respectively, F -injective) if for each F -exact sequence 0 −→ X −→ Y −→ Z −→ 0,
the sequence 0 −→ HomR(P, X) −→ HomR(P, Y ) −→ HomR(P, Z) −→ 0 (respec-
tively, 0 −→ HomR(Z, I) −→ HomR(Y, I) −→ HomR(X, I) −→ 0) is exact. The full
subcategory of R-Mod consisting of all F -projective (respectively, F -injective) modules
is denoted by P(F ) (respectively, I(F )). F is said to have enough projectives (re-
spectively, enough injectives) if for any D ∈ R-Mod there is an F -exact sequence
0 −→ B −→ P −→ D −→ 0 (respectively, 0 −→ D −→ I −→ C −→ 0 ) with P in
P(F ) (respectively, I in I(F )). For any M ∈ Mod-R, a left F -projective resolution of M
is an F -exact sequence P = · · · → P1 → P0 → M → 0 with Pi ∈ P(F ) for all i. Right F -
injective resolutions are defined dually. If F has enough projectives and injectives, then for
all left R-modules C and D, the right derived functors of HomR(C, −) and HomR(−, D)
using right F -injective and left F -projective resolutions, respectively, coincide. We de-
note by Exti

F (C, −) (respectively, Exti
F (−, D)) the right derived functors of HomR(C, −)

(respectively, HomR(−, D)).
Recall from [9,21] that an exact category is a pair (E, S) where E is an additive category

and S is a class of “short exact sequences": That is, triples of objects connected by arrows
0 → A

i→ B
p→ C → 0 such that i is the kernel of p and p is the cokernel of i. The class S

of short exact sequences must satisfy the axioms in [9, Definition 2.1], which are inspired
by the properties of short exact sequences in any abelian category.
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Recall from [7] that an additive subbifunctor F is said to be closed if the following
equivalent statements hold.

(1) The composition of F -epimorphisms is an F -epimorphism.
(2) The composition of F -monomorphisms is an F -monomorphism.
(3) For each object X the functor F (X, −) is half exact on F -exact sequences.
(4) For each object X the functor F (−, X) is half exact on F -exact sequences.
(5) The category R-Mod with respect to the F -exact sequences is an exact category.

A subcategory X of R-Mod is said to be closed under F -extensions, if 0 → A → B →
C → 0 is F -exact and A and C are in X, then B is in X. If F is closed, then the class
of F -exact complexes is a null-system (see [20, Definition 1.6.6] for definition) in K(R).
A map h in K(R) is called an F -quasi-isomorphism if the mapping cone is an F -exact
sequence. Since the class of F -quasi-isomorphisms is a multiplicative system, it follows
that we localize with respect to this system. Set

N = {X• ∈ K(R) | X• is an F -exact sequence}.

Then it is easy to see N is a thick subcategory of K(R). Let S(N) be the following set of
morphisms

S(N) = {X• → Y • | X• → Y • → Z• → X•[1] is a distinguished triangle in
K(R) with Z• ∈ N}.

By [25], the relative derived category of R related to the subbifunctor F is defined to
be the Verdier quotient, that is,

DF (R) := K(R)/N = S(N)−1K(R).

2.3. F-(co)resolution and dimension
Let C, D be classes of R-modules and M a left R-module.
(1) The left C-F resolution of M is an F -exact sequence C• = · · · −→ C1 −→ C0 −→

M −→ 0 with Ci ∈ C for all i.
(2) The D-proper left C-F resolution is a left C-F resolution C• of M such that

HomR(D, C•) is exact for all D ∈ D.
Dually, we can define the (D-coproper) right C-F coresolution of M .
(3) The left C-F dimension of M , written C-pdF (M), is defined as the minimal nonneg-

ative integer n such that M has a left C-F resolution of length n. If no such an integer
exists, then set C-pdF (M) = ∞.

(4) The D-proper left C-F dimension of M , written D-C-pdF (M), is defined as the
minimal nonnegative integer n such that M has a D-proper left C-F resolution of length
n. If no such an integer exists, then set D-C-pdF (M) = ∞.

Dually, we can define the (D-coproper) right C-F dimension of M , and denote it by
C-idF (M) (D-C-idF (M)).

3. WF -Gorenstein modules
We begin this section with the following definitions. From now on, we always assume

that F has enough projectives.

Definition 3.1. Let W be a class of modules in R-Mod and F an additive subbifunctor
of the additive bifunctor Ext1

R(−, −). Then W is called self-orthogonal respect to F if

Exti
F (W, W ′) = 0

for all W, W ′ ∈ W and all i ≥ 1.

In what follows, WF always denotes a self-orthogonal class respect to F , which is closed
under finite direct sums and direct summands.
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Definition 3.2. A left R-module M is said to be WF -Gorenstein if there exists an F -
exact sequence

W• = · · · → W1 → W0 → W 0 → W 1 → · · ·

of objects in WF such that M = Ker(W 0 → W 1) and W• is HomR(WF , −) and HomR(−,WF )
exact. In the following, we denote by G(WF ) the class of WF -Gorenstein modules.

Remark 3.3. (1) It is clear that each module in WF is WF -Gorenstein. If

W• = · · · → W1 → W0 → W 0 → W 1 → · · ·

is a HomR(WF , −) and HomR(−,WF ) exact sequence of objects in WF , then by symmetry,
all images, kernels and cokernels of W• are WF -Gorenstein.

(2) If the subbifunctor F coincides with the bifunctor Ext1
R(−, −), and WF is the class

of projective left R-modules (or the class of injective left R-modules), then WF -Gorenstein
modules are exactly Gorenstein projective (injective) modules [13].

