On sum annihilator ideals in Ore extensions

Mahsa Paykanian(D), Ebrahim Hashemi* ${ }^{*}$ (D) Abdollah Alhevaz (D)
Faculty of Mathematical Sciences, Shahrood University of Technology, Shahrood, Iran

Abstract

A ring R is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of the intersection of any two left ideals is the sum of the two right annihilators. As a generalization of left IN-rings, a ring R is called a right SA-ring if the sum of right annihilators of two ideals is a right annihilator of an ideal of R. It would be interesting to find conditions under which an Ore extension $R[x ; \alpha, \delta]$ is IN and SA. In this paper, we will present some necessary and sufficient conditions for the Ore extension $R[x ; \alpha, \delta]$ to be left IN or right SA. In addition, for an (α, δ)-compatible ring R, it is shown that: (i) If $S=R[x ; \alpha, \delta]$ is a left IN-ring with $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha, \delta])$, then R is left McCoy. (ii) Every reduced left IN-ring with finitely many minimal prime ideals is a semiprime left Goldie ring. (iii) If R is a commutative principal ideal ring, then R and $R[x]$ are IN . (iv) If R is a reduced ring and n is a positive integer, then R is right SA if and only if $R[x] /\left(x^{n+1}\right)$ is right SA.

Mathematics Subject Classification (2020). 16D25, 16S36
Keywords. Armendariz ring, Ikeda-Nakayama ring, quasi-Armendariz ring, SA-ring, skew polynomials ring, left McCoy ring

1. Introduction and preliminary definitions

According to [5], a ring R is called a left Ikeda-Nakayama ring (left IN-ring) if $r_{R}(I \cap J)=$ $r_{R}(I)+r_{R}(J)$ for all left ideals I, J of R. For example, all left self-injective rings, all left uniserial rings and all left uniform domains are left IN-ring. Kaplansky [13] introduced Dual rings as rings which every right or left ideal of them is an annihilator. Hajarnavis and Norton [7] proved that every dual ring is a right (and left) IN-ring. Wisbauer et al. [19] extended the notion of an Ikeda-Nakayama ring to bimodules and derived various characterizations and properties for modules with this property.

As a generalization of IN-rings, Birkenmeier et al. [3, 4] introduced SA-rings. A ring R is called a right SA-ring, if for any ideals I and J of R, there is an ideal K of R such that $r_{R}(I)+r_{R}(J)=r_{R}(K)$. They showed that this class of rings is exactly the class of rings for which the lattice of right annihilator ideals is a sub-lattice of the lattice of ideals. The class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings (hence all right self-injective rings). Also they showed that this class is closed under direct products, full and upper triangular matrix rings and certain classes of polynomial rings.

[^0]Throughout this paper, R denotes an associative ring with unity, $\alpha: R \longrightarrow R$ is an endomorphism, and δ is an α-derivation of R (i.e., δ is an additive map such that $\delta(a b)=$ $\delta(a) b+\alpha(a) \delta(b)$, for all $a, b \in R)$. We denote by $S=R[x ; \alpha, \delta]$ the Ore extension whose elements are the polynomials over R, where addition is defined as usual and multiplication by $x b=\alpha(b) x+\delta(b)$ for any $b \in R$. For a subset $A \subseteq R$, we denote the right annihilator and left annihilator of A in R by $r_{R}(A)$ and $\ell_{R}(A)$, respectively. The set of all right zero divisors of R is denoted by $Z_{r}(R)$.

It is natural to ask if these properties (IN and SA) can be extended from R to $R[x ; \alpha, \delta]$. The purpose of the present paper is to study Ore extensions over IN-rings and SA-rings. In this note we show that some portions of the results in [18] can be generalized to the Ore extension $R[x ; \alpha, \delta]$, where the base coefficient ring R is an ($\alpha, \delta)$-compatible ring. In addition, in Section 2, we show that if $R[x ; \alpha, \delta]$ is a left IN-ring with $\operatorname{Idm}(R[x ; \alpha, \delta])=\operatorname{Idm}(R)$, then $\ell_{R[x ; \alpha, \delta]}(g) \cap R \neq\{0\}$, for each $g \in Z_{r}(R[x ; \alpha, \delta])$. Furthermore, it is proved that every reduced left IN-ring R with finitely many minimal prime ideals is a semiprime left Goldie ring and $R[x ; \alpha, \delta]$ is a left IN-ring. Finally, for a commutative principal ideal ring, it is shown that the IN property is inherited by polynomial extensions. In the third section, we investigate Ore extensions over SA-rings. For example, it is proved that if $R[x ; \alpha, \delta]$ is a right SA-ring, then so is R, and the reverse is true when R satisfy SQA1 condition. In addition, it is shown that for a reduced ring R and a positive integer n, R is right SA if and only if $R[x] /\left(x^{n+1}\right)$ is right SA. Moreover, each section contains some examples to show that the " (α, δ)-compatible" assumption on R is not superfluous. Also, examples of non-reduced IN-ring R such that $R[x]$ is left IN-ring are provided.

