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Highlights 
• A system of generators of affine invariant functions a vector field for the affine groups is given. 

• Rigidity and uniqueness theorems for immersions in affine geometry were obtained. 

• Rigidity and uniqueness theorems for immersions are given in terms of affine invariants of immersions.  

Article Info 

 

Abstract 

Main results: The system of Christoffel symbols of the connection of an immersion 𝜉: 𝐽 → 𝑅𝑛 of 

an 𝑛-dimensional manifold 𝐽 in the 𝑛-dimensional linear space 𝑅𝑛 is a system of generators of 

the differential field of all 𝐴𝑓𝑓(𝑛)-invariant differential rational functions of 𝜉, where 𝐴𝑓𝑓(𝑛) is 
the group of all affine transformations of 𝑅𝑛 . A similar result have obtained for the subgroup 

𝑆𝐴𝑓𝑓(𝑛) of  𝐴𝑓𝑓(n) generated by all unimodular linear transformations and parallel translations 

of 𝑅𝑛. Rigidity and uniqueness theorems for immersions 𝜉: 𝐽 → 𝑅𝑛 in geometries of groups 

𝐴𝑓𝑓(𝑛) and 𝑆𝐴𝑓𝑓(𝑛) were obtained. These theorems are given in terms of the affine connection 

and the volume form of immersions. 
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1. INTRODUCTION 

 

Let 𝐺𝐿(𝑛) be the group of all non-degenerate linear transformations. Denote by 𝑆𝐿(𝑛) the subgroup of all 

𝑔 ∈ 𝐺𝐿(𝑛) such that det 𝑔 = 1. 

Let 𝐴𝑓𝑓(𝑛) be a group of all affine transformations 𝑓:ℝ𝑛 → ℝ𝑛, 𝑓(𝑥) = 𝐴𝑥 + 𝑏, 𝑥 ∈ ℝ𝑛 with 𝑏 ∈ ℝ𝑛 and 

for all 𝐴 ∈ 𝐺𝐿(𝑛). 

Denote by 𝑆𝐴𝑓𝑓(𝑛) the subgroup of 𝐴𝑓𝑓(𝑛) such that 𝑓 ∈ 𝐴𝑓𝑓(𝑛), 𝑓(𝑥) = 𝐴𝑥 + 𝑏, 𝑥 ∈ ℝ𝑛 with 𝑏 ∈ ℝ𝑛 

and for all 𝐴 ∈ 𝑆𝐿(𝑛). 

The Bonnet's fundamental rigidity and uniqueness theorem for hypersurface immersions in the geometry 

of the special Euclidean group 𝑆𝑀(𝑛) is known in [1, 2]. An analogue of Bonnet's fundamental rigidity and 

uniqueness theorem for hypersurfaces in the geometry of the group 𝑆𝐴𝑓𝑓(𝑛) was given in [2-4]. For 

surfaces in the geometry of the group 𝑆𝐿(3) it is given in [4] and for surfaces in the geometry of the group 

𝑆𝐴𝑓𝑓(3) it is given in [3]. 

Two analogues of the rigidity and uniqueness theorems for immersions of an 𝑛 dimensional manifold in an 

𝑛-dimensional Euclidean space were obtained. The first analogue is given for the Euclidean group 𝑀(𝑛) in 

[5-7]. 

Another analogue of the rigidity and uniqueness theorem for vector fields in a Euclidean geometry is given 

in [8]. Note that in this book and papers mentioned below in Introduction, the term "vector field" is used 

for any map 𝜉: 𝐽 → 𝑅𝑛 of an open subset 𝐽 ⊂ 𝑅𝑛. The vector field can be also named “n-parametric surface”. 

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0001-7056-5662
https://orcid.org/0000-0002-5394-2179
https://orcid.org/0000-0003-2716-3945
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The theorem in the book [8] is essentially the rigidity and uniqueness theorem for a system of three 

orthonormal vector fields in the geometry of the orthogonal group 𝑂(3). For the Euclidean group 𝑀(𝑛) 
and the special Euclidean group 𝑆𝑀(𝑛), other forms of rigidity theorems for vector fields have given in 

[9]. In the paper, it is obtained also that the system of coefficients of the Riemannian metric of an parametric 

surface is a system of generators of the differential field of all 𝑀(𝑛)-invariant differential rational functions 

of an n-parametric surface. 

Therefore, for the geometry of the 𝑛-dimensional pseudo-Euclidean group of index 𝑝, (it will denoted by 

𝑀(𝑛, 𝑝)), the rigidity and uniqueness theorems for immersions of an 𝑛-dimensional manifold were given 

in [10]. 

Investigations of the problem of 𝐴𝑓𝑓(𝑛)-equivalence and 𝑆𝐴𝑓𝑓(𝑛)-equivalence of immersions (vector 

fields), 𝐴𝑓𝑓(𝑛)-invariant and 𝑆𝐴𝑓𝑓(𝑛)-invariant immersions (vector fields) and 𝐴𝑓𝑓(𝑛)-invariants and 

𝑆𝐴𝑓𝑓(𝑛)-invariants of immersions (vector fields) play an important and critical role in science, 

technology, engineering, mathematics, mathematical physics and computer vision and pattern recognition, 

etc. (see some references [11-15]). 

The problem of description of the general form of all invariant polynomial vector fields for a compact Lie 

groups is intensively studied in the bifurcation theory [16-18]. The problem of equivalence of smooth vector 

fields and the problem of a description of complete systems of invariants of polynomial vector fields are 

investigated in the theory of differential equations [19,20]. 

The structure of the paper is organized as follows. In section 2, for a vector field 𝜉(𝑢) on an open subset 𝐽 
of ℝ𝑛, we describe a system of generators of the differential field of all 𝐺-invariant differential rational 

functions of 𝜉(𝑢) for groups 𝐺 = 𝐴𝑓𝑓(𝑛), 𝑆𝐴𝑓𝑓(𝑛) (Theorems 1 and 2). 

In section 3, for an 𝑛-dimensional connected manifold 𝑀, using results of Section 2, we obtain the following 

results: 

(1) The rigidity theorem for the connection on 𝑀 induced by the immersion 𝜉:𝑀 ⟶ ℝ𝑛 (Theorem 3) and 

some consequences of this theorem (Corollaries 3 and 4). By Corollary 3, Theorem 2 means that the system 

of Christoffel symbols of the connection on 𝑀 induced by the immersion 𝜉:𝑀 ⟶ ℝ𝑛 is a system of 

generators of the differential field of all 𝐴𝑓𝑓(𝑛)-invariant differential rational functions of 𝜉(𝑢). 

(2) The rigidity theorem for the connection and the volume form on 𝑀 induced by an immersion 𝜉:𝑀 ⟶
ℝ𝑛 (Theorem 4). 

