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On the Convergence of Stochastic Aggregated Gradient Method
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Abstract. The minimization problem of the sum of a large set of convex functions arises in various applications.
Methods such as incremental gradient, stochastic gradient, and aggregated gradient are popular choices for solving
those problems as they do not require a full gradient evaluation at every iteration. In this paper, we analyze a
generalization of the stochastic aggregated gradient method via an alternative technique based on the convergence
of iterative linear systems. The technique provides a short proof for the O(κ−1) linear convergence rate in the
quadratic case. We observe that the technique is rather restrictive for the general case, and can provide weaker
results.
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1. Introduction

We consider unconstrained minimization of the sum of a finite number of smooth functions fi : Rn → R; i.e.

min
x∈Rn

F(x), with F(x) =
1
N

N∑
i=1

fi(x), (1.1)

such that the number of component functions N is large as compared to the dimension n of the variable vector x. This
problem structure arises in variety of applications, including machine learning. In the setting of parameter inference,
for instance, fi(.) has the form fi(x) = l(x; ai, bi), where l(.) is a loss function stating the misfit of a model parametrized
by x for a given data point (ai, bi), and N is the number of data points [2].

Among popular methods for solving this problem are inexact gradient-type methods, which avoid computing the
full gradient ∇F(x) = 1

N
∑N

i=1 ∇ fi(x) since N is large. The general form of the kth step for those methods is

xk+1 = xk − αkyk, αk > 0.

Thus, the conventional gradient descent algorithm is modified by replacing ∇F(xk) with yk.
• The incremental gradient method [1] chooses one index ik ∈ {1, ...,N} and sets yk = ∇ fik (xk). The choice

of ik could be at random, or it can make a pass through all indices {1, ...,N} in order. Note that the method
is equivalent to the stochastic gradient algorithm if the choice of ik is random with probability 1

N for all
component functions, as the objective of (1.1) in this case can be seen as an expected value statement.
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• The aggregated gradient method computes at each iteration the gradient of only one component function as
in the incremental approach. However, it reuses the previously computed gradients in computing the search
direction. That is, it sets yk = 1

N
∑N

i=1 ∇ fi(xk(i)). Here, k(i) is the largest iteration number where the function
∇ fi(.) was evaluated. In the incremental aggregated gradient (IAG) variant of the method [3], the component
gradient to be updated at each iteration is selected in a cyclic manner whereas in the stochastic variant that we
explain in the next item it is selected at random.

• The recently proposed stochastic aggregated gradient (SAG) method [5] follows the ideas of the aggregated
gradient method, but chooses the function index for gradient update at random; i.e.

yk =
1
N

(∇ f j(xk) − ∇ f j(xk( j)) +

N∑
i=1

∇ fi(xk(i))),

where j ∈ {1, 2, · · · ,N} is chosen at random.

In this paper, we study a generalization of the SAG algorithm that might update multiple component functions at
each iteration (Section 2). We present convergence analysis of the method in Section 3; our analysis follows a different
technique as compared to [5] and [3].

Notation. We denote unspecified eigenvalues and the spectral radius of a square matrix M with λ and ρ(M), respectively.
‖.‖ indicates l2-norm unless stated otherwise.

2. A Generalization of the Stochastic Aggregated Gradient Algorithm

We consider a generalization of the SAG algorithm such that each gradient component is updated with probability η at
each iteration. So, we set

xk+1 = xk − αyk, k = 0, 1, . . . (2.1)

and

yk =
1
N

N∑
i=1

∇ fi(xk(i)), (2.2)

where

k(i) =

k with probability η,
[k − 1](i) with probability 1 − η.

We do not specify the choice of the constant steplength parameter α > 0 yet. We set α to a sufficiently small constant
positive value in our algorithm. More details on the value of α will be provided in our analysis.

Define error terms

ei
k = ∇ fi(xk(i)) − ∇ fi(xk) and ek =

1
N

N∑
i=1

ei
k

so that we can state

yk =
1
N

N∑
i=1

(∇ fi(xk) + ei
k) = ∇F(xk) + ek.

Note that given ek−1 and xk−1, we have the conditional expectation

E[ei
k] = (1 − η)(ei

k−1 + ∇ fi(xk−1) − ∇ fi(xk)).
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Assumptions.
A.1. F(.) is twice continuously differentiable.
A.2. F(.) is strongly convex, and x∗ is its unique minimizer.
Let us define two average Hessian matrices, Hk and H̄k, for each k, such that the mean value theorem applies as

follows.
∇F(xk) = ∇F(xk−1) + Hk(xk − xk−1),

∇F(xk) = H̄k(xk − x∗).

A.3. For some µ > 0 and L > 1 ,

µI � Hk � LI, and µI � H̄k � LI, for all k.

