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Research Article

Abstract − Cuong [Picture Fuzzy Sets, Journal of Computer Science and Cybernetics
30 (4) (2014) 409–420] has introduced the concept of picture fuzzy soft sets (pfs-sets)
relying on his definition and operations of picture fuzzy sets (pf -sets), in which
there exist some inconsistencies. Yang et al. [Adjustable Soft Discernibility Matrix
Based on Picture Fuzzy Soft Sets and Its Applications in Decision Making, Journal
of Intelligent & Fuzzy Systems 29 (4) (2015) 1711–1722] have claimed that they
have introduced the concept of pfs-sets with the inconsistencies in Cuong’s definition
of pf -sets. Therefore, this study redefines the concept of pfs-sets to deal with the
inconsistencies therein. Moreover, it investigates some of the properties of pfs-sets
and their product operations and proposes a soft decision-making method via pfs-sets.
Finally, pfs-sets, their product operations, and the proposed method are discussed for
further research.
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1. Introduction

Various uncertainties may occur in real-world problems. Classical mathematical tools are inadequate
in modelling such uncertainties. To overcome this problem, introducing of new mathematical tools are
needed. One of the well-known mathematical tool to model uncertainty is fuzzy sets [1]. In a short
time, it has been applied to pure mathematics such as algebra, topology, and mathematical analysis
and computer science such as machine learning, image processing, and artificial intelligence [2]. Shortly
after the introducing of fuzzy sets, intuitionistic fuzzy sets [3] have been proposed as an extension
of fuzzy sets to model further uncertainty than fuzzy uncertainty. An element of a considered fuzzy
set has a membership degree denoted by µ(x) while those of a considered intuitionistic fuzzy set has
the membership and non-membership degrees denoted by µ(x) and ν(x) such that µ(x) + ν(x) ≤ 1,
respectively. A intuitionistic fuzzy set represents as a fuzzy set if µ(x)+ν(x) = 1, whose the membership
and non-membership degrees are equal to µ(x) and 1−µ(x), respectively. Moreover, the indeterminacy
degrees of fuzzy sets and intuitionistic fuzzy sets are equal to 0 and 1− (µ(x) + ν(x)), respectively.

One of the other state-of-the-art mathematical tools is soft sets defined by Molodstov [4] in 1999 to
parameterise the alternative set for the considered problems without employing the specific membership
functions. Due to its ease of implementation, it has been applied to a great variety of fields such as
algebra [5–7], topology [8–10], decision-making [11–15], and machine learning [16–18]. After that, the
hybrid structures of fuzzy sets and soft sets are studied, and fuzzy soft sets [19,20], fuzzy parameterized
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soft sets [21], and fuzzy parameterized fuzzy soft sets [22] are introduced to model problems containing
fuzzy parameters or alternatives.

In the real world, many more problems and uncertainties are encountered that fuzzy sets and
intuitionistic fuzzy sets can not model. For example, let us consider a voting process for an election.
The electorate’s decisions in the process may separate into three types: yes, no, and abstain. To
deal with this problem, Cuong [23] has introduced the concept of picture fuzzy sets (pf -sets). The
membership, neutral membership, and non-membership degrees are denoted by µ(x), η(x), and ν(x),
respectively, for a pf -set such that µ(x)+ η(x)+ ν(x) ≤ 1. In the Cuong’s definition, the indeterminacy
degree is denoted by 1 − (µ(x) + η(x) + ν(x)) for a pf -set. In the same study [23], Cuong has put
forward the concept of picture fuzzy soft sets (pfs-sets) to model problems containing picture fuzzy
alternatives and investigate some of their properties. However, the investigation is so limited, and
Cuong’s definitions and operations of pf -sets and pfs-sets have theoretical inconsistencies.

Recently, pfs-sets have been redefined [24] relying on definition of Cuong’s pf -sets without men-
tioning the definition of Cuong’s pfs-sets. Therefore, the concepts of pfs-sets in [24] inherit from the
inconsistencies [23]. To overcome the problem therein, Memiş [25], has been redefined the concept
of pf -sets, in which µ(x) + ν(x) ≤ 1 and µ(x) + η(x) + ν(x) ≤ 2, improved their operations, and
investigated their properties extensively. In this study, the main goal is that pfs-sets are redefined
relying on the definition of pf -sets in [25] to deal with the inconsistencies of definition and operations
in pfs-sets [24] and to ensure their consistency.