(3) A similar argument of [27, Lemma 2.4(2)] and [26, Proposition 4.4] yields that
G(WF ) is closed under F -extensions.

Let WF be a self-orthogonal class of left R-modules respect to F . We define WF
⊥F :=⋂

WF
⊥i

F , where WF
⊥i

F = {X ∈ A | Extj
F (W, X) = 0 for all W ∈ WF , j ≥ i}, and

WF
X := {X ∈ A | there exists an F -exact sequence · · · → W −n d−n

→ W 1−n → · · · → W 0

d0
→ X → 0, with each W i ∈ WF , Kerd−i ∈ WF

⊥F }.

Dually, we define ⊥F WF :=
⋂⊥i

F WF , where ⊥i
F WF = {X ∈ A | Extj

F (X, W ) = 0 for all
W ∈ WF , j ≥ i}, and

XWF
:= {X ∈ A | there exists an F -exact sequence 0 → X

d−1
→ W 0 d0

→ W 1 → · · · → W n−1

dn−1
→ W n → · · · , with each W i ∈ WF , Cokerdi ∈ ⊥F WF }.

Since WF is self-orthogonal respect to F , we have WF ⊆ WF
X ⊆ WF

⊥F and WF ⊆ XWF
⊆

⊥F WF .

Lemma 3.4. [27, Lemma 2.4(2)] Let 0 → A → B → C → 0 be an F -exact sequence.
Then for any M ∈ Mod-R, there exists a long exact sequence 0 → HomR(C, M) →
HomR(B, M) → HomR(A, M) → Ext1

F (C, M) → Ext1
F (B, M) → Ext1

F (A, M) → · · · .

Using this lemma, we have the following result by definition.

Lemma 3.5. A left R-module M is WF -Gorenstein if and only if M ∈ WF
X ∩ XWF

, if
and only if M ∈ ⊥F WF ∩ W

⊥F
F and M has a WF -proper left WF -F resolution and a

WF -coproper right WF -F coresolution.

Lemma 3.6. G(WF ) is closed under direct summands.

Proof. It is obtained by standard argument similar to the proof of [26, Proposition 4.11].
□

Proposition 3.7. Let 0 → M ′ → M → M ′′ → 0 be an F -exact sequence of left R-modules
with M ∈ G(WF ).

(1) If M ′ ∈ G(WF ) and M ′′ ∈ ⊥F WF , then M ′′ ∈ G(WF ).
(2) If M ′′ ∈ G(WF ) and M ′ ∈ W

⊥F
F , then M ′ ∈ G(WF ).
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Proof. (1) Since M ′ ∈ G(WF ), there is an F -exact sequence 0 → M ′ → W 0 → L → 0
with W 0 ∈ WF and L ∈ G(WF ). Consider the following pushout diagram

0

��

0

��
0 // M ′

��

// M

��

// M ′′ // 0

0 // W 0

��

// D

��

// M ′′ // 0

L

��

L

��
0 0.

From the middle column, we get that D is WF -Gorenstein by Remark 3.3(3). Note that
the middle row splits since Ext1

F (M ′′, W 0) = 0 by hypothesis. So M ′′ is WF -Gorenstein
by Lemma 3.6.

(2) The proof is dual to that of (1). □

Recall from [7] that if F is closed, then the category R-Mod with respect to the F -exact
sequences is an exact category. In the rest of the paper, we assume that F is a closed
subbifunctor. Denote by ε the class of F -exact sequences of the form: 0 → L

i→ M
p→

N → 0 with L, M, N ∈ G(WF ). By Remark 3.3(3), we directly obtain the following fact.

Proposition 3.8. (G(WF ), ε) is an exact category.

By Proposition 3.8, we have the following result.

Corollary 3.9. (G(WF ), ε) is a Frobenius category, that is, (G(WF ), ε) has enough pro-
jectives and enough injectives such that the projective objects coincide with the injective
objects.

Proof. Observe that objects in WF are injective and projective in G(WF ), the assertion
follows from Proposition 3.8. □

Consider the stable category G(WF ) of G(WF ) modulo WF . Then by [16, Theorem 2.6]
the stable category G(WF ) is a triangulated category. We will make use of the following
propositions.

Proposition 3.10. Let M be a left R-module. Then M has a WF -proper left WF -F
resolution if and only if M has a WF -proper left G(WF )-F resolution.

Proof. It is enough to show the “if” part. Let 0 → K1 → G0 → M → 0 be a
HomR(WF , −)-exact sequence with G0 ∈ G(WF ) and K1 having a WF -proper left G(WF )-
F resolution. Note that there exist an exact sequence 0 → G′ → W → G0 → 0 such that
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G′ ∈ G(WF ) and W ∈ WF . Then we have the following pullback diagram

0

��

0

��
G′

��

G′

��
0 // H

��

// W

��

// M // 0

0 // K1

��

// G0 //

��

M // 0

0 0.

One can check that the first column is HomR(WF , −)-exact. Since K1 has a WF -proper
left G(WF )-F resolution, we have an exact sequence 0 → K2 → G1 → K1 → 0, where K2
has a left G(WF )-F resolution and G1 ∈ G(WF ). Consider the following pullback diagram

0

��

0

��
K2

��

K2

��
0 // G′ // L

��

// G1

��

// 0

0 // G′ // H //

��

K1

��

// 0

0 0,

It follows from Remark 3.3(3) that L ∈ G(WF ). One can check that the F -exact sequence
0 → K2 → L → H → 0 is HomR(WF , −)-exact. So H has a left G(WF )-F resolution
which is HomR(WF , −)-exact. By repeating the preceding process, we have that M has a
WF -proper WF -F resolution. □

Proposition 3.11. Assume that each left R-module M admits a left G(WF )-F resolution.
Then WF -G(WF )-pdF (M) ⩽ n if and only if in every F -exact sequence

0 −→ Kn −→ Wn−1 −→ · · · −→ W0 −→ M −→ 0

where all Wi ∈ WF , the left R-module Kn is WF -Gorenstein.