In section 4, for an 𝑛-dimensional connected, simply connected manifold 𝑀, we prove the existence 

theorem for a connection on 𝑀 (Theorem 5). 

 

2. GENERATING SYSTEMS OF AFFINE INVARIANT DIFFERENTIAL RATIONAL 

FUNCTIONS OF A VECTOR FIELD 

 

Let 𝐽 be an open subset of ℝ𝑛. Throughout this paper, we will take a vector field 𝜉(𝑢) such that 𝜉: 𝐽 → ℝ𝑛 

is a 𝐶∞-mapping. Here a 𝐶∞-mapping 𝜉 is called to be an 𝑛-parametric surface (𝐽-vector field, for 

shortness) in ℝ𝑛. 

Denote the set of all non-negative integers by ℕ0. For 𝛼𝑖 ∈ ℕ0 for 𝑖 = 1,2, … , 𝑛, we put 

𝜉(𝛼1,𝛼2,…,𝛼𝑛) =
∂𝛼1+𝛼2+⋯+𝛼𝑛

∂𝑢1
𝛼1 ∂𝑢2

𝛼2…∂𝑢𝑛
𝛼𝑛 𝜉(𝑢). It is clear that 𝜉(0,0, … ,0) = 𝜉(𝑢). 

Throughout this paper, we will take the real numbers ℝ to be ground field. The ring of differential 

polynomials of 𝑓(𝜉, 𝜉(1,0,…,0), 𝜉(0,1,…,0), … , 𝜉(𝛼1,𝛼2,…,𝛼𝑛)) in a finite number of partial derivatives of 𝜉 with 



926  Djavvat KHADJIEV, Gayrat BESHIMOV, Idris OREN / GU J Sci, 37(2): 924-937 (2024) 

 
 

real coefficients is denoted ℝ{𝜉}. This being case, we denote 𝑓(𝜉, 𝜉(1,0,…,0), 𝜉(0,1,…,0), … , 𝜉(𝛼1,𝛼2,…,𝛼𝑛)) by 

𝑓{𝜉}. Therefore, ℝ{𝜉} is a differential ℝ-algebra and an integral domain. In this case, denote its quotient 

field by ℝ⟨𝜉⟩. Then ℝ⟨𝜉⟩ is a differential field and its an element 𝑓 is a differential rational function of 𝜉. 

This being case, denote it by 𝑓⟨𝜉⟩. 

This definitions can be generalized as follow: Let 𝜉1, 𝜉2, … , 𝜉𝑘 be 𝑘-tuple vector fields defined on the same 

subset 𝐽 in ℝ𝑛. In this case, denote a differential polynomial and a differential rational function of 

𝜉1, 𝜉2, … , 𝜉𝑘 by 𝑓{𝜉1, 𝜉2, … , 𝜉𝑘} and 𝑓⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩, resp. Their ring of all differential polynomials and field 

of all differential rational functions is denoted by ℝ{𝜉1, 𝜉2, … , 𝜉𝑘} and ℝ⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩, resp. 

Let 𝐺 be one of the groups 𝐴𝑓𝑓(𝑛) or 𝑆𝐴𝑓𝑓(𝑛). 

Definition 1. A differential 𝐺-invariant function is a real-valued function 𝑓: 𝐽𝑘 → ℝ which satisfied 

𝑓⟨𝐹𝜉1, 𝐹𝜉2, … , 𝐹𝜉𝑘)⟩ = 𝑓⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩ for all 𝐹 ∈ 𝐺 and 𝜉1, 𝜉2, … , 𝜉𝑘 are 𝐽 - vector fields in ℝ𝑛. 

It is easy to see that given a 𝐽 - vector field 𝜉(𝑢), then every affine transformation 𝐹 transforms 𝜉(𝑢) into 

a new 𝐽 - vector field 𝐹𝜉(𝑢). 

In this paper, we are interested in the set 

ℝ⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩
𝐺 = {𝑓 ∈ ℝ⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩ ∣ 𝑓 is a 𝐺-invariant function } 

of all functions which are invariant under the action of 𝐺. This set is a differential subfield of 

ℝ⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩. We call ℝ⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩
𝐺 the set of all 𝐺-invariant differential rational functions of 

𝜉1, 𝜉2, … , 𝜉𝑘. 

Now we will find a set of generators for ℝ⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩
𝐺 which is one of the fundamental problems of 

invariant theory. 

We will consider element 𝑎𝑟 ∈ ℝ𝑛 in the form 𝑎𝑟 = (

𝑎𝑟1
𝑎𝑟2
⋮

𝑎𝑟𝑛

) for all 𝑟 = 1,2,… , 𝑛. For 𝑎𝑟 ∈ ℝ𝑛, denote the 

determinant of the matrix (𝑎𝑖𝑗) by [𝑎1𝑎2…𝑎𝑛]. 

Hence applying 𝑎𝑘 to elements 𝑎𝑟 = 𝜉(𝛼𝑟1,𝛼𝑟2,…,𝛼𝑟𝑛) for all 𝑟 = 1,2,… , 𝑛, we obtain the determinant 

[𝜉(𝛼11,𝛼12,…,𝛼1𝑛)𝜉(𝛼21,𝛼22,…,𝛼2𝑛)…𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)]. 

In the case, we put 

Ω = [
∂𝜉

∂𝑢1

∂𝜉

∂𝑢2
⋯

∂𝜉

∂𝑢𝑛
]  and Ω𝑖𝑗

𝑘 = [
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1

∂2𝜉

∂𝑢𝑖 ∂𝑢𝑗

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
]  for all 𝑖, 𝑗, 𝑘 =

1,2,… , 𝑛.
 

Theorem 1. The system 

𝑆 = {Ω, Ω𝑖𝑗
𝑘 ; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} (1) 

is a set of generators of 𝑅⟨𝜉⟩𝑆𝐴𝑓𝑓(𝑛). 

 

Proof. Firstly, we give some lemmas for the proof of the theorem. 
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Let ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩ and ℝ ⟨

∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝐺

 be the differential field of all differential rational functions and 

the differential field of all 𝐺-invariant differential rational functions of 
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
, resp. 

Lemma 1.  ℝ⟨𝜉⟩𝑆𝐴𝑓𝑓(𝑛) = ℝ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝑆𝐴𝑓𝑓(𝑛)

= ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝑆𝐿(𝑛)

. 

Proof. The proof is similar to the proof of Lemma 1 in [9]. 

Lemma 2. Let 𝑓 ∈ ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝑆𝐿(𝑛)

. Then there exist 𝑆𝐿(𝑛)-invariant differential polynomials 𝑓1, 𝑓2 

such that 𝑓 = 𝑓1/𝑓2. 

Proof. The proof is similar to the proof of lemma in [21]. 