In Section 2 of the present study, we present concepts of fuzzy sets, intuitionistic fuzzy sets, pf -sets,
and basic operations of pf -sets. In Section 3, we present the counter-examples provided in [25] related
to Cuong’s definitions and operations and motivation of the redefining of pfs-sets. In Section 4, we
redefine the concept of pfs-sets, investigate and revise some of its basic operations, and define the
product operations of pfs-sets. In Section 5, we propose a soft decision-making method rely on the
concept of pfs-sets and compare its ranking orders with those in [24]. Finally, we discuss pfs-sets, their
product operations, and the proposed soft decision-making method and provide conclusive remarks for
further research.

2. Preliminaries

This section provides the concepts of fuzzy sets [1], intuitionistic fuzzy sets [3], and picture fuzzy sets
(pf -sets) [23, 25] and some of pf -sets’ operations and properties provided in [25] by considering the
notations used throughout this paper.

In the present paper, let E be a parameter set, F (E) be the set of all fuzzy sets over E, and
µ ∈ F (E). Here, a fuzzy set is denoted by {µ(x)x : x ∈ E} instead of {(x, µ(x)) : x ∈ E}.

Definition 2.1. [3] Let κ be a function from E to [0, 1] × [0, 1]. Then, the set {(x, f(x)) : x ∈ E},
being the graphic of κ is called an intuitionistic fuzzy set (if -set) over E.

Here, for all x ∈ E, κ(x) = (µ(x), ν(x)) such that µ(x) + ν(x) ≤ 1. Moreover, µ and ν are called
the membership function and non-membership function, respectively, and π(x) = 1− (µ(x) + ν(x)) is
called the degree of indeterminacy of the element x ∈ E. For brevity, we represent an intuitionistic

fuzzy set over E with κ =
{
µ(x)
ν(x)x : x ∈ E

}
instead of κ = {(x, µ(x), ν(x)) : x ∈ E}. Obviously, each

ordinary fuzzy set can be written as
{
µ(x)
1−µ(x)x : x ∈ E

}
.

Definition 2.2. [25] Let κ be a function from E to [0, 1]×[0, 1]×[0, 1]. Then, the set {(x, f(x)) : x ∈ E},
being the graphic of κ is called a picture fuzzy set (pf -set) over E.

Here, for all x ∈ E, κ(x) = (µ(x), η(x), ν(x)) such that 0 ≤ µ(x) + ν(x) ≤ 1 and 0 ≤

µ(x) + η(x) + ν(x) ≤ 2. We denote a pf -set over E by κ =

{〈
µ(x)
η(x)
ν(x)

〉
x : x ∈ E

}
instead of

κ = {(x, µ(x), η(x), ν(x)) : x ∈ E} for brevity.

Moreover, µ, η, and ν are called the membership function, neutral membership function, and
non-membership function, respectively,
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Note 2.3. Indeterminacy-membership of the element x ∈ E in a pf -set over E must be defined by
π(x) = 1− (µ(x) + ν(x)) in order to that a pf -set can model a real-world problem and has theoretical
consistency.

Manifestly, each ordinary fuzzy set can be written as

{〈
µ(x)
1

1− µ(x)

〉
x : x ∈ E

}
and each intuitionistic

fuzzy set can be written as

{〈
µ(x)
1

ν(x)

〉
x : x ∈ E

}
.

In the present paper, the set of all the pf -sets over E is denoted by PF (E) and κ ∈ PF (E). In
PF (E), since the graph(κ) and κ have generated each other uniquely, the notations are interchangeable.
Therefore, we represent a pf -set graph(κ) with κ as long as it causes no confusion.

Example 2.4. Let E = {x1, x2, x3, x4}. Then,

κ1 =

{〈
0.6
0.4
0.2

〉
x1,

〈
0.3
0
0.4

〉
x2,

〈
0.7
1
0.2

〉
x3,

〈
0
0
1

〉
x4

}
and

κ2 =

{〈
0.2
0.7
0.1

〉
x1,

〈
0.1
0
0.9

〉
x2,

〈
0.2
0.8
0.3

〉
x3,

〈
0.8
0
1

〉
x4

}
are two pf -sets over E.

Definition 2.5. [25] Let κ ∈ PF (E). For all x ∈ E, if µ(x) = λ, η(x) = ε, and ν(x) = ω, then κ is

called (λ, ε, ω)-pf -set and is denoted by

〈
λ
ε
ω

〉
E.

Definition 2.6. [25] Let κ ∈ PF (E). For all x ∈ E, if µ(x) = 0, η(x) = 1, and ν(x) = 1, then κ is

called empty pf -set and is denoted by

〈
0
1
1

〉
E or 0E .

Definition 2.7. [25]Let κ ∈ PF (E). For all x ∈ E, if µ(x) = 1, η(x) = 0, and ν(x) = 0, then κ is

called universal pf -set and is denoted by

〈
1
0
0

〉
E or 1E .

