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Abstract − The major target of our research paper is to demonstrate the boundedness, stability

and periodicity of the solutions of the following third- order difference equation

wn+1 =αwn + β+γwn−2

δ+ζwn−2
, n = 0,1,2, . . .

where w−2, w−1, and w0 are arbitrary real numbers and the values α, β, γ, δ, and ζ are defined as

positive constants.

Subject Classification (2020): 39A10, 39A11.

1. Introduction

Difference equations are basis in many fields of life which model several varied phenomena in ecology,

biology, physics, engineering, etc. since have an important status in applied sciences. Recently, researchers

have concentrated on studying the behaviors of rational difference equations of order greater than one

which deserves further consideration. The study of the behaviors of difference equations of a higher order is

quite challenging and valuable due to the importance of rational difference equations and its applications.

Moreover, there are many recent published research paper in this area. For examples, Alayachi et al. [1]

explored the qualitative behavior of the solutions of the following recursive equation

Yn+1 = AYn−1 + BYn−1Yn−3

C Yn−3 +DYn−5

In [2], Elabbasy et al. studied the periodicity of solutions, boundedness and stability of solutions of the

difference equation

xn+1 = αxn +βxn−1 +γxn−2

Axn +B xn−1 +C xn−2
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In [3], they analyzed some behaviors of the solution of the following equation

xn+1 = axn−1 +bxn−2

c +d xn−1xn−2

Alayachi et al.[4], gave a description about the stability and periodicity of the following difference equation:

xn+1 = axn−1 + bxn−1

cxn−1 −d xn−3

Almatrafi et al. [5], investigated the following difference equation:

xn+1 = axn−1 − bxn−1

cxn−1 −d xn−3

Elsayed et al. [6] researched the global stability, periodicity character of the following second order differ-

ence equation

xn+1 = axn + b + cxn−1

d +exn−1

The dynamical behaviors of the following difference equation

Un+1 = ζUn−8 +
ϵU 2

n−8

µUn−8 +kUn−17

was investigated by Alshareef et al. in [7].

Also, the authors in [8] considered the stability, periodicity character of the following third order rational

difference equation

xn+1 = axn +bxn−1 + c +d xn−2

e + f xn−2

Aloqeili [9] has described the behaviors of the following difference equation

xn+1 = xn−1

a −xn xn−1

For more linked results on this side can be found in [10–27].

The purpose of this research paper is to investigate the following new rational difference equation

wn+1 =αwn + β+γwn−2

δ+ζwn−2
, n = 0,1,2, . . . (1.1)

where w−2, w−1, and w0 are arbitrary real numbers and the values α, β, γ, δ, and ζ are defined as positive

constants.

2. Some Basic Theorems

In this part, we recall some basic theorems that we use in this paper.

Theorem 2.1. [5] Suppose that pi ∈ R , i = 1,2, . . . and k ∈ {0,1,2, . . . }. Then,

k∑
i=1

∣∣pi
∣∣< 1
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is a sufficient condition for the asymptotic stability of the difference equation

wn+k +p1wn+k−1 +·· ·+pk wn = 0, n = 0,1,2, . . .

The next theorem will be useful to prove the global attractor of the fixed point.

Theorem 2.2. [5] Suppose that g : [a,b]l+1 → [a,b] be a continuous function, where l is a positive integer

and [a,b] be an interval of real numbers. Consider the difference equation

xn+1 = g (xn , xn−1, . . . , xn−l ), n = 0,1, . . .

Assume that g satisfying the following :

(1) For each integer i with 1 ≤ i ≤ l + 1, the function g (z1, z2, . . . , zl+1) is weakly monotonic in zi for each

z1, z2, . . . , zl+1.

(2) If (m, M) be a solution of the system

m = g (m1,m2, . . . ,ml+1) and M = g (M1, M2, . . . , Ml+1)

then, for each i = 1,2, . . . , l +1

m = M

Then, there exists a unique equilibrium point x and every solution converges to x.

3. Local Stability of Equation (1.1)

This section is devoted to discuss the local stability of the solution of Equation (1.1).

Equation (1.1) has the unique equilibrium point which given by

w =αw + β+γw

δ+ζw

or

ζ(1−α)w2 + (δ−δα−γ)w −β= 0

Then, the unique equilibrium point is

w = (γ−δ+δα)+
√

(γ−δ+δα)2 +4βζ(1−α)

2ζ(1−α)

Theorem 3.1. The equilibrium point w is locally asymptotically stable if and only if

(δ−ζw)2 >
∣∣γδ−βζ∣∣

(1−α)
, α< 1

Proof.