Lemma 3. The system 

𝑊 = {[𝜉(𝛼11,𝛼12,…,𝛼1𝑛)𝜉(𝛼21,𝛼22,…,𝛼2𝑛)…𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)],∑  

𝑛

𝑗=1

𝛼𝑖𝑗 ≥ 1,1 ⩽ 𝑖 ⩽ 𝑛} 

 

(2) 

 is a set of generators of ℝ{𝜉}𝑆𝐴𝑓𝑓(𝑛) as an ℝ-algebra. 

Proof. The proof is obtained from [22] and Lemmas 2 and 9.  

Remark 1. Similar proofs of Lemma 3 are given in [9, 10]. 

Lemma 4. The system 𝑊 in Lemma 3 is a set of generators of ℝ{𝜉}SAff (𝑛) as a field. 

Proof. The proof is obvious from Lemmas 2,3and9. 

Let ℝ{𝑆} and ℝ{𝑆,𝜔−1} be the ℝ-subalgebras of ℝ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝑆𝐿(𝑛)

. From Lemmas 4 and 9 for a proof 

of the theorem, it is enough to prove that 𝑊 ∈ ℝ{𝑆,𝜔−1}. Now, let 

𝐴 = [𝜉(𝛼11,𝛼12,…,𝛼1𝑛)𝜉(𝛼21,𝛼22,…,𝛼2𝑛)…𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)]. 

 

(3) 

Let 𝑠(𝐴) be the number of elements of the set  

{𝜉(𝛼11,𝛼12,…,𝛼1𝑛), 𝜉(𝛼21,𝛼22,…,𝛼2𝑛), … , 𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)} ∖ {
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
}. 

We set 𝑟(𝐴) = max1≤𝑖≤𝑛  ∑𝑗=1
𝑛  𝛼𝑖𝑗. 

Lemma 5. Let 𝐴 be a differential polynomial of the form (3), where 𝑠(𝐴) ≥ 2. Then 𝐴 is a polynomial of 

Ω−1 and differential polynomials 𝐵 of the form (3), where 𝑠(𝐵) < 𝑠(𝐴) and 𝑟(𝐵) ≤ 𝑟(𝐴). 

 

Proof. By 𝑠(𝐴) ≥ 2, there exists 𝑘 ∈ {1,2,… , 𝑛}, such that 
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∂𝜉

∂𝑢𝑘
∉ {𝜉(𝛼11,𝛼12,…,𝛼1𝑛), 𝜉(𝛼21,𝛼22,…,𝛼2𝑛), … , 𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)}. 

In [23], we put 

𝑥1 = 𝜉(𝛼11,𝛼12,…,𝛼1𝑛), 𝑥2 = 𝜉(𝛼21,𝛼22,…,𝛼2𝑛), … , 𝑥𝑛 = 𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛), 𝑥0 =
∂𝜉

∂𝑢𝑘
,

𝑦2 =
∂𝜉

∂𝑢1
, … , 𝑦𝑘 =

∂𝜉

∂𝑢𝑘−1
, 𝑦𝑘+1 =

∂𝜉

∂𝑢𝑘+1
, … , 𝑦𝑛 =

∂𝜉

∂𝑢𝑛
.

 

Then 

[𝜉(𝛼11,𝛼12,…,𝛼1𝑛)𝜉(𝛼21,𝛼22,…,𝛼2𝑛)…𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)] ×

[
∂𝜉

∂𝑢𝑘

∂𝜉

∂𝑢1
…

∂𝜉

∂𝑢𝑘−1

∂𝜉

∂𝑢𝑘+1
…

∂𝜉

∂𝑢𝑛
] −

[
∂𝜉

∂𝑢𝑘
𝜉(𝛼21,𝛼22,…,𝛼2𝑛)…𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)] ×

[𝜉(𝛼11,𝛼12,…,𝛼1𝑛)
∂𝜉

∂𝑢1
…

∂𝜉

∂𝑢𝑘−1

∂𝜉

∂𝑢𝑘+1
…

∂𝜉

∂𝑢𝑛
] −⋯

−[𝜉(𝛼11,𝛼12,…,𝛼1𝑛)…𝜉(𝛼𝑛−11,𝛼𝑛−12,…,𝛼𝑛−1𝑛)
∂𝜉

∂𝑢𝑘
] ×

[𝜉(𝛼𝑛1,𝛼𝑛2,…,𝛼𝑛𝑛)
∂𝜉

∂𝑢1
…

∂𝜉

∂𝑢𝑘−1

∂𝜉

∂𝑢𝑘+1
…

∂𝜉

∂𝑢𝑛
] = 0

 

 

 

 

 

 

(4) 

Put 

𝑣0 = [
∂𝜉

∂𝑢𝑘

∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
] ,

𝑣𝑡 = [𝜉(𝛼𝑡1,𝛼𝑡2,⋯,𝛼𝑡𝑛)
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
] ,

ℎ𝑡 = [𝜉(𝛼11,𝛼12,⋯,𝛼1𝑛)⋯𝜉(𝛼𝑡−11,𝛼𝑡−12,⋯,𝛼𝑡−1𝑛)
∂𝜉

∂𝑢𝑘
𝜉(𝛼𝑙+11,𝛼𝑡+12,⋯,𝛼𝑡+1𝑛)…𝜉(𝛼𝑛1,𝛼𝑛2,⋯,𝛼𝑛𝑛)] .

 

Then 𝑠(𝑣0) = 0, 𝑟(𝑣0) ≤ 𝑟(𝐴) and 𝑠(𝑣𝑡) ≤ 1, 𝑟(ℎ𝑡) ≤ 𝑟(𝐴) for all 𝑡 = 1,2,… , 𝑛. Using Equation (4), we 

get 𝐴 = 𝑣1ℎ1(𝑣0)
−1 +⋯+ 𝑣𝑛ℎ𝑛(𝑣0)

−1. Since 𝑣0 = (−1)𝑘−1Ω, we have 𝐴 = (−1)𝑘−1Ω−1(𝑣1ℎ1 +⋯+

𝑣𝑛ℎ𝑛). By 𝑠(𝐴) ≥ 2, the number of non-zero elements 𝑣𝑗ℎ𝑗 is 𝑠(𝐴) ≥ 2. For ℎ𝑗 such that 𝑣𝑗ℎ𝑗 ≠ 0, we 

have 𝑠(ℎ𝑗) < 𝑠(𝐴). Therefore 𝐴 is a polynomial of the system Ω−1, 𝑣𝑗 , ℎ𝑗, with 𝑠(𝑣𝑗) = 1, 𝑟(𝑣𝑗) ≤

𝑟(𝐴), 𝑠(ℎ𝑗) < 𝑠(𝐴), 𝑟(ℎ𝑗) ≤ 𝑟(𝐴). 

Lemma 6. Let 𝐴 be a differential polynomial of the form (3), where 𝑠(𝐴) ≥ 2. Then A is a polynomial of 

Ω,Ω−1 and differential polynomials 𝐵 of the form 

[
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1
𝜉(𝛼1,𝛼2,⋯,𝛼𝑛)

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
], where ∑𝑖=1

𝑛  𝛼𝑖 ≤ 𝑟(𝐴). 