A.4. The choice of the component functions are independent identically distributed random events.

Lemma 2.1. Suppose that assumptions (A.1)-(A.4) hold. The conditional expectation of the error in gradient estima-
tion E[ek] and the distance to the solution xk − x∗ evolves with respect to the system 1

L
E[ek]

xk − x∗

 = Mk

 1
L

ek−1

xk−1 − x∗

 , for Mk =

(1 − η)(I + αHk)
1
L

(1 − η)αHkH̄k−1

−αLI I − αH̄k−1

 . (2.3)

Proof. We will state two relations on the change of ek and on the change of xk − x∗, respectively, and then merge the
two.

E[ek] = (1 − η)(ek−1 + ∇F(xk−1) − ∇F(xk))
= (1 − η)(ek−1 − Hk(xk − xk−1))
= (1 − η)(ek−1 − Hk(−αyk−1))
= (1 − η) (ek−1 + αHk(∇F(xk−1) + ek−1))

= (1 − η) ((I + αHk)ek−1 + αHk∇F(xk−1))

= (1 − η)(I + αHk)ek−1 + (1 − η)αHkH̄k−1(xk−1 − x∗).

We also have

xk − x∗ = xk−1 − x∗ + (xk − xk−1)
= xk−1 − x∗ − αyk−1

= xk−1 − x∗ − α(∇ fk−1 + ek−1)

= xk−1 − x∗ − αH̄k−1(xk−1 − x∗) − αek−1

= (I − αH̄k−1)(xk−1 − x∗) − αek−1.

Merging the two equations yields the desired system. �

Lemma 2.1 states the progress of the algorithm as an iterative linear system, and suggests that the product of
(2nx2n) nonsymmetrical matrices Mk determine the convergence behavior of our algorithm. In particular, since the
random processes at each iteration are independent, if

∞∏
k=1

Mk → 0

holds, then we get xk → x∗.

Note that when F is a quadratic function, the matrix Mk does not depend on the iteration; i.e. since H̄k = Hk = H
for a constant positive definite H for all k, we have Mk = M for all k where

M =

(1 − η)(I + αH)
1
L

(1 − η)αHH

−αLI I − αH

 .
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It is also possible to state the progress of the algorithm via a constant matrix when F is non-quadratic, as we explain
in the following lemma.

Lemma 2.2. If assumptions (A.1)-(A.4) hold, then 1
L
‖E[ek]‖

‖xk − x∗‖

 ≤ M̄

 1
L
‖ek−1‖

‖xk−1 − x∗‖

 for M̄ =

(
(1 − η)(1 + αL) (1 − η)αL

αL 1 − αµ

)
.

Proof. Recall that we have

E[ek] = (1 − η)(I + αHk)ek−1 + (1 − η)αHkH̄k−1(xk−1 − x∗),

and
xk − x∗ = (I − αH̄k−1)(xk−1 − x∗) − αek−1.

That implies
‖E[ek]‖ ≤ (1 − η)(1 + αL)‖ek−1‖ + (1 − η)αL2‖xk−1 − x∗‖,

and
‖xk − x∗‖ ≤ (1 − αµ)‖xk−1 − x∗‖ + α‖ek−1‖,

respectively. �

In the next section, we provide convergence results for the extended SAG algorithm based on the systems given in
Lemma 2.1 and Lemma 2.2.

3. Convergence Results

In this section, we will first discuss the properties of Mk and M̄. Then, we will provide convergence results for the
generalized SAG algorithm.

Theorem 3.1. Define κ = L/µ. If assumption (A.3) holds, then the matrix Mk defined in (2.3) satisfies the following

provided that α =
θη

L
for θ ∈ (0, 1].

(a) All eigenvalues λ of Mk satisfy λ ≥ 0.
(b) The largest eigenvalue λ1 of Mk satisfies λ1 ≤ 1.
(c) ρ(Mk) ≤ 1 − η2θκ−1.

Proof. Let us first note that we have all eigenvalues of Hk, H̄k in [µ, L], and κ ≥ 1 by assumption (A.3).
(a) Since blocks (2,1) and (2,2) of Mk commute, by Theorem 1 of [6] we have

det(Mk − λI) = det
([

(1 − η)(I + αHk) − λI
] [

I − αH̄k−1 − λI
]

+ (1 − η)α2HkH̄k−1

)
= det

(
(1 − η)(I − α2HkH̄k−1 + αHk − αH̄k−1) + λ2I − λ

[
(1 − η)(I + αHk) + I − αH̄k−1

]
+(1 − η)α2HkH̄k−1

)
= det

(
(1 − η)(I + αHk − αH̄k−1) − λ

[
(1 − η)(I + αHk) + I − αH̄k−1

]
+ λ2I

)
.