Definition 2.8. [25] Let κ1, κ2 ∈ PF (E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≥ η2(x), and
ν1(x) ≥ ν2(x), then κ1 is called a subset of κ2 and is denoted by κ1⊆̃κ2.

Definition 2.9. [25] Let κ1, κ2 ∈ PF (E). For all x ∈ E, if µ1(x) = µ2(x), η1(x) = η2(x), and
ν1(x) = ν2(x), then κ1 and κ2 are called equal pf -sets and is denoted by κ1 = κ2.

Definition 2.10. [25] Let κ1, κ2 ∈ PF (E). If κ1⊆̃κ2 and κ1 ̸= κ2, then κ1 is called a proper subset
of κ2 and is denoted by κ1⊊̃κ2.

Definition 2.11. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) = max{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)}, then κ3 is called union of κ1 and κ2 and is
denoted by κ3 = κ1∪̃κ2.
Definition 2.12. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) = min{µ1(x), µ2(x)},
η3(x) = max{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)}, then κ3 is called intersection of κ1 and κ2
and is denoted by κ3 = κ1∩̃κ2.
Definition 2.13. [25] Let κ1, κ2 ∈ PF (E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) = 1− η1(x), and
ν2(x) = µ1(x), then κ2 is called complement of κ1 and is denoted by κ2 = κc̃1.

Definition 2.14. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) = min{µ1(x), ν2(x)},
η3(x) = max{η1(x), 1− η2(x)}, and ν3(x) = max{ν1(x), µ2(x)}, then κ3 is called difference between κ1
and κ2, and is denoted by κ3 = κ1\̃κ2.
Definition 2.15. [25] Let κ1, κ2, κ3 ∈ PF (E). For all x ∈ E, if µ3(x) =
max{min{µ1(x), ν2(x)},min{µ2(x), ν1(x)}}, η3(x) = min{max{η1(x), 1 − η2(x)},max{η2(x), 1 −
η1(x)}}, and ν3(x) = min{max{ν1(x), µ2(x)},max{ν2(x), µ1(x)}}, then κ3 is called symmetric dif-
ference between κ1 and κ2, and is denoted by κ3 = κ1△̃κ2.
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3.Motivations of the Redefining of Picture Fuzzy Soft Sets

This section presents the definition and basic operations of picture fuzzy sets and the counter examples
for the Cuong’s definition provided in [23] and [25], respectively, considering the notations used across
the present paper.

Definition 3.1. [23] Let κ be a function from E to [0, 1]×[0, 1]×[0, 1]. Then, the set {(x, f(x)) : x ∈ E},
being the graphic of κ is called a picture fuzzy set (pf -set) over E.

In this section, the set of all the pf -sets over E according to Cuong’s definition is denoted by
PFC(E) and κ ∈ PFC(E).

Definition 3.2. [23] Let κ1, κ2 ∈ PFC(E). For all x ∈ E, if µ1(x) ≤ µ2(x), η1(x) ≤ η2(x), and
ν1(x) ≥ ν2(x), then κ1 is called a subset of κ2 and is denoted by κ1⊆̃κ2.

Definition 3.3. [23] Let κ1, κ2 ∈ PFC(E). If κ1⊆̃κ2 and κ2⊆̃κ1, then κ1 and κ2 are called equal
pf -sets and is denoted by κ1 = κ2.

Definition 3.4. [23] Let κ1, κ2, κ3 ∈ PFC(E). For all x ∈ E, if µ3(x) = max{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = min{ν1(x), ν2(x)}, then κ3 is called union of κ1 and κ2, and is
denoted by κ3 = κ1∪̃κ2.

Definition 3.5. [23] Let κ1, κ2, κ3 ∈ PFC(E). For all x ∈ E, if µ3(x) = min{µ1(x), µ2(x)},
η3(x) = min{η1(x), η2(x)}, and ν3(x) = max{ν1(x), ν2(x)}, then κ3 is called intersection of κ1 and κ2,
and is denoted by κ3 = κ1∩̃κ2.

Definition 3.6. [23] Let κ1, κ2 ∈ PFC(E). For all x ∈ E, if µ2(x) = ν1(x), η2(x) = η1(x), and
ν2(x) = µ1(x), then κ2 is called complement of κ1 and is denoted by κ2 = κc̃1.

Memiş [25] have provided the following several counter-examples related to definition and operations
of pf -sets in [23]. According to Definition 3.2, the definitions of empty and universal pf -sets should be
as in Definition 3.7 and Definition 3.8, respectively, to be held the following conditions [25]:

� Empty pf -set over E is a subset of all the pf -set over E.

� All pf -sets over E are the subset of universal pf -set over E.