Proof. Using Lemma 6 and induction on 𝑠(𝐴), we obtain that every differential polynomial 𝐴 of the form 

(3), where 𝑠(𝐴) ≥ 2, is a polynomial of Ω−1 and differential polynomials 𝐵 of the form (3), where 𝑠(𝐵) ≤
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1 and 𝑟(𝐵) ≤ 𝑟(𝐴). Every non-zero differential polynomial 𝐵 of the form (3), where 𝑠(𝐵) = 0, is equal 

to Ω. Every differential polynomial 𝐵 of the form (3), where 𝑠(𝐵) = 1, has the following form 

[
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1
𝜉(𝛼1,𝛼2,⋯,𝛼𝑛)

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
], where ∑𝑖=1

𝑛  𝛼𝑖 > 1. 

Lemma 7. Let 𝐴 be a differential polynomial of the form 

[
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1
𝜉(𝛼1,𝛼2,⋯,𝛼𝑛)

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
], where  ∑𝑖=1

𝑛  𝛼𝑖 > 2. Then 𝐴 is a differential polynomial of 

differential polynomials 𝐵 of the form (3), where 𝑟(𝐵) < 𝑟(𝐴). 

Proof. Assume that 𝐴 such that 𝑟(𝐴) = ∑𝑖=1
𝑛  𝛼𝑖 > 2. Then 𝛼𝑠 > 0 for some 𝑠. Consider the following 

differential polynomial 

𝐵0 = [
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1
𝜉(𝛼1,…,𝛼𝑠−1,𝛼𝑠−1,𝛼𝑠+1⋯,𝛼𝑛)

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
]. 

For 𝐵0, we have 𝑟(𝐵0) = 𝑟(𝐴) − 1. Set 

 𝐵𝑖 = [
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑖−1

∂

∂𝑢𝑠
(
∂𝜉

∂𝑢𝑖
)

∂𝜉

∂𝑢𝑖+1
⋯

∂𝜉

∂𝑢𝑘−1
𝜉(𝛼1,…,𝛼𝑠−1,𝛼𝑠−1,𝛼𝑠+1⋯,𝛼𝑛)

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑛
] 

for 𝑖 < 𝑘 and  

𝐵𝑖 = [
∂𝜉

∂𝑢1
⋯

∂𝜉

∂𝑢𝑘−1
𝜉(𝛼1,…,𝛼𝑠−1,𝛼𝑠−1,𝛼𝑠+1⋯,𝛼𝑛)

∂𝜉

∂𝑢𝑘+1
⋯

∂𝜉

∂𝑢𝑖−1

∂

∂𝑢𝑠
(
∂𝜉

∂𝑢𝑖
)

∂𝜉

∂𝑢𝑖+1
⋯

∂𝜉

∂𝑢𝑛
] 

for 𝑘 < 𝑖. We have the following equation 

∂

∂𝑢𝑠
𝐵0 = 𝐵1 +⋯+ 𝐵𝑘−1 + 𝐴 + 𝐵𝑘+1 +⋯+ 𝐵𝑛. 

Hence 

 

𝐴 =
∂

∂𝑢𝑠
𝐵0 − (𝐵1 +⋯+ 𝐵𝑘−1 + 𝐵𝑘+1 +⋯+ 𝐵𝑛). 

 

(5) 

Since 𝑟(𝐵𝑖) = 𝑟(𝐴) − 1 for all 𝑖 = 0,1,… , 𝑘, 𝑘 + 1,… , 𝑛, the Equation (5) implies that 𝐴 is a differential 

polynomial of differential polynomials 𝐵 of the form (3), where 𝑟(𝐵) = 𝑟(𝐴) − 1. 

Lemma 8. Let 𝐴 be a differential polynomial of the form (3), where 𝑠(𝐴) ≥ 2. Then A is a differential 

polynomial of Ω−1 and elements of the system (1). 

Proof. It follows from Lemmas 5-7 by induction on 𝑠(𝐴) and 𝑟(𝐴). 

The proof of Theorem 1 is completed by Lemmas 1-4 and Lemma 8 . 

Definition 2. A differential rational 𝐴𝑓𝑓(𝑛)-relative invariant function is a real-valued function 𝑓: 𝐽𝑘 → ℝ 

which satisfied 𝑓⟨𝐹𝜉1, 𝐹𝜉2, … , 𝐹𝜉𝑘)⟩ = (det 𝐹)𝑚𝑓⟨𝜉1, 𝜉2, … , 𝜉𝑘⟩ for all 𝐹 ∈ 𝐺, 𝜉1, 𝜉2, … , 𝜉𝑘 are 𝐽 - vector 

fields in ℝ𝑛 and 𝑚 ∈ ℕ0. The number 𝑚 is called weight of 𝑓 and it is denoted by 𝑊(𝑓). 

Theorem 2.The system 
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{
Ω𝑖𝑗
𝑠

Ω
; 𝑖, 𝑗, 𝑠 = 1,2, … , 𝑛} 

(6) 

 

is a set of generators of ℝ⟨𝜉⟩𝐴𝑓𝑓(𝑛). 

Proof. Firstly, we give the following lemmas for the proof of the theorem. 

Lemma 𝟗.ℝ⟨𝜉⟩𝑆𝐴𝑓𝑓(𝑛) = ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝑆𝐴𝑓𝑓(𝑛)

= ℝ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝑆𝐿(𝑛)

. 

Proof. The proof is similar to the proof of Lemma 1 in [9]. 

The following lemma is similar to Lemma 1. 

Lemma 𝟏𝟎.ℝ⟨𝜉⟩𝐴𝑓𝑓(𝑛) = ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝐴𝑓𝑓(𝑛)

= ℝ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝐺𝐿(𝑛)

. 

Lemma 11.  Let 𝑓 ∈ ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝐺𝐿(𝑛)

. Then there exist 𝐺𝐿(𝑛)-relative invariant differential 

polynomials 𝑓1, 𝑓2 such that 𝑓 = 𝑓1/𝑓2 and 𝑊(𝑓1) = 𝑊(𝑓2). 