Proof. Note that every F -exact sequence

0 −→ Kn −→ Wn−1 −→ · · · −→ W0 −→ M −→ 0

with all Wi ∈ WF and Kn ∈ G(WF ) is HomR(WF , −)-exact. The proof follows from a
similar argument to that in [14, Proposition 2.12]. □

Note that for any left R-module M , WF -G(WF )-pdF (M) < ∞ if and only if M has a
finite WF -proper left G(WF )-F resolution. We define

gl-G(WF )(R) := sup{WF -G(WF )-pdF (M) | M ∈ R-Mod}.
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The value of gl-G(WF )(R) will be called the global G(WF )-F dimension of R. Dually, we
can define

cogl-G(WF )(R) := sup{WF -G(WF )-idF (M) | M ∈ R-Mod}.

In the following, we will consider the G(WF ) dimensions for complexes. Let
K−,F b(P(F )) := {X• ∈ K−(P(F )) | ∃ n ∈ Z s. t. Hi(HomR(P, X•)) = 0 for i ≤ n, P ∈ P(F )}.

Since we always assume that F has enough projectives, By [25, Proposition 3.9], there
is a triangle equivalence Db

F (R) ' K−,F b(P(F )). For any complex X• ∈ Db
F (R), we can

without loss of generality suppose X• is bounded. There is a complex P • ∈ K−,F b(P(F )),
such that P • ' X• in Db

F (R). That is, there exists an F -quasi-isomorphism P
π=⇒ X.

Moreover, since F has enough projectives, π can be chosen as F -surjective and π is called
an F -projective resolution of X.

Definition 3.12. For any M• ∈ Db
F (R), the Gorenstein WF dimension is

G(WF )-dimM• := inf
{

n ∈ Z
∣∣∣∣ Z−n+1(P •) ∈ G(WF ) for any M• ' P •

with P • ∈ K−,F b(P(F ))

}
.

By the definition, for a left R-module M , we show that the Gorenstein WF dimension
of M defined here is exactly the WF -proper left G(WF )-F dimension of M .

Lemma 3.13. Let M be a left R-module. Then
G(WF )-dimM = WF -G(WF )-pdF M.

Proof. Suppose G(WF )-dimM = g and WF -G(WF )-pdF M = g′. Since G(WF )-dimM =
g, there is a complex P • ∈ K−,F b(P(F )), such that P • ' M in Db

F (R) and Z−g+1(P •) ∈
G(WF ). It follows that we have an F -exact sequence

0 −→ Z−g+1(P •) −→ P −g+1 −→ · · · −→ P 0 −→ M −→ 0
with all Pi ∈ P(F ) and Z−g+1(P •) ∈ G(WF ). Notice that this sequence is HomR(WF , −)-
exact. Hence g′ ≤ g.

Since WF -G(WF )-pdF M = g′, by Proposition 3.11, for F -exact sequence

0 −→ K−g′+1 −→ P −g′+1 −→ · · · −→ P 0 −→ M −→ 0
with all Pi ∈ P(F ) ⊆ WF , we have K−g′+1 ∈ G(WF ). Therefore, we obtain an F -
projective resolution P • −→ M with complex P • := 0 → P −g′+1 → · · · → P 0 → 0 and
Z−g′+1(P •) = K−g′+1 ∈ G(WF ). Thus g ≤ g′. Altogether, we have g = g′. □

Lemma 3.14. Let P • ∈ K−,F b(P(F )). Then for every cochain map α : P • → N• and
every F -quasi-isomorphism β : M• → N•, there exists a cochain map γ : P • → M• such
that α ∼ βγ holds.

Proof. Let P • ∈ K−,F b(P(F )). Consider the triangle M• β−→ N• −→ Cone(β) −→ M•[1]
in K(R). Since HomK(R)(P •, −) is a cohomological functor, we get a long exact sequence

· · · → HomK(R)(P •, M•) → HomK(R)(P •, N•) → HomK(R)(P •, Cone(β)) → · · · .

Since β is an F -quasi-isomorphism, we obtain that the complex Cone(β) is an F -exact
complex and HomR(P v, Cone(β)) is exact for every v ∈ Z. As P • is bounded above,
it follows from [11, Theorem 4.1.9] and [12, Proposition 2.4] that ConeHomR(P •, β) '
HomR(P •, Cone(β)) is acyclic. Hence HomK(R)(P, Cone(β)) = H0HomR(P, Cone(β)) = 0.
This implies that

HomK(R)(P •, β) : HomK(R)(P •, M•) → HomK(R)(P •, N•)
is surjective. Thus, there exists a cochain map γ : P • −→ M• such that α ∼ βγ. □
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Lemma 3.15. Consider an F -exact sequence

δ = 0 −→ Y • f−→ Z• g−→ X• −→ 0

of chain complexes over C(R), that is,

0 −→ Y i −→ Zi −→ Xi → 0

is an F -exact sequence for each i. If Y • is F -exact, then δ gives rise to an F -exact
sequence:

0 −→ Zm(Y •) −→ Zm(Z•) −→ Zm(X•) −→ 0
in R-Mod.