Definition 3.7. [25] Let κ ∈ PFC(E). For all x ∈ E, if µ(x) = 0, η(x) = 0, and ν(x) = 1, then κ is

called empty pf -set and is denoted by

〈
0
0
1

〉
EC or 0EC

.

Definition 3.8. [25] Let κ ∈ PFC(E). For all x ∈ E, if µ(x) = 1, η(x) = 1, and ν(x) = 0, then κ is

called empty pf -set and is denoted by

〈
1
1
0

〉
EC or 1EC

.

Example 3.9. [25] There is a contradiction in Definition 3.8 since 1 + 1 + 0 ≰ 1, i.e., 1EC
/∈ PFC(E).

On the other hand, even if 1EC
∈ PFC(E), (1EC

)c̃ ̸= 0EC
.

Example 3.10. [25] Let κ ∈ PFC(E) such that κ =

{〈
0.1
0.2
0.3

〉
x

}
. Then, κ∪̃0E ̸= κ and κ∪̃1EC

̸= 1EC
.

To deal with the aforesaid inconsistencies in Example 3.9 and 3.10, the concept of pf -sets and their
operations have been redefined by Memiş [25].

Secondly, the definitions of picture fuzzy soft sets (pfs-sets) provided in [23, 24] considering the
notations used across the present paper.

Definition 3.11. [23] Let E be the set of parameters and A ⊆ E set. A pair (F,A) is called pfs-set
over U , where F is a mapping given by F : A → PFC(U).
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Definition 3.12. [24] Let U be the initial universe set and E a set of parameters. By pfs-set over U
we mean a pair ⟨F,A⟩, where A ⊆ E and F is a mapping given by F : A → PFC(U).

Cuong [23] has defined the concept of pfs-sets relying on his own definition and operations of pf -sets.
Therefore, the aforementioned inconsistencies have transferred to his concept of pfs-sets. Moreover,
Yang et. al. [24] have claimed that they have introduced the concept of pfs-sets while Cuong has defined
the concept of pfs-sets in [23]. Although the pfs-sets have been redefined in [24], the inconsistencies
mentioned above has also transferred to the concept of pfs-sets due to it based on the definition and
operations of pf -sets in [23].

Therefore, the concept of pfs-sets should be redefined to overcome the inconsistencies in the concept
of pfs-sets and their operations.

4. Picture Fuzzy Soft Sets, Some of Their Properties, and Their Product Operations

In this section, we redefine the concepts of pfs-sets and investigate some of their properties according
to new definition herein by considering the notations used throughout the present paper.

Definition 4.1. Let U be a universal set, E be a parameter set, and f is a function from E to PF (U).
Then the set {(x, fA(x)) : x ∈ E} ,being the graphic of f , is called a picture fuzzy soft set (pfs-set)
parameterized via E over U (or briefly over U).

Example 4.2. Let E = {x1, x2, x3, x4} be a parameter set and U = {u1, u2, u3, u4} be a universal set.
Then,

f =

{(
x1,

{〈
0.4
0.1
0.9

〉
u1,

〈
0
0.7
0.3

〉
u4

})
,

(
x2,

{〈
1
0.2
0

〉
u2

})
, (x3, 0U ) ,

(〈
1
0
0

〉
x4, 1U

)}
is a pfs-set over U .

Note 4.3. We do not display the element (x, 0U ) in a pfs-set where 0U is empty pf -set over U .

Henceforth, the set of all the pfs-sets over U is denoted by PFS(U). In PFS(U), the notations
graph(f) and f are interchangeable since they have generated each other uniquely. Thus, a pfs-set
graph(f) is denoted by f as long as it leads no confusion.

Definition 4.4. Let f ∈ PFS(U). If for all x ∈ E, f (x) =

〈
λ
ε
ω

〉
U , then f is called (λ, ε, ω)-pfs-set

and is denoted by

(
E,

〈
λ
ε
ω

〉
U

)
.

Definition 4.5. Let f ∈ PFS(U) and f be (λ, ε, ω)-pfs-set. If λ = 0, ε = 1, and ω = 1, then f is

called empty pfs-set and is denoted by

(
E,

〈
0
1
1

〉
U

)
or briefly 0̃.

Definition 4.6. Let f ∈ PFS(U) and f be (λ, ε, ω)-pfs-set. If λ = 1, ε = 0, and ω = 0, then f is

called universal pfs-set and is denoted by

(
E,

〈
1
0
0

〉
U

)
or briefly 1̃.