Proof. The proof is similar to the proof of lemma in [21]. Let 𝑓 ∈ ℝ ⟨
∂𝜉

∂𝑢1
, … ,

∂𝜉

∂𝑢𝑛
⟩
𝐺𝐿(𝑛)

. By Lemma 11 , 

there exist 𝐺𝐿(𝑛)-relative invariant differential polynomials 𝑓1, 𝑓2 of 𝜉(𝑢) such that 𝑓 = 𝑓1/𝑓2 and 

𝑊(𝑓1) = 𝑊(𝑓2). Since differential polynomials 𝑓1, 𝑓2 are 𝐺𝐿(𝑛)-relative invariant, they are 𝑆𝐿(𝑛)-
invariant. Then, by Lemma 3 and 8, there exist polynomials 

ℎ1{Ω, Ω𝑖𝑗
𝑘 ; 𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛}, ℎ2{Ω, Ω𝑖𝑗

𝑘 ; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} 

of elements of the system (1) such that  

𝑓1 =
ℎ1{Ω,Ω𝑖𝑗

𝑘 ; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛}

Ω𝑟1
, 𝑓2 =

ℎ2{Ω,Ω𝑖𝑗
𝑘 ; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛}

Ω𝑟2
 

for some 𝑟1, 𝑟2 ∈ ℕ0. Since 𝑓1, 𝑓2, Ω are 𝐺𝐿(𝑛)-relative invariant differential polynomials, 𝑊(Ω) = 1 and 

𝑊(𝑓1) = 𝑊(𝑓2), we have 

𝑊(𝑓1) = 𝑊(ℎ1) − 𝑟1,𝑊(𝑓2) = 𝑊(ℎ2) − 𝑟2. These imply the following equations 

𝑓1 =

Ω𝑊(ℎ1)ℎ1 {1,
Ω𝑖𝑗
𝑘

Ω ; 𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛}

Ω𝑟1
= Ω𝑊(ℎ1)−𝑟1ℎ1 {1,

Ω𝑖𝑗
𝑘

Ω
; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} ,

,

𝑓2 =

Ω𝑊(ℎ2)ℎ2 {1,
Ω𝑖𝑗
𝑘

Ω ; 𝑖, 𝑗, 𝑘 = 1,2, … , 𝑛}

Ω𝑟2
= Ω𝑊(ℎ2)−𝑟2ℎ1 {1,

Ω𝑖𝑗
𝑘

Ω
; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} .
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Hence we have 𝑓 = 𝑓1/𝑓2 =
ℎ1{1,

Ω𝑖𝑗
𝑘

Ω
;𝑖,𝑗,𝑘=1,2,…,𝑛}

ℎ2{1,
Ω𝑖𝑗
𝑘

Ω
;𝑖,𝑗,𝑘=1,2,…,𝑛}

. 

So, the proof of the theorem is completed. 

Corollary 1. The system 

{Ω,
Ω𝑖𝑗
𝑘

Ω
; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} 

(7) 

is a set of generators of ℝ⟨𝜉⟩𝑆𝐴𝑓𝑓(𝑛). 

Proof. It follows from Theorem 1.  

3.  GENERATING SYSTEMS OF AFFINE INVARIANT DIFFERENTIAL RATIONAL 

FUNCTIONS FOR IMMERSIONS OF A MANIFOLD AND AFFINE EQUIVALENCE 

PROBLEMS FOR TWO AFFINE IMMERSIONS 

Now we give some basic definitions. 

Let 𝑀 be a connected 𝐶∞-manifold of dimension dim𝑀 = 𝑛, and 𝜉:𝑀 → ℝ𝑛 a 𝐶∞-immersion, i.e. a 

differentiable mapping of rank 𝑛. For simplicity, we use the term "M-immersion". 

A chart on 𝑀 is a pair (𝜙, 𝑈) where 𝑈 is an open subset of 𝑀 and 𝜙 is a homeomorphism of 𝑈 with an 

open subset 𝜙(𝑈) of ℝ𝑛. 𝑈 is called a coordinate neighbourhood and 𝜙(𝑈) its coordinate space. 

Let Λ = {(𝜙𝛼 , 𝑈𝛼 , ), 𝛼 ∈ 𝐴} a collection of charts of 𝑀. Then we can be given an 𝑛-form on 𝑀 by 

[
∂𝜉(𝑢)

∂𝑢1

∂𝜉(𝑢)

∂𝑢2
…

∂𝜉(𝑢)

∂𝑢𝑛
] 𝑑𝑢1 ∧ ⋯∧ 𝑑𝑢𝑛, where 𝜉(𝑢) is a representation of 𝜉 in the local coordinates of 𝑈𝛼. 

Then, 𝑛-form on 𝑀 is called the volume form induced by an 𝑀-immersion and denoted it by 𝜔(𝜉). 

Proposition 1.  Let 𝜉 be an 𝑀-immersion. Then 𝜔(𝜉) ≠ 0 for all 𝑝 ∈ 𝑀. 

Proof.  For a similar proof, see [10]. 

Corollary 2.  Let 𝑀 be a 𝐶∞-manifold of dim𝑀 = 𝑛. If an 𝑀-immersion of manifold 𝑀 exists, then 𝑀 is 

an orientable 𝐶∞-manifold. 

Proof.  Using [24] and Proposition 1, the proof is completed. 

Remark 2.  There is an orientable 𝐶∞-manifold 𝑀 of dim𝑀 = 𝑛 without 𝑀-immersions in ℝ𝑛. (See [24]). 

Let 𝜉 and 𝑢1, 𝑢2, … , 𝑢𝑛 be an 𝑀-immersion in ℝ𝑛 and a coordinate system, resp. Let us write ∂𝑖 =
∂

∂𝑢𝑖
 for 

the corresponding vector fields. Then,  

∂𝑢𝑖 ∂𝑢𝑗𝜉
(𝑢) = ∑  𝑛

𝑘=1 Γ𝑖𝑗
𝑘{𝜉} ∂𝑢𝑘𝜉

(𝑢),  𝑖, 𝑗 = 1,2,… , 𝑛 (8) 

where the functions Γ𝑖𝑗
𝑘{𝜉} is called the Christoffel symbols of the 𝑀-immersion 𝜉 on a chart of 𝑀 and 𝑢 is 

an element of a chart of 𝑀. 
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Let 𝐺(𝜉) = {Γ𝑖𝑗
𝑘{𝜉}; 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} be the system of Christoffel symbols of a connection on 𝑀 and 

denote this connection by ∇(𝜉). 

Proposition 2.  Let 𝜉 be an 𝑀-immersion in ℝ𝑛. Then 

Γ𝑖𝑗
𝑘{𝜉} =

[∂1𝜉
(𝑢)…∂𝑘−1𝜉

(𝑢) ∂𝑖(∂𝑗𝜉
(𝑢)) ∂𝑘+1𝜉

(𝑢)…∂𝑛𝜉
(𝑢)]

[∂1𝜉
(𝑢) ∂2𝜉

(𝑢)…∂𝑛𝜉
(𝑢)]

 
(9) 

for all 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛. Proof The proof is obtained from the system (8). 

Corollary 3.  Let 𝜉 be an 𝑀-immersion in ℝ𝑛. Then the system 𝐺(𝜉) = {Γ𝑖𝑗
𝑘(𝜉); 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} is a set 

of generators of ℝ⟨𝜉⟩𝐴𝑓𝑓(𝑛). 