Proof. Since δ is an F -exact sequence of complexes, for every P ∈ P(F ), we have the
short exact sequence:

0 −→ HomR(P, Y •) −→ HomR(P, Z•) −→ HomR(P, X•) −→ 0.

By [1, Proposition 1.5], the complex HomR(P, Y •) is exact. Then the sequence

0 −→ Zm(HomR(P, Y •)) −→ Zm(HomR(P, Z•)) −→ Zm(HomR(P, X•)) −→ 0

is exact. Since HomR(P, −) preserves kernels, we get the exact sequence

0 −→ HomR(P, Zm(Y •)) −→ HomR(P, Zm(Z•)) −→ HomR(P, Zm(X•)) −→ 0.

By [1, Proposition 1.5] again, we complete the proof. □

Corollary 3.16. Let 0 → M•
1 → M•

2 → M•
3 → 0 be an F -exact sequence of bounded

complexes. If M•
1 , M•

3 have finite G(WF ) dimension, then so does M•
2 .

Proof. Since 0 → M•
1 → M•

2 → M•
3 → 0 is an F -exact sequence of bounded complexes

in C(R), by [25, Proposition 4.1], M•
1 → M•

2 → M•
3

φ→ M•
1 [1] is a distinguished trian-

gle in Db
F (R). Suppose M•

1 , M•
3 have finite G(WF )-dimension. By the definition, there

exists an n ∈ Z and F -projective resolutions, P •
1

π1−→ M•
1 and P •

3
π3−→ M•

3 such that
Zn(P •

1 ), Zn(P •
2 ) ∈ G(WF ).

By Lemma 3.14, there exsits a cochain map α such that φ ◦ π3 = π1[1] ◦ α. This follows
that, in the diagram:

P •
3

π3

��

α // P •
1 [1]

π1[1]
��

// Cone(α)

h
��

// P •
3 [1]

π3[1]
��

M3
φ // M1[1] // M2[1] // M3[1]

we have a morphism h : Cone(α) −→ M2[1] such that (π3, π1[1], h) is a morphism between
triangles in Db

F (R). Since P •
1 [1], P •

3 ∈ K−,F b(P(F )) and 0 −→ P •
1 [1] −→ Cone(α) −→

P •
3 [1] −→ 0 is degreewise split, one can check that Cone(α) ∈ K−,F b(P(F )). By the

hypothesis, π3 and π1[1] are isomorphisms in Db
F (R), so is h. Hence Cone(α) is an F -

projective resolution of M2[1]. By Definition 3.12, choose n so that

H i(HomR(P, P •
1 [1])) = H i(HomR(P, Cone(α))) = H i(HomR(P, P •

3 )) = 0

for i ≥ n, and all P ∈ P(F ). By Lemma 3.15, for all i ≥ n, the sequence of modules

0 −→ Zi(P •
1 ) −→ Zi(Cone(α)[−1]) −→ Zi(P •

3 ) −→ 0

is F -exact. If Zi(P •
1 ) and Zi(P •

3 ) are WF -Gorenstein, then Remark 3.3(3) shows that
Zi(Cone(α)[−1]) is WF -Gorenstein, this implies that M•

2 has finite G(WF )-dimension. □
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4. Triangle-equivalences respect to WF

Suppose ϕ : Kb(WF ) −→ Db
F (R) is the composition of the embedding functor from

Kb(WF ) into Kb(R), and the localization functor Qb : Kb(R) −→ Db
F (R). We show that

this composite functor is fully faithful. Recall that the cardinal of the set {i | Xi 6= 0, i ∈
Z} is called the width of X, and denoted by w(X).

Lemma 4.1. The functor ϕ is fully faithful.

Proof. Let M•
1, M•

2 ∈ Kb(WF ). We may assume that Mi
2 = 0 for i < 0 and M0

2 = M2 6= 0.
We proceed by double induction on the widths of M•

1 and M•
2. If w(M•

1) = w(M•
2) = 1,

then there exists i ∈ Z such that M•
1 = M1[i] for some M1 ∈ WF . If i = 0, then

HomKb(WF )(M•
1, M•

2) = HomDb
F (R)(M

•
1, M•

2). Otherwise we have HomCb(R)(M•
1, M•

2) =
HomCb(R)(M1[i], M2) = 0 for i > 0. It follows that HomKb(WF )(M•

1, M•
2) = 0, and

HomDb
F (R)(M

•
1, M•

2) = 0 for i > 0. For i < 0, we have HomDb
F (R)(M

•
1, M•

2) ' Ext−i
F (M1, M2)

by [25, Lemma 3.8], hence the assertion follows by assumption. If w(M•
1) = 1 and

w(M•
2) = r, then we consider the triangle M0

2[−1] −→ M′
2 → M•

2 → M0
2 where M′

2 = σ>0M•
2

is the hard truncated complex. We apply the cohomological functors HomKb(WF )(M•
1, −),

and HomDb
F (R)(M

•
1, −) to this triangle, using induction and the Five Lemma we infer that

HomKb(WF )(M•
1, M•

2) ∼= HomDb
F (R)(M

•
1, M•

2) under ϕ. The proof of the case w(M•
1) = r′

and w(M•
2) = r for any positive integers r and r′ is dual. □

In this case, we can view Kb(WF ) as a triangle subcategory of Db
F (R), and note that

Kb(WF ) is closed under direct summands, and hence is thick. It is of interest to consider
the quotient triangulated category Db

F (R)/Kb(WF ).