Define
C(λ) = (1 − η)(I + αHk − αH̄k−1) − λ

[
(1 − η)(I + αHk) + I − αH̄k−1

]
.

Then, for each eigenvalue λ of Mk, there exists an eigenvalue σ of C(λ) such that σ = −λ2. To derive a
contradiction, suppose λ < 0. Then, by using the fact that αL ≤ 1 we have

σ ≥ (1 − η)(1 + αµ − αL) − λ
[
(1 − η)(1 + αµ) + 1 − αL

]
≥ (1 − η)αµ − λ(1 − η)(1 + αµ) > 0.

This cannot be true since σ = −λ2. Thus, λ ≥ 0.
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(b) Suppose for contradiction that λ1 > 1. Note that, we can state C(λ) as

C(λ) = (1 − η)(I + α(Hk − H̄k−1)) − λ
[
(1 − η)(I + αHk) + I − αH̄k−1 − (1 − η)αH̄k−1 + (1 − η)αH̄k−1

]
= (1 − η)(I + α(Hk − H̄k−1)) − λ

[
(1 − η)(I + α(Hk − H̄k−1)) + I − αH̄k−1 + (1 − η)αH̄k−1

]
= (1 − η)(1 − λ)(I + α(Hk − H̄k−1)) − λI + ληαH̄k−1.

Since −λ2
1 is an eigenvalue of C(λ1), it will be the smallest one; i.e. σn = −λ2

1. As we know from part (a) that
λ1 ≥ 0, and by the contradiction hypothesis that λ1 > 1, we have

−λ2
1 ≥ (1 − η)(1 − λ1)(1 + α(L − µ)) − λ1 + λ1ηαµ

⇒λ1(1 − λ1) ≥ (1 − η)(1 − λ1)(1 + α(L − µ))

⇒λ1 ≤ (1 − η)(1 + α(L − µ)) = (1 − η)(1 + θη(1 − κ−1)) ≤ 1 − η2

⇒λ1 ≤ 1

for α =
θη

L
, θ ∈ (0, 1], since κ−1 =

µ

L
≤ 1. The contradiction is established.

(c) Let us use the representation of C(λ) derived in part (b), and re-state the inequality on the smallest eigenvalue
of C(λ1) based on the fact that 0 ≤ λ1 ≤ 1 as proven in parts (a) and (b).

−λ2
1 ≥ (1 − η)(1 − λ1)(1 + α(µ − L)) − λ1 + λ1ηαµ

= (1 − η)(1 − λ1)(1 + θη(κ−1 − 1)) − λ1(1 − ηαµ)
≥ −λ1(1 − ηαµ)

since the fact 0 ≤ κ−1 ≤ 1 implies

0 ≤ (1 − η)(1 − λ1)(1 − θη) ≤ (1 − η)(1 − λ1)(1 + θη(κ−1 − 1)) ≤ (1 − η)(1 − λ1).

Therefore, we get λ1 ≤ 1 − ηαµ = 1 − η2θκ−1.
�

The next theorem provides a similar result for M̄. Although it describes a homogeneous transition for the non-
quadratic case, we observe that a smaller steplength value can be employed and the bound on the largest eigenvalue of
this matrix is larger than Mk.

Theorem 3.2. Consider the matrix M̄ defined in Lemma 2.2 with 0 < µ ≤ L and η ∈ (0, 1]. If α =
θη

κL
for θ ∈ (0, 0.5],

then both eigenvalues of M̄ are nonnegative and we have ρ(M̄) ≤ 1 − η2θκ−2.

Proof. The eigenvalues of matrix M̄ are the roots of the polynomial

p(λ) =
[
(1 − η)(1 + αL) − λ

]
(1 − αµ − λ) − (1 − η)α2L2

= λ2 −
[
(1 − η)(1 + αL) + 1 − αµ

]
λ + (1 − η)(1 + αL)(1 − αµ) − (1 − η)α2L2.

So,

λ1,2 =
1
2

(
(1 − η)(1 + αL) + 1 − αµ ∓

√
∆
)
,

where

∆ =
[
(1 − η)(1 + αL) + 1 − αµ

]2
− 4

[
(1 − η)(1 + αL)(1 − αµ) − (1 − η)α2L2

]
=

[
(1 − η)(1 + αL) − (1 − αµ)

]2
+ 4(1 − η)α2L2.

Note that

(1 − η)(1 + αL) − (1 − αµ) = −η + α[(1 − η)L + µ]

≤ −η + 2Lα ≤ (−1 + κ−1)η ≤ 0.

