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ABSTRACT. In this paper, it is given some properties for an (s, m)-convex
function defined on [0,d], d > 0 in the first sense and the second sense with
m € (0,1). Also, some integral inequalities are examined for any non positive
(s, m)-convex function in the second sense with any measure space.

1. INTRODUCTION

Convex functions, like differentiable functions, have a important role in many
fields of pure and applied mathematics. It connects concepts from topology, alge-
bra, geometry and analysis, and is an important tool in optimization, mathematical
programming and game theory [3].

In recent years, after Mihesan [I4] defined (s, m)-convex functions in the first
sense, several investigations have emerged resulting in applications in mathematics,
as it can be seen in [T}, 2, 12 4, [ 10, [7, [6, 8] @] [T3].

Definition 1.1. A function f : [0,d] — R is called an (s, m)-convezr function in
the first sense, where (s,m) € [0,1] and d > 0, if for all z,y € [0,d] and t € [0,1]

flz+m(1—t)y) <t°f(x)+m(l—t°)f(y).

Moreover, Eftekhari [I5] introduced (s, m)-convex functions in the second sense
in 2014 as follows:

Definition 1.2. f:[0,d] = R, d > 0 is called to be an (s,m)- convez in the second
sense function for some (s,m) € (0,1]? if

flz+m1—t)y) <t°f (z) +m(1—1)°f (y)
for any z,y € [0,d].
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Example 1.1. Let s,m € (0,1], p € [1,+00) and f : [0,+00) — R defined by
fl@) =aP +c¢, ¢ <0, then f is an (s, m)-convez function in the second sense.
Indeed, for all x,y € [0,+00), t € [0,1] and (s,m) € [0,1] we have

flz+m(1—1t)y) =z +ml -y’ +ec<ty’ +mP(1—t)y’ +¢
<P +m(l —t)%yP + (t° +m(1l —¢)°)c
<t (@) +m1 =) ().

We note that if a nonnegative function is convex and starshaped, then it is an
(s,m)-convex function in the second sense function for all (s,m) € (0,1]%2. This
function class is an extension of s-convex functions in the second sense that are
(s,1)- convex functions in the second sense [I2]. Dragomir and Fitzpatrick proved
that a s-convex functions in the second sense f is Riemann integrable if f(c) = 0 for
any point ¢ in domain of the function f in [I7]. Also, when f is Lebesgue integrable
on [a,b] they give the Hermite-Hadamard type inequality for a s-convex functions
in the second sense f on [a,b] as the following inequality

“+h) o)+ 1 (b)

28 1
== - s+1

However, there is not any result for integrability of (s, m)- convex functions in the
second sense with m € (0, 1), and so researchers like [I8] 19 [20] have to stipulate
integrability.

In this paper, we deal with some properties and some inequalities for (s, m)-
convex functions in the second sense with m € (0,1).

2. Some Properties

Let’s first recall the well known H. Lebesgue Theorem ([2I] p.257).

Theorem 2.1 ( H. Lebesgue). Let f be a real-valued increasing function on [a,b].
Then the derivative f' exists and is nonnegative in (a,b)\E where E is a null set
in (R,9My, ur) contained in (a,b). Further more f’ is My measurable and pp, -
integrable on (a,b)\E with

l/fWMéf@*fww

[a,b]

Theorem 2.2. If f : [0,d] = R, d > 0 is an (s,m)- convex in the first sense or
the second sense function for m € (0,1), then the derivative f' exists and

sf(z) < zf'(x)

is hold for all x € (a,b)\E, [a,b] C (0,d] where E is a null set in (R, My, ur,)
contained in (a,b).

Proof. Let f:[0,d] = R, d > 0 be an (s, m)- convex in the first or the second sense
function for m € (0,1). In this case,

f(0) <mf(0),
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and so it is obtained f(0) < 0. Also for all 0 < z < y we have

r@ =7 (Lyrm(1-2)0) < (;C)f (e (1- (j)) 7(0) < (y)f )

or

=1 (Zem(1-2)0) < (2) swem(1-2) 50 < (%) s

ie., % < %, 0 < ¢ <y < d. This means that the function g(z) = [@) i

— a:S
monotone increasing function on [a,d], a > 0. Since the functions h(z) = z°® and

g(xz) = % are differentiable, according to H. Lebesgue Theorem we gain that the

derivative f’ exists and

sf(z) <af'(x)
is satisfied for all z € (a,b)\E, (a,b] C (0,d] where E is a null set in (R, 9y, ur)
contained in (a, b). O

Corollary 2.3. If f : [0,d] = R, d > 0 is an (s,m)- convex in the first sense or
the second sense function for m € (0,1), f is Riemann integrable on [a,d], a > 0.