Definition 4.2. We define the WF -singularity category of R respect to WF to be the
following Verdier quotient triangle category DWF

(R) := Db
F (R)/Kb(WF ).

Example 4.3. If WF = Proj(R) and if the subbifunctor F coincides with the bifunctor
Ext1

R(−, −), then Db
F (R) is the usual bounded derived category Db(R) and the WF -

singularity category DWF
(R) is the big singularity category DSg(R) (see [4]).

Consider the following composite of natural functors.

θ : G(WF ) ↪→ R-Mod iR−→ Db
F (R) −→ DWF

(R)

where the first functor is the inclusion, the second is the functor which sends left R-
modules to the corresponding stalk complexes concentrated in degree zero, and the last
is the quotient functor QWF

: Db
F (R) −→ Db

F (R)/Kb(WF ). By [25, Lemma 3.10], the
functor iR : R-Mod → Db

F (R) is fully faithful. Note that θ(WF ) ' 0, and thus θ induces
a unique functor θ : G(WF ) → DWF

(R).

The following theorem is our main result.

Theorem 4.4. Let R be a ring, WF a self-orthogonal class of R-modules respect to F .
Then the functor

θ : G(WF ) −→ DWF
(R)

is a triangle-equivalence if and only if gl-G(WF )(R) < ∞.

In order to show that the functor θ is an equivalence, we start with the following useful
lemmas.

Lemma 4.5. (1) For M ∈ ⊥F WF and X• ∈ K<0(WF ), we have HomDF (R)(M, X•) = 0.
(2) For N ∈ W

⊥F
F and Y • ∈ K>0(WF ), we have HomDF (R)(Y, N) = 0.
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Proof. We only show (1). Consider L := {Z• ∈ Db
F (R) | HomDb

F (R)(M, Z•) = 0}. Since
M ∈ ⊥F WF and Exti

F (M, W ) ∼= HomDF (R)(M, W [i]) for any W ∈ WF , we have that
WF [i] ⊆ L for all i > 0. Observe that the subcategory L is closed under extensions, and
complexes in K<0(WF ) are obtained by iterated extensions from objects in

⋃
i>0 WF [i],

thus we infer that K<0(WF ) ⊆ L. □
In what follows, morphisms in Db

F (R) will be denoted by arrows, and those whose cones
lie in Kb(WF ) will be denoted by doubled arrows. Morphisms in DWF

(R) from X• to Y •

will be denoted by right fractions g/f of the form X• f⇐= Z• g−→ Y •, where Z• ∈ Db
F (R),

f : Z• ⇐ X• is an F -quasi-isomorphism, and g : Z• → Y • is a morphism in Db
F (R) (for

the definition, see [28]). Let M, N ∈ R-Mod, we consider the natural map
θM,N : HomR(M, N) −→ HomDWF (R)(M, N), f 7−→ f/IdM .

Set WF (M, N) = {f ∈ HomR(M, N) | f factors through an object in WF }. It is easy
to see θM,N vanished on WF (M, N).

Lemma 4.6. For any M ∈ G(WF ) and N ∈ W
⊥F
F , we have an isomorphism

HomR(M, N)/WF (M, N) ' HomDWF
(R)(M, N).

Proof. The proof is similar to the one in [10, Lemma 2.3], for completeness we give the
detailed proof.

First, we show that the map θM,N is surjective. For this, consider a morphism a/s :
M

s⇐= Z• a−→ N in DWF
(R), where Z• is a bounded complex, both a and s are morphisms

in Db
F (R), and the cone of s, C• = Cone(s), lies in Kb(WF ). Hence we have a distinguished

triangle in Db
F (R)

Z• s=⇒ M −→ C• −→ Z•[1]. (4.1)
Since M ∈ G(WF ), we have a long F -exact sequence

0 −→ M
ε−→ T 0 d0

−→ T 1 −→ · · · −→ T n dn

−→ T n+1 −→ · · ·
where each T i ∈ WF and Kerdi ∈ ⊥F WF . Hence in Db

F (R), M is isomorphic to the
following complex

T • := 0 −→ T 0 d0
−→ T 1 −→ · · · −→ T n dn

−→ T n+1 −→ · · ·
and furthermore, M is isomorphic to the complex τ≤lT • := 0 → T 0 → · · · → T l−1 →
Kerdl → 0 for each l ⩾ 1 in Db

F (R). Consider the following natural triangle in Kb(R)

(σ<lT •)[−1] −→ Kerdl[−l] s
′′

=⇒ τ≤lT • −→ σ<lT •. (4.2)
Take s′ to be the following composite in Db

F (R)

Kerdl[−l] s′′
=⇒ τ≤lT • −→ T • ε⇐= M

where τ≤lT • −→ T • is the natural chain map. Note that the composite τ≤lT • −→ T • ε⇐=
M is an isomorphism in Db

F (R). Thus from the triangle (4.2), we get a triangle in Db
F (R)

(σ<lT •)[−1] −→ Kerdl[−l] s
′

=⇒ M
ε−→ σ<lT •, (4.3)

Since C• ∈ Kb(WF ), we may assume that

C• = · · · −→ 0 −→ W −t′ −→ · · · −→ W t−1 −→ W t −→ 0 −→ · · ·
where W i ∈ WF , t, t′ ≥ 0. Set l0 = t + 1, E = Ker(T l0 → T l0+1) . We can easily get that
E ∈ ⊥F WF and C•[l0] ∈ K<0(WF ), by Lemma 4.5(1), we get

HomDb
F (R)(E[−l0], C•) = HomDb

F (R)(E, C•[l0]) = 0.
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Hence, the morphism E[−l0] s′
=⇒ M −→ C• is zero. By the triangle (4.1), we infer that

there exists h : E[−l0] −→ Z• such that s′ = s ◦ h, and thus a/s = (a ◦ h)/s′.
Note that N ∈ W

⊥F
F and (σ<l0T •)[−1] ∈ K>0(WF ), by Lemma 4.5(2), we have

HomDb
F (R)((σ

<l0T •)[−1], N) = 0.