Definition 4.7. Let f, f1 ∈ PFS(U) and A ⊆ E. Then, Af1-restriction of f , denoted by fAf1 , is
defined by

fAf1 (x) :=


f (x) , x ∈ A

f1 (x) , x ∈ E \A

Briefly, if f1 = 0̃, then fA can be employed instead of fAf1 . It is clear that

fA (x) :=


f (x) , x ∈ A

0̃, x ∈ E \A
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Example 4.8. Let us consider the pfs-set f provided in Example 4.2, A = {x1, x3}, and f1 ∈ PFS(U)
such that

f1 =

{
(x1, 1U ) ,

(
x4,

{〈
0.2
0.5
0.4

〉
u1,

〈
0.6
0.3
0.2

〉
u4

})}
Then,

fAf1 =

{(
x1,

{〈
0.4
0.1
0.9

〉
u1,

〈
0
0.7
0.3

〉
u4

})
,

(
x4,

{〈
0.2
0.5
0.4

〉
u1,

〈
0.6
0.3
0.2

〉
u4

})}
Definition 4.9. 4.10 Let f1, f2 ∈ PFS(U). If for all x ∈ E, f1 (x) ⊆̃f2 (x), then f1 is called a subset
of f2 and is denoted by f1⊆̃f2.

Proposition 4.10. Let f, f1, f2, f3 ∈ PFS(U). Then,

i. f⊆̃1̃

ii. 0̃⊆̃f

iii. f⊆̃f

iv.
[
f1⊆̃f2 ∧ f2⊆̃f3

]
⇒ f1⊆̃f3

Remark 4.11. f1⊆̃f2 does not mean that every element of f1 is an element of f2. For instance, let
E = {x1, x2} be parameter set, U = {u1, u2} be a universal set,

f1 =

{(
x1,

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
,

(
x2,

{〈
0.3
0.6
0.7

〉
u1,

〈
0.2
0.6
0.8

〉
u2

})}

and

f2 =

{(
x1,

{〈
0.8
0.6
0.1

〉
u1,

〈
0.9
0.3
0.1

〉
u2

})
,

(
x2,

{〈
0.5
0.3
0.1

〉
u1,

〈
0.3
0.3
0.2

〉
u2

})}

Thus, f1⊆̃f2 because f1 (x) ⊆̃f2 (x) for all x ∈ E. However, f1 ⊈ f2 since

(
x1,

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
/∈

f2 while

(
x1,

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
∈ f1, where the notation ⊆ indicates classic inclusion relation.

Definition 4.12. Let f1, f2 ∈ PFS(U). If for all x ∈ E, f1 (x) = f2 (x), then f1 and f2 are called
equal pfs-sets and is denoted by f1 = f2.

Proposition 4.13. Let f1, f2, f3 ∈ PF (E). Then,

i.
[
f1⊆̃f2 ∧ f2⊆̃f1

]
⇔ f1 = f2

ii. [f1 = f2 ∧ f2 = f3] ⇒ f1 = f3

Definition 4.14. Let f1, f2 ∈ PFS(U). If f1⊆̃f2 and f1 ̸= f2, then f1 is called a proper subset of f2
and is denoted by f1⊊̃f2

Definition 4.15. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) ∪̃f2 (x), then f3 is called
union of f1 and f2 and is denoted by f3 = f1∪̃f2.

Proposition 4.16. Let f, f1, f2, f3 ∈ PFS(U). Then,

i. f ∪̃f = f

ii. f ∪̃1̃ = 1̃

iii. f ∪̃0̃ = f

iv. f1∪̃f2 = f2∪̃f1
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v. f1∪̃ (f2∪̃f3) = (f1∪̃f2) ∪̃f3

vi. f1⊆̃f2 ⇒ f1∪̃f2 = f2

Definition 4.17. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) ∩̃f2 (x), then f3 is called
intersection of f1 and f2 and is denoted by f3 = f1∩̃f2.

Proposition 4.18. Let f, f1, f2, f3 ∈ PFS(U). Then,

i. f ∩̃f = f

ii. f ∩̃1̃ = f

iii. f ∩̃0̃ = 0̃

iv. f1∩̃f2 = f2∩̃f1

v. f1∩̃ (f2∩̃f3) = (f1∩̃f2) ∩̃f3

vi. f1⊆̃f2 ⇒ f1∩̃f2 = f1

Proposition 4.19. Let f1, f2, f3 ∈ PFS(U). Then,

i. f1∪̃ (f2∩̃f3) = (f1∪̃f2) ∩̃ (f1∪̃f3)

ii. f1∩̃ (f2∪̃f3) = (f1∩̃f2) ∪̃ (f1∪̃f3)

Proof. i. Let f1, f2, f3 ∈ PFS(U). Then,

f1∪̃(f2∩̃f3) = {(x, f1(x)) : x ∈ E} ∪̃ {(x, f2(x)∩̃f3(x)) : x ∈ E}

= {(x, f1(x)∪̃(f2(x)∩̃f3(x))) : x ∈ E}

= {(x, (f1(x)∪̃f2(x))∩̃(f1(x)∪̃f3(x))) : x ∈ E}

= {(x, (f1(x)∪̃f2(x))) : x ∈ E} ∩̃ {(x, (f1(x)∪̃f3(x))) : x ∈ E}

= (f1∪̃f2)∩̃(f1∪̃f3)

Definition 4.20. Let f1, f2 ∈ PFS(U). If f1∩̃f2 = 0̃, then f1 and f2 are called disjoint pfs-sets.