Let us define the function f : (0,∞)2 −→ (0,∞) as

f (u, v) =αu + β+γv

δ+ζv
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Thus,

∂ f (u, v)

∂u
=α and

∂ f (u, v)

∂v
= γδ−βζ

(δ+ζv)2

So, we see that at w ,

∂ f (w , w)

∂u
= α = p0

∂ f (w , w)

∂u
= γδ−βζ

(δ+ζw)2 = p1

Then, by linearization of Equation (1.1) around w we have

yn+1 −p0 yn −p1 yn−2 = 0

By Theorem 2.1, Equation (1.1) is asymptotically stable if and only if

∣∣p0
∣∣+ ∣∣p1

∣∣< 1

Thus,

|α|+
∣∣∣∣ γδ−βζ(δ+ζw)2

∣∣∣∣< 1

and so, ∣∣∣∣ γδ−βζ(δ+ζw)2

∣∣∣∣< 1−α, α< 1

or ∣∣γδ−βζ∣∣
|1−α| < (δ+ζw)2, α< 1

which proved the required.

4. Boundedness of Solutions

In this part, the discussion centres on the boundedness of solutions of Equation (1.1). The following theo-

rems provide the bounded and unbounded solution under a specific condition.

Theorem 4.1. Every solution of Equation (1.1) is bounded if α< 1.

Proof.

Let {wn}∞n=−2 be a solution of Equation (1.1). From Equation (1.1) we note that

wn+1 =αwn + β+γwn−2

δ+ζwn−2

=αwn + β

δ+ζwn−2
+ γwn−2

δ+ζwn−2

Then,

wn+1 ≤αwn + β

δ
+ γwn−2

ζwn−2

=αwn + β

δ
+ γ

ζ
, for all n ≥ 2



Alsulami and Elsayed / JNRS / 11(1) (2022) 48-61 52

In order to handle the right hand side by using a comparison we have that

zn+1 =αzn + β

δ
+ γ

ζ

so ,we can write

zn =αn z0 +constant

and this equation is locally asymptotically stable since α < 1 and converges to the equilibrium point z =
βζ+γδ
δζ(1−α) .

Therefore,

lim
n→∞sup wn ≤ βζ+γδ

δζ(1−α)

which gives solution is bounded.

Theorem 4.2. Every solution of Equation (1.1) is unbounded if α> 1.

Proof.

Let {wn}∞n=−2 be a solution of Equation (1.1). From Equation (1.1) we note that

wn+1 =αwn + β+γwn−2

δ+ζwn−2
>αwn , for all n ≥ 2

We can write the right hand side as

zn+1 =αzn ⇒ zn =αn z0

and this equation is unstable since α > 1 and limn→∞ zn = ∞. Then, {wn}∞n=−2 is unbounded from above

where we have used ratio test.

5. Periodicity of the Solution

The existence of periodic solutions of Equation (1.1) is deeply investigated in this section. The next theorem

confirms that our equation has periodic solutions of prime period two under necessary conditions.

Theorem 5.1. Equation (1.1) has a period two solution if and only if

(1+α)2ζ2(δ+αδ+γ)2 −4α(1+α)ζ2[δ(δ+αδ+γ)+αβζ] > 0 (5.1)

Proof.

We claim that there exists a period two solution

. . . , p, q, p, q, . . .

of Equation (1.1), and we prove that condition (5.1) holds.

From Equation (1.1), we have

p =αq + β+γq

δ+ζq
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and

q =αp + β+γp

δ+ζp

Therefore,

δp +ζpq =αδq +αζq2 +β+γq (5.2)

and

δq +ζpq =αδp +αζp2 +β+γp (5.3)

Subtracting (5.3) from (5.2) we get

δ(p −q) =−αδ(p −q)−αζ(p2 −q2)−γ(p −q)

So,

δ=−αδ−αζ(p +q)−γ

Indeed p ̸= q , it gives that

p +q = −(δ+αδ+γ)

αζ
(5.4)

Again, adding (5.2) and (5.3) gives

δ(p +q)+2ζpq =αδ(p +q)+αζ(p2 +q2)+2β+γ(p +q)