Applying the cohomological functor HomDb
F (R)(−, N) to the triangle (4.3), we obtain the

following exact sequence (here, take l = l0)

HomDb
F (R)(M, N)

Hom
Db

F
(R)(s′,N)

// HomDb
F (R)(E[−l0], N) // HomDb

F (R)((σ<l0T •)[−1], N) .

Thus there exists f : M −→ N such that f ◦ s′ = a ◦ h in DF (R). Hence, we have

a/s = (a ◦ h)/s′ = (f ◦ s′)/s′ = θM,N (f),

proving that θM,N is surjective.
Next we will show that KerθM,N = WF (M, N), then we are done. It is already known

that WF (M, N) ⊆ KerθM,N . Conversely, consider f : M −→ N such that θM,N (f) = 0.
Hence there exists s : Z• =⇒ M such that f ◦ s = 0, where s is a morphism in Db

F (R)
whose cone C• = Cone(s) ∈ Kb(WF ). Using the notation above, we obtain that s′ = s◦h.
Thus f ◦ s′ = 0. By the triangle (4.3), we infer that there exists f ′ : σ<l0T • −→ N such
that f ′ ◦ ε = f .

Consider the following natural triangle in Kb(R)

T 0[−1] −→ σ>0(σ<l0T •) =⇒ σ<l0T • π−→ T 0 (4.4)

Since N ∈ W
⊥F
F and σ>0(σ<l0T •) ∈ K>0(W), by Lemma 4.5(2), we have

HomDb
F (R)(σ

>0(σ<l0T •), N) = 0.

Thus the composite morphism σ>0(σ<l0T •) =⇒ σ<l0T • f ′
−→ N is zero, and furthermore,

by the triangle (4.4), we infer that there exists g : T 0 −→ N such that g ◦ π = f ′. So
we get f = g ◦ (π ◦ ε), which proves that f factors through WF inside Db

F (R). Note that
iR : R-Mod −→ Db

F (R) is fully faithful, and we infer that f factors through WF inside
R-Mod, i.e., f ∈ WF (M, N). This finishes the proof. □

Let (α, η) be an exact category and let C be a triangulated category. Recall from
[22, Section 1] that an additive functor G : α −→ C is said to be a ∂-functor, if for each
short exact sequence 0 → X

i→ Y
d→ Z → 0 ∈ η, there exists a morphism ω(i,d) : G(Z) −→

G(X)[1] such that the following triangle in C is distinguished

G(X) G(i)−→ G(Y ) G(d)−→ G(Z)
ω(i,d)−→ G(X)[1],

moreover, the morphisms ω are “functorial” in the sense that given any morphism between
two short exact sequences

0 // X

f
��

i // Y

g
��

d // Z

h
��

// 0

0 // X ′ i′
// Y ′ d′

// Z ′ // 0,

the following is a morphism of triangles
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G(X)

G(f)
��

G(i) // G(Y )

G(g)
��

G(d) // G(Z)

G(h)
��

ω(i,d) // G(X)[1]

G(f)[1]
��

G(X ′)
G(i′) // G(Y ′)

G(d′) // G(Z ′)
ω(i′,d′)// G(X ′)[1].

The next proposition shows that the functor θ is a fully faithful triangle functor. Com-
pare [19, Proposition 1.21] and [10, Lemma 2.3].

Proposition 4.7. θ induces a fully faithful triangle functor θ : G(WF ) −→ DWF
(R).

Proof. By Lemma 4.6, the functor θ : G(WF ) −→ DWF
(R) is fully faithful. It remains to

show θ is a triangle functor. It is easy to see that iR : R-Mod −→ Db
F (R) is a ∂-functor (by

[25, Proposition 4.1]). In fact, let 0 −→ L
f−→ M

g−→ N −→ 0 be an F -exact sequence
with all terms in G(WF ). Then it induces a distinguished triangle in DWF

(R), saying

θ(L) θ(f)−→ θ(M) θ(g)−→ θ(N)
ω(f,θ)
−→ θ(L)[1]. This shows that θ is a ∂-functor. Note that every

object in WF is zero in DWF
(R), so θ vanishes on the projective-injective objects in G(WF ).

It follows from [10, Lemma 2.5] that the induced functor θ is a triangle functor. □

It is of interest to make sense when θ is dense. We have the following result. The proof
is similar to the one in [23, Theorem 4.11], for completeness we give the detailed proof.

Proposition 4.8. If gl-G(WF )(R) < ∞, then the natural functor θ : G(WF ) −→ DWF
(R)

is dense.

Proof. Let X• ∈ Db
F (R). By [25, Proposition 3.9], Db

F (R) ∼= K−,F b(P(F )). Then there
exists a complex C•

0 = (Ci
0, di

C0
) ∈ K−,F b(P(F )) such that X• ∼= C•

0 in Db
F (R). Using the

fact that C•
0 is F -exact if and only if HomR(P, C•

0 ) is exact for any P ∈ P(F ), we get that
there exists n0 ∈ Z, such that Hi(HomR(P, C•

0 )) = 0 for all i ≤ n0, P ∈ P(F ).
Let Ki = Kerdi

C•
0
. Then C•

0 is isomorphic to the complex:

0 −→ Ki −→ Ci
0 −→ Ci+1

0 −→ Ci+2
0 −→ · · ·

in Db
F (R) for any i ≤ n0. It induces a distinguished triangle in Db

F (R), hence a distin-
guished triangle in DWF

(R) of the following form

Ki[−i] −→ σ≥iC•
0 −→ C•

0 −→ Ki[−i + 1].