Proof.  The proof is obtained from Theorem 2 and Proposition 2. 

It is easy to see that given an 𝑀 - immersion 𝜉(𝑢), then every affine transformation 𝐹 transforms 𝜉(𝑢) into 

a new 𝑀-immersion 𝐹𝜉(𝑢). 

Definition 3.  Let 𝜉 and 𝜂 be two 𝑀-immersions. Then these immersions are called 𝐴𝑓𝑓(𝑛)-equivalent if 

there is 𝐹 ∈ 𝐴𝑓𝑓(𝑛) such that 𝜂(𝑝) = 𝐹𝜉(𝑝) for all 𝑝 ∈ 𝑀, and denote it by 𝜉 ∼
𝐴𝑓𝑓(𝑛)

𝜂. 

Theorem 3.  Let 𝜉 and 𝜂 be two M-immersions. Then 𝜉 ∼
𝐴𝑓𝑓(𝑛)

𝜂if and only if ∇(𝜉) = ∇(𝜂). 

Proof.  ⇒ :𝜉 ∼
𝐴𝑓𝑓(𝑛)

𝜂.Then, by Proposition 2, since coefficients Γ𝑖𝑗
𝑘{𝜉} of ∇(𝜉) is Aff(𝑛)-invariant, we 

have ∇(𝜉) = ∇(𝜂). 

⇐: Conversely, assume that ∇(𝜉) = ∇(𝜂). Then Γ𝑖𝑗
𝑘{𝜉(𝑢)} = Γ𝑖𝑗

𝑘{𝜂(𝑢)} holds for all 𝑖, 𝑗, 𝑠 = 1,2, … , 𝑛 and 

for all elements 𝑢 of a chart of 𝑀. We put the matrices 

𝐴(𝜉) = ∥∥∂𝑢1𝜉 …∂𝑢𝑛𝜉∥∥, ∂𝑢𝑖𝐴(𝜉) = ∥∥∂𝑢𝑖(∂𝑢1𝜉)…∂𝑢𝑖(∂𝑢𝑛𝜉)∥∥, where ∂𝑢1𝜉 is a column-vector and for 

all elements 𝑢 of a chart of 𝑀. The Equation (9) implies 

𝐴(𝜉)−1 ∂𝑢𝑖𝐴(𝜉) = ∥∥Γ𝑖𝑗
𝑘{𝜉}∥∥

𝑖,𝑗,𝑘=1,…,𝑛
 

Since Γ𝑖𝑗
𝑘{𝜉(𝑢)} = Γ𝑖𝑗

𝑘{𝜂(𝑢)} for all 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛, we get 

𝐴(𝜉(𝑢))−1 ∂𝑢𝑖𝐴(𝜉(𝑢)) = 𝐴(𝜂(𝑢))−1 ∂𝑢𝑖𝐴(𝜂(𝑢)) 

for all 𝑖 = 1,2,… , 𝑛 and for all elements 𝑢 of a chart of 𝑀. 

The equation 𝐴(𝜉)−1 ∂𝑢𝑖𝐴(𝜉) = 𝐴(𝜂)−1 ∂𝑢𝑖𝐴(𝜂) implies 

∂𝑢𝑖(𝐴(𝜂(𝑢))𝐴(𝜉(𝑢))
−1) = (∂𝑢𝑖𝐴(𝜂(𝑢)))𝐴(𝜉(𝑢))

−1 + 𝐴(𝜂(𝑢)) ∂𝑢𝑖(𝐴(𝜉(𝑢))
−1) =

(∂𝑢𝑖𝐴(𝜂(𝑢)))𝐴(𝜉(𝑢))
−1 − 𝐴(𝜂(𝑢))𝐴(𝜉(𝑢))−1(∂𝑢𝑖𝐴(𝜉(𝑢)))𝐴(𝜉(𝑢))

−1 =

𝐴(𝜂(𝑢))(𝐴(𝜂(𝑢))−1 ∂𝑢𝑖𝐴(𝜂(𝑢)) − 𝐴(𝜉(𝑢))−1 ∂𝑢𝑖𝐴(𝜉(𝑢)))𝐴(𝜉(𝑢))
−1 = 0

 

for all elements 𝑢 of a chart of 𝑀. From the last equality, we get 𝐴(𝜂(𝑢))𝐴(𝜉(𝑢))−1 is not depend on the 

element 𝑢 of a chart of 𝑀. Since 𝑀 is a connected immersion, it is obvious that 𝐴(𝜂(𝑝))𝐴(𝜉(𝑝))−1 does 

not depend on 𝑝 ∈ 𝑀. 
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Let 𝐹 = 𝐴(𝜂(𝑢))𝐴(𝜉(𝑢))−1. Since det 𝐴(𝜉(𝑢)) ≠ 0 and det 𝐴(𝜂(𝑢)) ≠ 0 for all 𝑢 ∈ 𝑀, we have 

det 𝐹 ≠ 0 and 𝐴(𝜂(𝑝)) = 𝐹𝐴(𝜉(𝑝)) for all 𝑝 ∈ 𝑀. The equality 𝐴(𝜂(𝑢)) = 𝐹𝐴(𝜉(𝑢)) implies ∂𝑢𝑖𝜂(𝑢) =

𝐹 ∂𝑢𝑖𝜉(𝑢) for all 𝑖 = 1,2, … , 𝑛 and for all elements 𝑢 of a chart of 𝑀. Then there is 𝑏 ∈ ℝ𝑛 such that 

𝜂(𝑢) = 𝐹𝜉(𝑢) + 𝑏 for all for all elements 𝑢 of a chart of 𝑀. Since 𝑀 is connected immersion, we see that 

𝑏 does not depend on 𝛼 ∈ 𝐴. Remark 3 By the definition of the complete systems of invariants [9], this 

theorem means that 𝐺(𝜉) is a complete systems of affine invariants of the immersion 𝜉. Moreover, every 

Aff(𝑛)-invariant of an immersion 𝜉 is a function of elements of 𝐺(𝜉). 

Theorem 4. Let 𝜉 and 𝜂 be two M-immersions. Then 

𝜉 ∼
𝑆𝐴𝑓𝑓(𝑛)

𝜂 if and only if ∇(𝜉) = ∇(𝜂) and 𝜔(𝜉) = 𝜔(𝜂). 

Proof.  ⇒ :𝜉 ∼
𝑆𝐴𝑓𝑓(𝑛)

𝜂.Since coefficients Γ𝑖𝑗
𝑘{𝜉} and 𝜔(𝜉) are 𝑆𝐴𝑓𝑓(𝑛)-invariant, we have ∇(𝜉) = ∇(𝜂) 

and 𝜔(𝜉) = 𝜔(𝜂). 