2ζpq =αζ(p2 +q2)+ (αδ+γ−δ)(p +q)+2β (5.5)

By using this relation

p2 +q2 = (p +q)2 −2pq for all p, q ∈ R

and from (5.4) ,(5.5) yields

2ζpq =αζ((p +q)2 −2pq)+ (αδ+γ−δ)(−δ−αδ−γ)

αζ
+2β

that is

2ζ(1+α)pq =αζ (δ+αδ+γ)2

α2ζ2 + (αδ+γ−δ)(−δ−αδ−γ)

αζ
+2β

And

2αζ2(1+α)pq = 2δ2 +2αδ2 +2δγ+2αβζ

αζ2(1+α)pq = δ(δ+αδ+γ)+αβζ

Then,

pq = δ(δ+αδ+γ)+αβζ
αζ2(1+α)

(5.6)

From Equations (5.4) and (5.6), clearly that p and q are the two distinct roots of the following quadratic

equation

t 2 − (p +q)t +pq = 0

So,

t 2 + (δ+αδ+γ)

αζ
t +

(
δ(δ+αδ+γ)+αβζ

αζ2(1+α)

)
= 0
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that is,

αζ2(1+α)t 2 + (1+α)ζ(δ+αδ+γ)t + [
δ(δ+αδ+γ)+αβζ]= 0 (5.7)

and so

(1+α)2ζ2(δ+αδ+γ)2 > 4αζ2(1+α)[δ(δ+αδ+γ)+αβζ]

or

(1+α)2ζ2(δ+αδ+γ)2 −4αζ2(1+α)[δ(δ+αδ+γ)+αβζ] > 0

Therefore, condition (5.1) holds.

On the contrary side, assume that condition (5.1) is true. We shall prove that Equation (1.1) has a prime

period two solution.

Suppose

p = −(1+α)ζ(δ+αδ+γ)+λ
2αζ(1+α)

and

q = −(1+α)ζ(δ+αδ+γ)−λ
2αζ(1+α)

where λ=
√

(1+α)2ζ2(δ+αδ+γ)2 −4αζ2(1+α)
[
δ(δ+αδ+γ)+αβζ]

We see from condition (5.1) that

(1+α)2ζ2(δ+αδ+γ)2 −4αζ2(1+α)[δ(δ+αδ+γ)+αβζ] > 0

which equivalents to

(1+α)2ζ2(δ+αδ+γ)2 > 4αζ2(1+α)[δ(δ+αδ+γ)+αβζ]

Therefore p and q are distinct real numbers.

Put

w−2 = p, w−1 = q and w0 = p

We wish to get that

w1 = w−1 = q and w2 = w0 = p

From Equation (1.1) we have that

w1 =αp + β+γp

δ+ζp
= −α(1+α)ζ(δ+αδ+γ)+λ

2αζ(1+α)
+
β+ −(1+α)γζ(δ+αδ+γ)+λ

2αζ(1+α)

δ+ −(1+α)ζ2(δ+αδ+γ)+λ
2αζ(1+α)

Multiplying the denominator and numerator by 2αζ(1+α) we get

w1 =−α(1+α)ζ(δ+αδ+γ)+λ+ 2αβζ(1+α)− (1+α)γζ(δ+αδ+γ)+λ
2αδζ(1+α)− (1+α)ζ2(δ+αδ+γ)+λ

We can get by simple computations that

w1 = −(1+α)ζ(δ+αδ+γ)−λ
2αζ(1+α)

= q
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Similar way as before, we can conclude that w2 = p. So, by induction we get that

w2n = p and w2n+1 = q, for all n ≥−2

Hence, Equation (1.1) has the prime period two solutions

. . . , p, q, p, q, . . .

This completes the proof of theorem.

6. Global Attractivity Results

This section is devoted to investigate the global asymptotic stability of Equation (1.1).

Theorem 6.1. If one of the following statements holds

(∗) γδ≥βζ and γ> δ(1−α), α< 1 (6.1)

(∗∗) γδ≤βζ and α< 1 (6.2)

then equilibrium point w is a global attractor of Equation (1.1).

Proof.

Suppose that a and b are real numbers and assume that g : (a,b)2 −→ (a,b) is a function defined as

g =αu + β+γv

δ+ζv

Then, we have

∂g (u, v)

∂u
=α ,

∂g (u, v)

∂v
= γδ−βζ

(δ+ζv)2

Now, we have to cases to consider:

Case(1): Suppose that (6.1) is true, clearly the function g (u, v) increasing in both u and v .