2. Skew polynomials over IN-rings

In this section, we will present some necessary and sufficient conditions for the Ore extension $R[x ; \alpha, \delta]$ to be an IN ring. To fulfill this plan, we shall need to find a McCoylike property of an IN Ore extension. The aim of our first result in this section is to state and prove it.

According to [8], an ideal I is called an α-compatible ideal if for each $a, b \in R, a b \in$ $I \Leftrightarrow a \alpha(b) \in I$. In addition, I is said to be a δ-compatible ideal if for each $a, b \in R$, $a b \in I \Rightarrow a \delta(b) \in I$. If I is both α-compatible and δ-compatible, we say that I is an (α, δ) compatible ideal. If $I=0$ is α-compatible (resp., δ-compatible), then the ring R is called α-compatible (resp., δ-compatible). Also, if R is both α-compatible and δ-compatible, then R is said to be (α, δ)-compatible. The concept of α-compatible rings were defined in [9], as a common generalization of α-rigid rings. It was proved [9, Lemma 2.2] that R is α rigid if and only if R is α-compatible and reduced. Clearly, each compatible endomorphism is a monomorphism.

We begin this section with the following essential lemmas.
Lemma 2.1. [10, Lemma 2.1] Let R be an (α, δ)-compatible ring and $a, b \in R$. Then we have the following:
(1) If $a b=0$, then $a \alpha^{n}(b)=0=\alpha^{n}(a) b$ for each non-negative integer n.
(2) If $\alpha^{k}(a) b=0$ for some non-negative integer k, then $a b=0$.
(3) If $a b=0$, then $\alpha^{n}(a) \delta^{m}(b)=0=\delta^{m}(a) \alpha^{n}(b)$ for any non-negative integers m, n.
(4) If $a b=0$, then $\alpha(a) \alpha(b)=0=\delta(a) \delta(b)$.
(5) If $a b=0$, then $a x^{m} b=0$ in $R[x ; \alpha, \delta]$, for each $m \geq 0$.
(6) If $a x^{m} b=0$ in $R[x ; \alpha, \delta]$, for some $m \geq 0$, then $a b=0$.

Lemma 2.2. [9, Lemma 2.3] Let R be an ($\alpha, \delta)$-compatible ring. If $f=a_{0}+a_{1} x+\cdots+$ $a_{n} x^{n} \in R[x ; \alpha, \delta], r \in R$ and $f r=0$, then $a_{i} r=0$ for each i.

We denote the set of all idempotent elements of R by $\operatorname{Idm}(R)$.

Proposition 2.3. Let R be an (α, δ)-compatible ring. Also, let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ be non-zero elements of $R[x ; \alpha, \delta]$ such that $f g=0$. If $S=R[x ; \alpha, \delta]$ is a left IN-ring with $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha, \delta])$, then $f=a_{0}$ or there exists $r \in R$ such that $0 \neq r a_{n}$ and $r a_{n} g=0$.

Proof. Since $f g=0$, then by Lemma 2.1, $a_{n} b_{m}=0$. Also, since $S=R[x ; \alpha, \delta]$ is left IN, we have $r_{S}(f)+r_{S}\left(a_{n}\right)=r_{S}\left(S f \cap S a_{n}\right)$. Now, we consider the following two cases:

Case 1: Assume that $S f \cap S a_{n}=\{0\}$. Then there exists an idempotent $e \in R$, such that $S f \subseteq S e$ and $S a_{n} \subseteq S(1-e)$, by [5, Corollary 4]. Then $f=f e$ and $a_{n}=a_{n}(1-e)$. Hence $a_{n}=a_{n} \alpha^{n}(e)$, and since R is α-compatible, we have $a_{n}=a_{n} e$. Therefore, $a_{n}=0$, which implies that $f=a_{0}$.