Since σ≥iC•
0 ∈ Kb(P(F )) ⊆ Kb(WF ), C•

0
∼= Ki[−i + 1] in DWF

(R). Take l0 = i, and
Y = Ki. Then C•

0
∼= Y [−l0 + 1] in DWF

(R). By assumption, we may assume that
gl-G(WF )(R) = m0 < ∞. By Proposition 3.10, M has a WF -proper WF -F resolution.
Let C•

1 −→ Y be the left WF -resolution of Y . We claim that for any n ≤ −m0+1, Kerdn
C1

∈
G(WF ), where dn

C•
1

is the n-th differential of C•
1 .

Since gl-G(WF )(R) < ∞, we have a WF -proper left G(WF )-F resolution

0 −→ G−m0 −→ G−m0+1 −→ · · · −→ G−1 −→ G0 −→ Y −→ 0
with Gi ∈ G(WF ) for any −m0 < j ≤ 0. Let G• be the complex

0 −→ G−m0 −→ G−m0+1 −→ · · · −→ G−1 −→ G0 −→ 0
Then there exists an F -quasi-isomorphism C•

1 −→ G• lying over idY ,

0 // Kerdn
C1

���
�
�

// Cn
1

���
�
�

// · · · // C−m0
1

���
�
�

// · · · // C−1
1

���
�
�

// C0
1

���
�
�

// Y // 0

0 // 0 // 0 // · · · // G−m0 // · · · // G−1 // G0 // Y // 0
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and hence its mapping cone is F -exact. So for any n ≤ −m0 + 1, we get the following
F -exact complex:

0 → Kerdn
C1 → Cn

1 → · · · → C−m0
1 → C−m0+1

1 ⊕ G−m0 → · · · → C0
1 ⊕ G−1 → G0 → 0.

Note that this complex is acyclic, because F -exact is acyclic. Put K = Ker(C0
1 ⊕ G−1 →

G0), we get an F -exact sequence 0 → K → C0
1 ⊕ G−1 → G0 → 0. By [27, Lemma 2.4(2)],

we have an exact sequence:

Ext1
F (G0, W ) → Ext1

R(C0
1 ⊕ G−1, W ) → Ext1

R(K, W ) → Ext2
F (G0, W )

for any W ∈ WF . Since G0 ∈ G(WF ), Exti
F (G0,W) = 0 for i ≥ 1. Because both C0

1 ⊕ G−1

and G0 are in G(WF ), K ∈ G(WF ) by Lemma 3.5 and Proposition 3.7. Iterating this
process, we get that Kerdn

C1
∈ G(WF ) for any n ≤ −m0 + 1. Choose a left WF -proper

resolution C•
1 of Y and put X = Kerd−m0+1

C•
1

. By the above claim we have an F -exact
sequence:

0 → X → C−m0+1
1 → C−m0+2

1 → · · · → C0
1 → Y → 0

with X ∈ G(WF ). Then Y ' X[m0] in DWF
(R), and X ' C0 ' Y [−l0+1] ' X[m0−l0+1]

in DWF
(R). We may assume that X ∼= C•

0
∼= X[r0], for r0 > 0. Because X ∈ G(WF ),

we get a Hom(WF , −) and Hom(−,WF ) exact F -exact sequence 0 −→ X −→ W 0 −→
W 1 −→ · · · −→ W r0−1 −→ X ′ −→ 0 with X ′ ∈ G(WF ) and Wi ∈ WF for any 0 ≤ i ≤ r0.
It follows that X ' X ′[−r0] and X• ' C•

0 ' X[r0] ' X ′ in DWF
(R). This completes the

proof. □

In this following we show that the converse of Proposition 4.8 is true. Put
Db

F (R)fg(WF ) := {M• ∈ Db
F (R) | G(WF )-dimM• < ∞}.

Lemma 4.9. (1) Db
F (R)fg(WF ) is a triangulated subcategory of Db

F (R).
(2) Kb(WF ) is a triangulated subcategory of Db

F (R)fg(WF ).

Proof. (1) Clearly Db
F (R)fg(WF ) is closed under shift functors [1] and [-1]. Let M• and

N• be two complexes with M• ∼= N• in Db
F (R). Then we have G(WF )-dimM• < ∞ if and

only if G(WF )-dimN• < ∞. Hence Db
F (R)fg(WF ) is closed under isomorphisms. Assume

that M• −→ N• −→ L• −→ M•[1] is a triangle in Db
F (R) such that M• and N• are

in Db
F (R)fg(WF ). Then there exists some triangle X• f−→ Y • −→ Cone(f) −→ X•[1] in

Kb(R) such that M• −→ N• −→ L• −→ M•[1] is its image under the canonical functor.
Thus we have an isomorphism of triangles

M•

��

// N•

��

// L•

��

// M•[1]

��
X• // Y • // Cone(f) // X•[1]

in Db(R), and then L• ' Cone(f). Since Db
F (R)fg(WF ) is closed under isomorphisms

and M•, N• ∈ Db
F (R)fg(WF ), we have X•, Y • ∈ Db

F (R)fg(WF ). By the F -exactness
of the sequence of complexes 0 −→ Y • −→ Cone(f) −→ X•[1] → 0, we have that
Cone(f) ∈ Db

F (R)fg(WF ) by Corollary 3.16. Hence L• ∈ Db
F (R)fg(WF ).