Definition 4.21. Let f1, f2 ∈ PFS(U). If for all x ∈ E, f2 (x) = f c̃
1 (x), then f2 is called complement

of f1 and is denoted by f2 = f c̃
1 .

Proposition 4.22. Let f, f1, f2 ∈ PFS(U). Then,

i.
(
f c̃
)c̃

= f

ii. 0̃c̃ = 1̃

iii. f1⊆̃f2 ⇒ f c̃
2⊆̃f c̃

1

Definition 4.23. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) \̃f2 (x), then f3 is called
difference between f1 and f2 and is denoted by f3 = f1\̃f2.

Proposition 4.24. Let f, f1, f2 ∈ PFS(U). Then,

i. f \̃0̃ = f

ii. f \̃1̃ = 0̃

iii. f1\̃f2 = f1∩̃f c̃
2
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Remark 4.25. It must be noted that the difference is non-commutative and non-associative. For

example, Let f1 =

{(
x,

{〈
0.2
0
0.3

〉
u

})}
, f2 =

{(
x,

{〈
0.3
0
0.1

〉
u

})}
, and f3 =

{(
x,

{〈
0.4
0.1
0.6

〉
u

})}
. Then,

i.

[
f1\̃f2 =

{(
x,

{〈
0.1
1
0.3

〉
u

})}
∧ f2\̃f1 =

{(
x,

{〈
0.3
1
0.2

〉
u

})}]
⇒ f1\̃f2 ̸= f2\̃f1

ii.

[
f1\̃

(
f2\̃f3

)
=

{(
x,

{〈
0.2
0.1
0.3

〉
u

})}
∧
(
f1\̃f2

)
\̃f3 =

{(
x,

{〈
0.1
1
0.4

〉
u

})}]
⇒ f1\̃

(
f2\̃f3

)
̸=(

f1\̃f2
)
\̃f3

Proposition 4.26. Let f1, f2 ∈ PF (E). Then, the following De Morgan’s Laws are valid.

i. (f1∪̃f2)c̃ = f c̃
1 ∩̃f c̃

2

ii. (f1∩̃f2)c̃ = f c̃
1 ∪̃f c̃

2

Proof. i. Let f1, f2 ∈ PFS(U). Then,

(f1∪̃f2)c̃ =


〈

µ1(x)
η1(x)
ν1(x)

〉
x, f1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 : x ∈ E

 ∪̃


〈

µ2(x)
η2(x)
ν2(x)

〉
x, f2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


c̃

=


〈

max {µ1(x), µ2(x)}
min {η1(x), η2(x)}
min {ν1(x), ν2(x)}

〉
x, f1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 ∪̃f2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


c̃

=


〈

min {ν1(x), ν2(x)}
1−min {η1(x), η2(x)}
max {µ1(x), µ2(x)}

〉
x, f c̃

1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 ∩̃f c̃
2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


=


〈

min {ν1(x), ν2(x)}
max {1− η1(x), 1− η2(x)}

max {µ1(x), µ2(x)}

〉
x, f c̃

1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 ∩̃f c̃
2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


=


〈

ν1(x)
1− η1(x)
µ1(x)

〉
x, f c̃

1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 : x ∈ E

 ∩̃


〈

ν2(x)
1− η2(x)
µ2(x)

〉
x, f c̃

2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


=


〈

µ1(x)
η1(x)
ν1(x)

〉
x, f1

〈
µ1(x)
η1(x)
ν1(x)

〉
x

 : x ∈ E


c̃

∩̃


〈

µ2(x)
η2(x)
ν2(x)

〉
x, f2

〈
µ2(x)
η2(x)
ν2(x)

〉
x

 : x ∈ E


c̃

= f c̃
1 ∩̃f c̃

2

Definition 4.27. Let f1, f2, f3 ∈ PFS(U). If for all x ∈ E, f3 (x) = f1 (x) △̃f2 (x), then f3 is called
symmetric difference between f1 and f2 and is denoted by f3 = f1△̃f2.