Also, for
δ =

[
(1 − η)(1 + αL) − (1 − αµ) − 2(1 − η)αµ

]2
− ∆
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we have

δ = 4(1 − η)αµ
[
(1 − η)αµ − [(1 − η)(1 + αL) − (1 − αµ)]

]
− 4(1 − η)α2L2

= 4(1 − η)αµ
[
(1 − η)αµ − [(1 − η)(1 + αL) − (1 − αµ)] − α

L2

µ

]
= 4(1 − η)αµ

[
η − ηαµ − (1 − η)αL − α

L2

µ

]
= 4(1 − η)αµη

(
1 + θ

[
−η

µ2

L2 − (1 − η)
µ

L
− 1

])
≥ 4(1 − η)αµη

(
1 + θ

[
−η − (1 − η) − 1

])
= 4(1 − η)αµη(1 − 2θ) ≥ 0

as θ ≤ 0.5. Therefore,[
(1 − η)(1 + αL) − (1 − αµ)

]2
≤ ∆ ≤

[
(1 − η)(1 + αL) − (1 − αµ) − 2(1 − η)αµ

]2 .

For the smaller root λ2 this implies

λ2 =
1
2

(
(1 − η)(1 + αL) + 1 − αµ −

√
∆
)

≥
1
2

((1 − η)(1 + αL) + 1 − αµ + (1 − η)(1 + αL) − (1 − αµ) − 2(1 − η)αµ)

= (1 − η)(1 + αL − αµ) ≥ 0.

As for the larger root λ1 we have

λ1 =
1
2

(
(1 − η)(1 + αL) + 1 − αµ +

√
∆
)

≤
1
2

((1 − η)(1 + αL) + 1 − αµ − (1 − η)(1 + αL) + (1 − αµ) + 2(1 − η)αµ)

= 1 − αµ + (1 − η)αµ = 1 − ηαµ.

Placing the value of α we get λ1 ≤ 1 − θη2κ−2.
�

We are now ready to give the convergence rate results. First, we study the quadratic case. Then, we observe
convergence for the general case.

3.1. Quadratic Case. Recall that in the quadratic case the result of Lemma 2.1 reduces to 1
L

E[ek]

xk − x∗

 = Mk

 1
L

e0

x0 − x∗

 , for M =

(1 − η)(I + αH)
1
L

(1 − η)αHH

−αLI I − αH

 . (3.1)

The linear convergence of the generalized SAG algorithm in the quadratic case follows by the next result.

Corollary 3.3. Suppose the sequence {xk} is produced by (2.1) with yk defined as in (2.2), and α =
θη

L
with θ ∈ (0, 1].

If Assumptions (A.1)-(A.4) hold and F is a quadratic function, then ‖xk − x∗‖ = O(ρk) with ρ ≤ 1 − η2θκ−1, and κ = L
µ

.

Proof. Considering the Jordan canonical form of Mk [8], we observe that the largest term defining the right hand side
of (3.1) has norm O(ρk). Therefore,

‖xk − x∗‖ ≤

∥∥∥∥∥∥∥
 1

L
E[ek]

xk − x∗


∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥Mk

 1
L

E[e0]

x0 − x∗


∥∥∥∥∥∥∥ = O(ρk).

The bound on ρ follows from Theorem (3.1). �

We note that a similar line of convergence analysis based on (nonsymmetric) iterative linear systems have long been
established for iterative methods for solving linear systems of equations such as Gauss-Seidel [7].
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3.2. General Case. We can follow the same steps as in the quadratic case to observe convergence of the algorithm in
minimizing non-quadratic functions. Lemma 2.2 implies that we have 1

L
‖E[ek]‖

‖xk − x∗‖

 ≤ M̄k

 1
L
‖e0‖

‖x0 − x∗‖

 , for M̄ =

(
(1 − η)(1 + αL) (1 − η)αL

αL 1 − αµ

)
,

since we assume that the random selection of a subset of component functions (with probability η) is independent at
each iteration. The next result is a corollary of Theorem 3.2, and can be shown following the same steps as in the proof
of Corollary 3.3.

Corollary 3.4. Suppose the sequence {xk} is produced by (2.1) with yk defined as in (2.2), and α =
θηµ

L2 with θ ∈ (0, 0.5].

If Assumptions (A.1)-(A.4) hold, then ‖xk − x∗‖ = O(ρk) with ρ ≤ 1 − η2θκ−2, and κ = L
µ

.

Let us finally note that it is in fact possible to consider the system (2.3), and employ Mk (rather than M̄) to show
convergence in the non-quadratic case. In particular, we can show that Mk satisfies all requirements of the slowly
varying theorem. We refer to Chapter 12 of [4] for a statement and proof of this theorem. However, the result that we
obtain as a consequence of this theorem is valid under stricter conditions as compared to what we get with M̄, and is
weaker in terms of the rate of convergence.
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