Corollary 2.4. If f:[0,d] — R, d > 0 is a nonnegative (s,m)- convez in the first
sense or second sense function for m € (0,1), then f is continuous at the zero,
f(0) = 0 and monotone increasing, and so Riemann integrable on [0, d].

Corollary 2.5. If f:[0,d] — R, d > 0 is a nonnegative (s,m)- convez in the first
sense or second sense function for m € (0,1) and is the derivative of a function on
(0,d), then f is continuous on [0,d).

Proof. This result is taken from the fact that the derivative function has points of
discontinuity only if it has points of the second type discontinuity. O

Theorem 2.6. Let f : [0,d] = R, d > 0 be a nonnegative (s, m)- convex in the first
sense or second sense function for m € (0,1) and continuous on any subinterval
[0,c], ¢ <d. Then, the limit lim,_,o L@ orists.

s

Proof. Suppose that f : [0,d] = R, d > 0 be a nonnegative (s,m)- convex in the
first sense or second sense function for m € (0,1) and continuous on any subinterval
[0,¢], 0 < ¢ < d. Therefore g : [0,c¢] — R defined as g(z) = 2'7° f(z) is continuous
on [0, c] and for all n € N and all z € [0, ¢]

ober = (5) Tr (B 2o (1) (B) s = Lo

is satisfied. According to Theorem 6 in [24], g(z) is differentiable at © = 0. This
f(@)

s

means that the limit lim,_,q exists. O

Theorem 2.7. If f : [0,d] = R, d > 0 is a negative valued (s,m)- convex in the

first sense or the second sense function for m € (0,1), f is a starshaped function
on [0,d).

Proof. Under the assumption of theorem, for all z € [0,d], f(z) < 0. Now, we
suppose that the function is not starshaped. From here, there exist two point
xo € [0,d] and tog € (0,1)

tof(zo) < f(tozo).
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Because f is an (s,m)- convex in the first sense and second sense function for
€(0,1),
tof(zo) < f(towo) < 15 f (o)
is hold. However, since f is a negative valued function, for ¢y € (0,1)
tf) < o
is obtained. This is a contradiction. Therefore, it is gained that the function f is
starshaped on [0, d]. O

Corollary 2.8. If f : [0,d] = R, d > 0 is a negative valued (s, m)- convez in the
first sense and second sense function for m € (0,1), there exists a point ¢ € [0,d]
such that fx, is a non positive starshaped function on [0,c] and fx.a is a
nonnegative monotone increasing function on [c,d], where x 4 is the characteristic
function of the subset A of R.

3. SOME INEQUALITIES

Theorem 3.1. Let f:[0,d] = R, d > 0 be an (s, m)-convex function in the second
sense and Riemann integrable on [a,b], 0 < a <mb <b<d. Then

. a+b b ma) f(b) + (mb—a) f(a)
2 1f( >_b—a/f (s+1)(b—a) '

Proof. Because f is an (s, m)-convex function in the second sense, for all z,y € [a, V]

we have
() <m0
If e =ta+ (1 —t)band y = tb+ (1 — t)a are chosen, then we get
f (ma;b> < o5 (fltat (1= )b) + f(th+ (1= )a).

We obtain by integrating the last inequality

b
b 1
f(ma;‘ ) - Q(S”jl)b_a/f(x)dx

Since a < mb, and f :[0,d] - R, d > 0 is an (s, m)-convex function in the second
sense

frway="T s de+ fbf(xmx

=(mb—a) [ fta+m(L—1t)b)dt+ (b—mb) [ f(tb+m(1—t)b)dt

Ct— =

1 1
<(mb—a) [t f(a)+m(l—1t)°f(b))dt+ (b—mb) [ (t*+m(1—1t)°) f(b)dt
_ (b—ma)f(b?ﬂmb—a)f(a) ’
s+1
we have

a+b 21 s 1—s (b—=ma) f(b) + (mb—a) f(a)
f(”‘ 2 ) /f ) de < m2 (s+ (b —a) ‘
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Remark. If we take m =1 and s =1 in Theorem[3.1}, then

f<“;b)§

is famous Hermite-Hadamard inequality.

f(0) + f(a)
2

z)dx <

Corollary 3.2. If f : [0,d] = R, d > 0 is an (s,m)-convex function in the second
sense and the derivative function f' is Riemann integrable on [a,b], 0 < a < mb <
b <d, then

bf(b) —af(a) (b—ma)f(b)+ (mb—a)f(a)
s+ 1 ’ s+ 1

/bf(w)d:v < min { .