⇐: Conversely, assume that ∇(𝜉) = ∇(𝜂) and 𝜔(𝜉) = 𝜔(𝜂). From the equality ∇(𝜉) = ∇(𝜂), we obtain 

𝜉 ∼
𝐴𝑓𝑓(𝑛)

𝜂. Since 𝜉 ∼
𝐴𝑓𝑓(𝑛)

𝜂, there are 𝐹 ∈ 𝐺𝐿(𝑛) and 𝑏 ∈ ℝ𝑛 such that 𝜂(𝑝) = 𝐹𝜉(𝑝) + 𝑏 for all 𝑝 ∈ 𝑀. 

Using this equality and 𝜔(𝜉) = 𝜔(𝜂) in local coordinates, we get 

[∂𝑢1𝜂 ∂𝑢2 𝜂... ∂𝑢𝑛𝜂] = [∂𝑢1𝐹𝜉 ∂𝑢2𝐹𝜉…∂𝑢𝑛𝐹𝜉] = det𝐹[∂𝑢1𝜉 ∂𝑢2𝜉 …∂𝑢𝑛𝜉] 

Since [∂𝑢1𝜉 ∂𝑢2𝜉 …∂𝑢𝑛𝜉] ≠ 0 for all 𝑝 ∈ 𝑀, we obtain det 𝐹 = 1. That is 𝜉 ∼
𝑆𝐴𝑓𝑓(𝑛)

𝜂. 

Remark 4. This theorem means that every 𝑆𝐴𝑓𝑓(𝑛)-invariant of an immersion 𝜉 is a function of elements 

of 𝐺(𝜉) and the function [∂𝑢1𝜉 ∂𝑢2𝜉 …∂𝑢𝑛𝜉]. 

 

4. RELATIONS BETWEEN THE TORSION-FREE TENSOR AND RIEMANNIAN 

CURVATURE TENSOR OF AN IMMERSION 

 

Let 𝑀 be a connected 𝐶∞-manifold of dimension dim𝑀 = 𝑛, and 𝜉:𝑀 → ℝ𝑛 a 𝐶∞ immersion, i.e. a 

differentiable mapping of rank 𝑛. 

Let  Λ = {(𝜙𝛼 , 𝑈𝛼 , ), 𝛼 ∈ 𝐴} a collection of charts of 𝑀. 

Then we can be given an (𝑛 × 𝑛)-matrix 𝐶∞-function 𝜉(𝑢)(𝑝) by ∥∥𝜉1
(𝑢)
(𝑝)…𝜉𝑛

(𝑢)
(𝑝)∥∥, where 𝜉(𝑢) is a 

representation of 𝜉 in the local coordinates 𝑢 = (𝑢1, … , 𝑢𝑛) of 𝑈𝛼 and 𝜉𝑖
(𝑢)

 for all 𝑖 = 1,2, … , 𝑛 is a column 

matrix form of 𝜉(𝑢). 

The following definition is taken from [25]: 

Definition 4. A collection of an (𝑛 × 𝑛)-matrix 𝐶∞-function 

𝜉(𝑢)(𝑎) = ∥∥𝜉1
(𝑢)
(𝑎)𝜉2

(𝑢)
(𝑎)…𝜉𝑛

(𝑢)
(𝑎)∥∥ 

on 𝑀 will be called a covariant tensor field of rank 1 if it is transformed according to law 

𝜉𝑖
(𝑣)

=∑ 

𝑛

𝑠=1

∂𝑢𝑠
∂𝑣𝑖

𝜉𝑠
(𝑢)
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when passing from one chart to another; here 𝑣1, … , 𝑣𝑛 and 𝑢1, … , 𝑢𝑛 are, respectively, "old" and "new" 

coordinates in the intersection of the charts. Let 𝑅(𝛾) and 𝑇(𝛾) be the Riemannian curvature tensor and the 

torsion tensor of a connection 𝛾 on 𝑀, resp. 

Theorem 5. Let 𝑀 be a simply connected 𝐶∞-manifold and 𝛾 be a connection on 𝑀 such that 𝑅(𝛾) = 0 

and 𝑇(𝛾) = 0. Then there is an 𝑀-immersion 𝜂 in ℝ𝑛 such that ∇(𝜂) = 𝛾. 

Proof. Let 𝛾(𝑢) = {𝛾𝑖𝑗
𝑘 (𝑢), 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛} be the expressing of the Christoffel symbols of 𝛾 in the local 

coordinates 𝑢 = (𝑢1, … , 𝑢𝑛) of 𝑈𝛼 . Set 𝑄𝑘{𝛾(𝑢)} = ∥∥𝛾𝑖𝑗
𝑘 (𝑢)∥∥

𝑖,𝑗=1,2,…,𝑛
 for 𝑘 = 1,2,… , 𝑛. For the following 

system of equations 

∂

∂𝑢𝑘
𝜉(𝑢) = 𝜉(𝑢)𝑄𝑘{𝛾(𝑢)} 

(10) 

where k = 1,2, … , n, for an (𝑛 × 𝑛)-matrix 𝐶∞-function 𝜉(𝑢)(𝑝) = ∥∥𝜉1
(𝑢)
(𝑝)𝜉2

(𝑢)
(𝑝)…𝜉𝑛

(𝑢)
(𝑝)∥∥ on 𝑀, 

where 𝜉(𝑢) is a covariant tensor field of the 1st-rank on 𝑀. It is obvious that the form of the system (10) of 

equations is the same in 'old"' and 'new' coordinates in the intersection of the charts. Since the Riemannian 

curvature tensor of 𝛾 is equal to zero, the following system of equations 

∂

∂𝑢𝑘
𝑄𝑙{𝛾(𝑢)} −

∂

∂𝑢𝑙
𝑄𝑘{𝛾(𝑢)} = [𝑄𝑙{𝛾(𝑢)}, 𝑄𝑘{𝛾(𝑢)}] 

(11) 

for 𝑙, 𝑘 = 1,2, … , 𝑛 holds, where [𝑄𝑙{𝛾}, 𝑄𝑘{𝛾}] denotes 𝑄𝑙{𝛾}𝑄𝑘{𝛾} − 𝑄𝑙{𝛾}𝑄𝑘{𝛾}. Let 𝑝0 ∈ 𝑈𝜇 . By (11) 

and according to the theory of linear differential equations, there exist a neighborhood 𝑉 ⊂ 𝑈𝜇 of the point 

𝑝0 and an (𝑛 × 𝑛)-matrix 𝐶∞-function 𝜉(𝑢)(𝑝) on 𝑉 such that det(𝜉(𝑢)(𝑝)) ≠ 0 for all 𝑝 ∈ 𝑉, and 𝜉(𝑢)(𝑝) 

is a solution of (10) on 𝑉. Using connectedness and simply connectedness of the manifold 𝑀, according 

to the theory of linear differential equations on manifolds [26], we see that the unique an (𝑛 × 𝑛)-matrix 

𝐶∞-function 𝜉(𝑝) = ∥∥𝜉1(𝑝)𝜉2(𝑝)…𝜉𝑛(𝑝)∥∥ on 𝑀 exists such that 𝜉(𝑝) is a covariant tensor field of the 1st-

rank on 𝑀 and,𝜉(𝑝) is a solution of (10) on 𝑈𝛼 for every 𝛼 ∈ 𝐴, det(𝜉(𝑝)) ≠ 0 for all 𝑝 ∈ 𝑀 and 𝜉(𝑝) =

𝜉(𝑢)(𝑝) for all 𝑝 ∈ 𝑉. Now we consider the solution 𝜉(𝑝). 