Proposition 4.28. Let f, f1, f2 ∈ PFS(U). Then,

i. f△̃0̃ = f

ii. f△̃1̃ = f c̃

iii. f1△̃f2 = f2△̃f1

iv. f1△̃f2 = (f1\̃f2)∪̃(f2\̃f1)

Remark 4.29. It must be noted that the symmetric difference is non-associative. Let us consider the
pfs-sets f1, f2, and f3 provided in Remark 4.25.

Since f1△̃
(
f2△̃f3

)
=

{(
x,

{〈
0.3
0.1
0.3

〉
u

})}
and

(
f1△̃f2

)
△̃f3 =

{(
x,

{〈
0.3
0.1
0.4

〉
u

})}
, then

f1△̃
(
f2△̃f3

)
̸=
(
f1△̃f2

)
△̃f3.
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We secondly present the AND, OR, ANDNOT, and ORNOT-products of pfs-sets and their examples.

Definition 4.30. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∩̃f2(y)

then f3 is called AND-product of f1 and f2 and is denoted by f1 ∧ f2.

Definition 4.31. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∪̃f2(y)

then f3 is called OR-product of f1 and f2 and is denoted by f1 ∨ f2.

Definition 4.32. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∩̃f c̃
2(y)

then f3 is called ANDNOT-product of f1 and f2 and is denoted by f1 ⊼ f2.

Definition 4.33. Let f1 ∈ PFSE1(U), f2 ∈ PFSE2(U), and f3 ∈ PFSE1×E2(U). For all x ∈ E1 and
y ∈ E2, if

f3((x, y)) := f1(x)∪̃f c̃
2(y)

then f3 is called ORNOT-product of f1 and f2 and is denoted by f1∨f2.

Example 4.34. Let us consider the pfs-sets f1 and f2 provided in Remark 4.11. Then,

f1 ∧ f2 =

{(
(x1, x1),

{〈
0.3
0.8
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
,

(
(x1, x2),

{〈
0.3
0.8
0.2

〉
u1,

〈
0.3
0.6
0.1

〉
u2

})
,

(
(x2, x1),

{〈
0.3
0.6
0.7

〉
u1,

〈
0.2
0.6
0.1

〉
u2

})
,

(
(x2, x2),

{〈
0.3
0.6
0.7

〉
u1,

〈
0.2
0.6
0.2

〉
u2

})}

f1 ∨ f2 =

{(
(x1, x1),

{〈
0.8
0.6
0.1

〉
u1,

〈
0.9
0.3
0.1

〉
u2

})
,

(
(x1, x2),

{〈
0.5
0.3
0.1

〉
u1,

〈
0.8
0.3
0.1

〉
u2

})
,

(
(x2, x1),

{〈
0.8
0.6
0.1

〉
u1,

〈
0.9
0.3
0.1

〉
u2

})
,

(
(x2, x2),

{〈
0.5
0.3
0.1

〉
u1,

〈
0.3
0.3
0.2

〉
u2

})}

f1 ⊼ f2

{(
(x1, x1),

{〈
0.1
0.8
0.8

〉
u1,

〈
0.1
0.6
0.9

〉
u2

})
,

(
(x1, x2),

{〈
0.1
0.8
0.5

〉
u1,

〈
0.1
0.7
0.3

〉
u2

})
,

(
(x2, x1),

{〈
0.1
0.6
0.8

〉
u1,

〈
0.1
0.8
0.9

〉
u2

})
,

(
(x2, x2),

{〈
0.1
0.7
0.7

〉
u1,

〈
0.1
0.7
0.8

〉
u2

})}

f1∨f2
{(

(x1, x1),

{〈
0.3
0.4
0.2

〉
u1,

〈
0.8
0.4
0.1

〉
u2

})
,

(
(x1, x2),

{〈
0.3
0.7
0.2

〉
u1,

〈
0.8
0.6
0.1

〉
u2

})
,

(
(x2, x1),

{〈
0.3
0.4
0.7

〉
u1,

〈
0.2
0.4
0.8

〉
u2

})
,

(
(x2, x2),

{〈
0.3
0.6
0.5

〉
u1,

〈
0.2
0.6
0.3

〉
u2

})}
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5.A Soft Decision-Making Method Based on pfs-Sets and Its Comparison

This section proposes a soft decision-making method via pfs-sets. Its algorithm steps are as follows:

Proposed Method

Step 1. Construct a pfs-set f =

{(
x,

{〈
µ(x)
η(x)
ν(x)

〉
u

})
: x ∈ E

}
over U .

Step 2. Compute the score values

s(u) =
1

n

∑
x∈E

[µu(x)− ηu(x)νu(x)], for all u ∈ U

such that µu(x), ηu(x), and νu(x) denotes the membership, neutral membership, and non-
membership degrees of the alternative u according to the parameter x.