Theorem 3.3. Let f:[0,d] — R be a differentiable on [0,d] and |f'| is an (s,m)-
convex function in the second sense in [0,d] for m € (0,1), then for all x € [a,b],
[a,b] C [0,d]

f (ma) -

b 2 2
/ (m(s+ 1)+ 1) ((mz—a)”+ (b—mz)
/f(y)dy < 0] ( )

—a b—a (s+1)(s+2)

Proof. In this case, we use the equality given by Cerone and Dragomir in [22], and
S0

b—a

2 1 2 |
_ mz —a) /tf' (tmz + 1_t)a)dt_M/tﬁ(tmm—{—(l—t)b)dt
0

b—ma)?

0
2 1
(mz — a) /t|f’ tma+ (1 —t)a)|dt + ; tf (tma + (1 — ) b) |dt
—Qa
0

o _

(ma — a)®

ﬂ/t(mts + (1= 0)°)|f (b)ldt + %/t(mt‘s + (L= 6)")If ()]t

1(b)] (m(s+1)+1) ((mx —a)® + (b— mx)2>
b—a (s+1)(s+2)

is obtained. 0

Remark. If it is chosen as m = 1 in Theorem it is obtained the inequality
given Alomari et. al. in [23].

Theorem 3.4. If f:[0,d] = R, d > 0 is an (s,m)-convex function in the second
sense for any m € (0,1) then the following inequality is hold
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f (mZthk> < mZtif (zk) (3.1)
k=1 k=1

where Z tr <1, ty €[0,1] and xy, € [a,b)].
k=1

Proof. It can be proved by using the mathematical induction method as in [25].
First of all, since f : [0,d] — R, d > 0 is an (s, m)-convex function in the second
sense with m € (0,1) for n =1, t € [0,1] and z € [a, b]

f(mtx) = f(mtz + (1 —1)0) < (1 —1)°f(0) + mt®f(z) < mt*f(x).
Now, for the next Step of induction we consider that the equation is true for

n — 1. In this case, if Z tr <
k=1

n n—1
/ (mz tk$k> = f (m(l - tn) Z 1 ikt Tk + mtnxn>
k=1 "

k=1

n—1
(1—t,)°f (mz 1 ikt xk> + mt} f(ay,)

k=1 n

IN

< mztkf xy) + mty, f(xy) mztkf Tp).

This conclusion completes the proof of the theorem. O

Theorem 3.5. Suppose that (X, X, u) is a finite measure space and h : X —
[0,4+00) is a p-integrable function such that h(x) < W a.e. . If f:1]0,d = R,

d > 0 is a non positive continuous (s, m)-convex function in the second senses for
any m € (0,1) and g : X — [0,d] is a p-integrable function, then we have

m [ (@) (@) du (2) m/h )) dis ()
E

for any E € X.

n
Proof. Let I = |J I,,, be any partition of disjoint intervals I,,, for n € N. Because
k=1
g isan pu- integrable function, the set E,, := g~1 (I,,)NE isin ¥ for any set £ €

and E = U E,,. Choosing any point z,, in each set E,,. Since h is a positive

valued functlon and f h(z)dup (z) < 1, the linear combination

> i (En) h(@n,)g (2n,)

k=1

is in [0, d] for large enough n € N. Because f is a non positive (s, m)-convex function
for any m € (0,1) on [0, d], the following inequality is satisfied by using the previous
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theorem

FAmY (B h(@n,)g (2n,) <m Yy p (Ep) b° (2,) f (9 (n,)
k=1 k=1

<m Z 1 (Eny) b (2n,) f (9 (Tny))
k=1

The proof of the theorem is completed under the continuity assumption of the
function f. (I
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