By 𝑄𝑘{𝛾(𝑢)} = ∥∥𝛾𝑙𝑗
𝑘 (𝑢)∥∥

𝑙,𝑗=1,2,…,𝑛
 and (10), we obtain 

∂

∂𝑢𝑖
𝜉𝑗
(𝑢)
(𝑝) =∑ 

𝑛

𝑖=1

𝛾𝑖𝑗
𝑘 (𝑢)𝜉𝑠

(𝑢)
(𝑝),

∂

∂𝑢𝑗
𝜉𝑖
(𝑢)
(𝑝) =∑  

𝑛

𝑖=1

𝛾𝑗𝑖
𝑘(𝑢)𝜉𝑘

(𝑢)
(𝑝) 

(12) 

in each chart of 𝑀 with local coordinates 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛). Since the torsion tensor of the connection 𝛾 

is equal to zero, we have 𝛾𝑖𝑗
𝑘 (𝑢) = 𝛾𝑗𝑖

𝑘(𝑢) for all 𝑖, 𝑗, 𝑘 = 1,2,… , 𝑛 and all 𝑢 ∈ 𝑈𝜇 . Equation (12) and the 

equality 𝛾𝑖𝑗
𝑘 (𝑢) = 𝛾𝑗𝑖

𝑘(𝑢) imply 
∂

∂𝑢𝑖
𝜉𝑗
(𝑢)
(𝑝) = 

∂

∂𝑢𝑗
𝜉𝑖
(𝑢)
(𝑝) for all 𝑖, 𝑗 = 1,2, … , 𝑛 in each chart of 𝑀 with 

local coordinates 𝑢 = (𝑢1, 𝑢2, … , 𝑢𝑛). Since the (𝑛 × 𝑛)-matrix 𝐶∞-function 

𝜉(𝑝) = ∥∥𝜉1(𝑝)𝜉2(𝑝)…𝜉𝑛(𝑝)∥∥ on 𝑀 is a covariant tensor field of the 1 st-rank on 𝑀 and det(𝜉(𝑝)) ≠ 0 

for all 𝑝 ∈ 𝑀, the last equality implies an existence of a 𝑀 immersion 𝜂(𝑝) such that 
∂

∂𝑢𝑗
𝜉(𝑢)(𝑝) = 𝜉𝑗

(𝑢)
(𝑝) 

for all 𝑗 = 1,2, … , 𝑛 in each chart of 𝑀 with local coordinates 𝑢, where 𝜂(𝑢)(𝑝) is the expressing of 𝜂(𝑝) 

in a local coordinates 𝑢. Hence we obtain the following system of equations 
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∂

∂𝑢𝑖

∂𝜂(𝑢)

∂𝑢𝑗
= ∑  

𝑛

𝑘=1

𝛾𝑖𝑗
𝑘 (𝑢)

∂𝜂(𝑢)

∂𝑢𝑘
 

for 𝑖, 𝑗 = 1,2,… , 𝑛. This means that ∇(𝜂) = 𝛾. 

Between the volume form 𝜔(𝜂) and the connection ∇(𝜂) of the 𝑀-immersion 𝜂 in ℝ𝑛 there is the following 

system of equations 

∂

∂𝑢𝑖
[
∂𝜂(𝑢)

∂𝑢1

∂𝜂(𝑢)

∂𝑢2
⋯

∂𝜂(𝑢)

∂𝑢𝑛
] = ∑  𝑛

𝑗=1 Γ𝑖𝑗
𝑗
(𝜂(𝑢)), i=1,2,..,n. 

(13) 

 

Corollary 4. Let 𝑀 be an open connected, simply connected subset of ℝ𝑛. Let 𝐵(𝑢) d𝑢1 ∧ ⋯∧ 𝑑𝑢𝑛 be a 

non-zero volume form on 𝑀 and 𝛾 be a connection on 𝑀 such that 𝑅(𝛾) = 0 and 𝑇(𝛾) = 0. Assume that 

the equation hold: 

∂

∂𝑢𝑖
𝐵(𝑢) =∑  

𝑛

𝑗=1

𝛾𝑖𝑗
𝑗
(𝑢) 

(14) 

for all 𝑖 = 1,2,… , 𝑛, where {𝛾𝑖𝑗
𝑘 (𝑢)} is the system of Christoffel symbols of 𝛾. Then there is an 𝑀-

immersion 𝜂 in ℝ𝑛 and 𝑎 ∈ ℝ such that ∇(𝜂) = 𝛾 and 

𝐵(𝑢) = [
∂𝜂(𝑢)

∂𝑢1

∂𝜂(𝑢)

∂𝑢2
⋯
∂𝜂(𝑢)

∂𝑢𝑛
] + 𝑎 

for all 𝑢 ∈ 𝑀. 

Proof. By Theorem 5, there exists an 𝑀-immersion of 𝜂 in ℝ𝑛 such that ∇(𝜂) = 𝛾. Using this equation, 

Equation (13) and Equation (14), we get 

∂

∂𝑢𝑖
𝐵(𝑢) =∑  

𝑛

𝑗=1

𝛾𝑖𝑗
𝑗
(𝑢) =∑  

𝑛

𝑗=1

Γ𝑖𝑗
𝑗
(𝜂(𝑢) =

∂

∂𝑢𝑖
[
∂𝜂(𝑢)

∂𝑢1
⋯
∂𝜂(𝑢)

∂𝑢𝑛
] 

for all 𝑖 = 1,2,… , 𝑛. Hence 

∂

∂𝑢𝑖
𝐵(𝑢) =

∂

∂𝑢𝑖
[
∂𝜂(𝑢)

∂𝑢1

∂𝜂(𝑢)

∂𝑢2
⋯
∂𝜂(𝑢)

∂𝑢𝑛
] 

for all 𝑖 = 1,2,… , 𝑛. These equations imply an existence of 𝑎 ∈ ℝ such that 

𝐵(𝑢) = [
∂𝜂(𝑢)

∂𝑢1

∂𝜂(𝑢)

∂𝑢2
⋯
∂𝜂(𝑢)

∂𝑢𝑛
] + 𝑎 

for all 𝑢 ∈ 𝑀. 
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