(2) Let X• be a complex in Kb(WF ). We proceed by induction on the cardinal of the
finite set w(X•). If w(X•) = 1, then the assertion follows from the fact that WF ⊆ G(WF ).
Now suppose that w(X•) ≥ 2 with Xj 6= 0, j < 0, and Xi = 0 for any i > j. Then we
have a distinguished triangle in Db

F (R):

X•
2 [−1] u−→ X•

1 −→ X• −→ X•
2
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in Kb(WF ), where X•
1 = Xj [j] and X•

2 = σ<jX•. By the induction hypothesis and
the fact that Db

F (R)fg(WF ) is a triangulated subcategory of Db
F (R), we get that X• ∈

Db
F (R)fg(WF ). □

Proposition 4.10. If θ : G(WF ) −→ DWF
(R) is dense, then G(WF )-dimM• < ∞ for any

M• ∈ Db
F (R). Moreover, in this case, gl-G(WF )(R) < ∞.

Proof. Assume that θ : G(WF ) −→ DWF
(R) is dense and any M• ∈ Db

F (R). It follows

that M• ∼= F (G) in DWF
(R) for some G ∈ G(WF ). Let s \ f : M• f−→ Z• s⇐= G be an

isomorphism in DWF
(R) with Cone(s) ∈ Kb(WF ), then Cone(f) ∈ Kb(WF ). Consider

the triangle G
f=⇒ Z• −→ Cone(s) −→ G[1] in Db

F (R). By Lemma 4.9(2), both G and
Cone(s) lie in Db

F (R)fg(WF ), so Z• ∈ Db
F (R)fg(WF ) by Lemma 4.9(1). It follows that

M• ∈ Db
F (R)fg(WF ). Therefore G(WF )-dimM• < ∞ for any M• ∈ Db

F (R). By Lemma
3.13, we have G(WF )-dimM < ∞ for any R-module M . Hence, gl-G(WF )(R) < ∞ follows
by a argument similar to that of [24, Corollary 2.10]. □

Therefore, Theorem 4.4 follows directly from Propositions 4.8 and 4.10.

Recall that a Gorenstein ring is a left and right Noetherian ring of finite left and
right self-injective dimensions. We denote by G(P) the class of Gorenstein-projective R-
modules. Set F = Ext1

R(−, −) and WF = R-Proj, then we have G(WF ) = G(P). In this
case, the relative singularity category is the big singularity category of R : DSg(R) =
Db(R-Mod)/Kb(R-Proj). We then apply the obtained results and we have the following
theorem by Beligiannis ([4, Theorem 6.9]), which says that for a Gorenstein ring, the big
singularity category is triangle-equivalent to the stable category of Gorenstein-projective
modules.

Corollary 4.11. Let R be a left and right noetherian ring. Then the natural functor
θ : G(P) → DSg(R)

is triangle-equivalence if and only if R is Gorenstein.

Proof. Set F = Ext1
R(−, −) and WF = R-Proj. From [6, Corollary 3.13] we know that

R is Gorenstein if and only if gl-G(R-Proj)(R) < ∞. The assertion follows by Theorem
4.4. □
Remark 4.12. Let R be an Artin algebra. In fact, if all involved modules are finitely
generated,Theorem 4.4 still holds by similar arguments. Therefore, we can use this “finitely
generated” version of Theorem 4.4 freely.

Using the “finitely generated” version of Theorem 4.4 and [18, Theorem], we have the
following result. Compare [5, Theorem 3.6].

Corollary 4.13. Let R be an Artin algebra. Then the natural functor
θ : G(R-proj) → Dsg(R)

is dense if and only if R is Gorenstein.

Let R and S be rings. Following [17], an (S, R)-bimodule C = SCR is semidualizing if:
(1) SC admits a degreewise finite S-projective resolution.
(2) CR admits a degreewise finite R-projective resolution.
(3) The homothety map SSS → HomR(C, C) is an isomorphism.
(4) The homothety map RRR → HomS(C, C) is an isomorphism.
(5) Ext⩾1

S (C, C) = 0.
(6) Ext⩾1

R (C, C) = 0.
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Let R and S be rings, and let SCR be a semidualizing bimodule. Let
WP = {C ⊗R P | P is a projective left R-module},

WI = {HomS(C, I) | I is an injective left S-module}.

The WP -Gorenstein and WI -Gorenstein modules which will be called C-Gorenstein pro-
jective and C-Gorenstein injective modules respectively. By [14, Corollary 3.2], WP and
WI are self-orthogonal. If we set F = Ext1

S(−, −) and WF = WP , then denoted by
gl-G(WP )(S) the C-Gorenstein projective global dimension of S. Similarly, if we set
F = Ext1

R(−, −) and WF = WI , then denoted by cogl-G(WI)(R) the C-Gorenstein injec-
tive global dimension of S. By Theorem 4.4 and its dual, we have the following result.

Corollary 4.14. Let R and S be rings and SCR a semidualizing bimodule. Then
(1) the functor

θ : G(WP ) −→ DWP
(S)

is a triangle-equivalence if and only if gl-G(WP )(S) < ∞.
(2) the functor

θ : G(WI) −→ DWS
(R)

is a triangle-equivalence if and only if cogl-G(WI)(R) < ∞.
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