Step 3. Obtain the decision set {ŝ(uk)uk | uk ∈ U} such that

ŝ(uk) :=


s(uk)−min

i
{s(ui)}

max
i

{s(ui)}−min
i

{s(ui)} , max
i

{s(ui)} ≠ min
i
{s(ui)}

1, max
i

{s(ui)} = min
i
{s(ui)}

Secondly, the section provides the illustrative example in [24] to compare fairly the proposed method
with those in [24].

Example 5.1. [24] Suppose that there is an investment firm that wishes to put money into the
best option (adapted from [26]). Let us consider the pfs-set f , which describes the “attractiveness
of projects” being considered for investment by the firm. Assume that there are six alternative
projects, i.e., U = {u1, u2, u3, u4, u5, u6} such that u1 =“Project-1”, u2 =“Project-2”, u3 =“Project-3”,
u4 =“Project-4” ,u5 =“Project-5”, and u6 =“Project-6”, and four parameters, i.e., E = {x1, x2, x3, x4}
such that x1 =“Risk Analysis”, x2 =“Growth Analysis”, x3 =“Social-Political Impact Analysis”, and
x4 =“Environment Analysis”, under consideration. The firm evaluates the alternatives according to
the parameters and constructs a pfs-set f1 as follows:

f1 =

{(
x1,

{〈
0.31
0.22
0.41

〉
u1,

〈
0.12
0.41
0.33

〉
u2,

〈
0.23
0.52
0.21

〉
u3,

〈
0.45
0.09
0.36

〉
u4,

〈
0.57
0.30
0.05

〉
u5,

〈
0.44
0.40
0.13

〉
u6

})
,

(
x2,

{〈
0.54
0.21
0.15

〉
u1,

〈
0.81
0.11
0.02

〉
u2,

〈
0.13
0.48
0.37

〉
u3,

〈
0.23
0.59
0.18

〉
u4,

〈
0.60
0.23
0.14

〉
u5,

〈
0.42
0.36
0.22

〉
u6

})
,

(
x3,

{〈
0.60
0.14
0.26

〉
u1,

〈
0.26
0.51
0.20

〉
u2,

〈
0.72
0.15
0.03

〉
u3,

〈
0.32
0.49
0.15

〉
u4,

〈
0.81
0.11
0.06

〉
u5,

〈
0.43
0.27
0.13

〉
u6

})
,

(
x4,

{〈
0.38
0.21
0.40

〉
u1,

〈
0.65
0.15
0.18

〉
u2,

〈
0.29
0.58
0.12

〉
u3,

〈
0.14
0.32
0.45

〉
u4,

〈
0.43
0.18
0.35

〉
u5,

〈
0.35
0.29
0.34

〉
u6

})}
Thirdly, the proposed soft decision-making method is applied to the pfs-set f1 and the decision set is
as follows:{

0.3980Project-1,0.4062 Project-2,0.2636 Project-3,0.1788 Project-4,0.5718 Project-5,0.3424 Project-6
}

Fourthly, the ranking orders of proposed method and the decision-making method provided in [24]
present in Table 1.
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Table 1. The ranking orders of the proposed method and literature

Methods Structures Ranking Orders

Literature [24] pfs-sets Project-4 = Project-6 ≺ Project-1 = Project-3 ≺ Project-2 ≺ Project-5

Proposed Method pfs-sets Project-4 ≺ Project-3 ≺ Project-6 ≺ Project-1 ≺ Project-2 ≺ Project-5

According to the ranking orders in Table 1, proposed method and the literature is tend to producing
the same ranking except for the alternatives Project-1, Project-3, and Project-6. Moreover, they
confirm that Project-5 is the most suitable project and Project-4 is not suitable for the firm among
the projects.

6. Conclusion

In this paper, we redefined the concept of pfs-sets to ensure their theoretical consistency. We then
investigated their properties extensively and revised some of their operations. Afterwards, we defined
their product operations such as AND, OR, ANDNOT, and ORNOT-products. We then proposed
a soft decision-making method based on pfs-sets and compared it with the decision-making method
provided in [24]. The results manifested that proposed method generate the stable ranking order
compared to literature.

The concept of pfs-sets is a new mathematical tool for modelling the uncertainties. It has not been
applied to real-world problems such as image processing and machine learning. To carry out these
implementations, the matrix representation of the concept is required. The algebraic operations of
picture fuzzy soft matrices (pfs-matrices) [27] have been studied, but the concept therein has not been
explored substantially. In addition, it has the consistency resulting from definitions provided in [23,24].
Hence, redefining of pfs-matrices is worth studying. On the other hand, applications of pfs-matrices to
image processing and machine learning are crucial research topics since fuzzy parameterized fuzzy soft
matrices, which is a substructure of pfs-matrices, are successfully applied to machine learning [28–32].
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