Let w be a solution of the equation w = g (w, w). Then, we have from Equation (1.1) that

w =αw + β+γw

δ+ζw

or

w(1−α) = β+γw

δ+ζw

then the equation

ζ(1−α)w2 + (δ(1−α)−γ)w −β= 0

has a unique positive solution when γ> δ(1−α), α< 1 which is

w = (γ−δ+δα)+
√

(γ−δ+δα)2 +4βζ(1−α)

2ζ(1−α)
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Which implies by using Theorem 2.2 that w is a global attractor of Equation(1.1).

Case(2): Suppose that (6.2) is true, clearly the function g (u, v) increasing in u and decreasing in v .

Assume that (m, M) be a solution of the system M = g (M ,m) and m = g (m, M). Then we have from Equation

(1.1) that

M =αM + β+γm

δ+ζm
, m =αm + β+γM

δ+ζM

or

M(1−α) = β+γm

δ+ζm
, m(1−α) = β+γM

δ+ζM

thus

δ(1−α)M +ζ(1−α)Mm =β+γm , δ(1−α)m +ζ(1−α)mM =β+γM

implies that

(M −m) = δ(1−α)(M +m)+γ= 0

Which under the condition α< 1 gives

M = m

Which implies by using Theorem 2.2 that w is a global attractor of Equation (1.1). Hence, this completes the

proof.

7. Numerical Solutions

Here, we consider some numerical examples in order to verify our theoretical results of this paper which

provide different types solutions to Equation (1.1).

Example 7.1. Assume that w−2 = 1, w−1 = 7, w0 = 11, α= 0.2, β= 2, γ= 5, δ= 3, and ζ= 7. See Figure 1.

0 2 4 6 8 10 12 14 16 18 20

n

0

2

4

6

8

10

12

x(
n
)

Figure 1. Local Stability of Equation (1.1)
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Example 7.2. Suppose that w−2 = 0.5, w−1 = 3, w0 = 0.9, α = 0.1, β = 3.5, γ = 5, δ = 0.05, and ζ = 9. Then,

this example demonstrates the global stability behaviour of Equation (1.1). See Figure 2.

0 2 4 6 8 10 12 14 16 18 20

n

0.5

1

1.5

2

2.5

3

x
(n

)

Figure 2. Global Stability of Equation (1.1)

Example 7.3. This example plot the solution when we have w−2 = 0.5, w−1 = 7, w0 = 3,α= 1.2,β= 4, γ= 1.5,

δ= 0.6, and ζ= 5.3. See Figure 3.
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n
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140

x(
n

)

Figure 3. Solution of Equation (1.1)

Example 7.4. Here, we also present the plot of the solution under w−2 = 0.2, w−1 = 3, w0 = 0.4, α = 0.2,

β= 2, γ= 4, δ= 0.5, and ζ= 4. See Figure 4.
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0 2 4 6 8 10 12 14 16 18 20

n
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x
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)

Figure 4. Solution of Equation (1.1)

Example 7.5. Now , we show the behavior of the solution when w−2 = 0.2, w−1 = 1.5, w0 = 0.2,α= 0.1, β= 6,

γ= 4, δ= 8, and ζ= 11. See Figure 5.
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n
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x(
n
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Figure 5. Solution of Equation (1.1)

Example 7.6. In this example , we confirm that our equation has period two when α= 0.6, β= 0.5, γ= 0.9,

δ= 0.5, ζ= 0.9, w−2 = p, w−1 = q , w0 = q (since p, q = −(1+α)ζ(δ+αδ+γ)±λ
2αζ(1+α) ) . See Figure 6.
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Figure 6. Solution of Period Two

8. Conclusion

In conclusion, we have shown some significant dynamical behaviors of Equation (1.1) such as investigated

the local and global stability. Also, we highlighted to the boundedness of the solutions of Equation (1.1)

and we established two theorems to show that when the solution of the Equation (1.1) is bounded and

unbounded under necessary condition. Furthermore, we have discussed the existence of periodic solutions

and obtained that Equation (1.1) has a periodic solutions of period two. Finally, we gave some numerical

examples of Equation (1.1) and got some figures to confirm our theoretical results by using Matlab.
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