Case 2: Assume that $S f \cap S a_{n} \neq\{0\}$. Let $\gamma^{(1)}, \beta^{(1)} \in S$ such that $0 \neq \gamma^{(1)} f=\beta^{(1)} a_{n}$. Assume that $\beta^{(1)} a_{n}=\beta_{10}+\beta_{11} x+\cdots+\beta_{1 t_{1}} x^{t_{1}}$, with $\beta_{1 t_{1}} \neq 0$. Clearly, $\beta_{1 t_{1}}=r_{1} \alpha^{t_{1}}\left(a_{n}\right)$, for some $r_{1} \in R$. Since $a_{n} b_{m}=0$, hence by Lemma $2.1, \beta_{1 i} b_{m}=0$, for each $0 \leq i \leq$ t_{1}. Then $\left(\gamma^{(1)} f\right) g_{1}=\left(\beta^{(1)} a_{n}\right) g_{1}=0$, where $g_{1}=b_{0}+b_{1} x+\cdots+b_{m-1} x^{m-1}$. Hence $\beta_{1 t_{1}} b_{m-1}=0$, since R is α-compatible. Since S is left IN, we have $r_{S}\left(\beta^{(1)} a_{n}\right)+r_{S}\left(\beta_{1 t_{1}}\right)=$ $r_{S}\left(\left(S \beta^{(1)} a_{n}\right) \cap\left(S \beta_{1 t_{1}}\right)\right)$. If $\left(S \beta^{(1)} a_{n}\right) \cap\left(S \beta_{1 t_{1}}\right)=\{0\}$, then by Case $1, \beta^{(1)} a_{n}=\beta_{10}$. Since $\beta_{10} b_{m}=0=\beta_{10} g_{1}$, hence $\beta_{10} g=0$, and the result follows.

If $\left(S \beta^{(1)} a_{n}\right) \cap\left(S \beta_{1 t_{1}}\right) \neq\{0\}$, then there exist $\gamma^{(2)}, \beta^{(2)} \in S$ such that $0 \neq \gamma^{(2)}\left(\beta^{(1)} a_{n}\right)=$ $\beta^{(2)} \beta_{1 t_{1}}$. Assume that $\beta^{(2)} \beta_{1 t_{1}}=\beta_{20}+\beta_{21} x+\cdots+\beta_{2 t_{2}} x^{t_{2}}$, with $\beta_{2 t_{2}} \neq 0$. Clearly, $\beta_{2 t_{2}}=r_{2} \alpha^{t_{2}}\left(\beta_{1 t_{1}}\right)$, for some $r_{2} \in R$. Hence $\beta_{2 t_{2}}=r_{2} \alpha^{t_{2}}\left(\beta_{1 t_{1}}\right)=r_{2} \alpha^{t_{2}}\left(r_{1} \alpha^{t_{1}}\left(a_{n}\right)\right)=$ $r_{2} \alpha^{t_{2}}\left(r_{1}\right) \alpha^{t_{1}+t_{2}}\left(a_{n}\right)$. Since $\beta_{1 t_{1}} b_{m-1}=0$, hence by Lemma 2.1, $\beta_{2 i} b_{m-1}=0$, for each $0 \leq i \leq t_{2}$. Then $\left(\gamma^{(2)} \gamma^{(1)} f\right) g_{2}=\left(\gamma^{(2)} \beta^{(1)} a_{n}\right) g_{2}=\left(\beta^{(2)} \beta_{1 t_{1}}\right) g_{2}=0$, where $g_{2}=$ $b_{0}+b_{1} x+\cdots+b_{m-2} x^{m-2}$.
By continuing this process we can find a non-zero element $\beta_{(m-1) t_{(m-1)}} \in R$ such that $\beta_{(m-1) t_{(m-1)}} g=0$ and $\beta_{(m-1) t_{(m-1)}}=r_{(m-1)} \alpha^{\left.t_{(m-1)}\left(r_{(m-2)}\right) \alpha^{\left(t_{(m-1)}+t_{(m-2)}\right)} r_{(m-3)}\right) \ldots ~}$
$\alpha^{\left(t_{(m-1)}+\cdots+t_{2}\right)}\left(r_{1}\right) \alpha^{\left(t_{(m-1)}+\cdots+t_{2}+t_{1}\right)}\left(a_{n}\right)$, for some $r_{1}, \ldots, r_{(m-1)} \in R$ and some non-negative integers $t_{1}, \ldots, t_{(m-1)}$. Then $r_{(m-1)} \ldots r_{2} r_{1} a_{n} g=0$, by Lemma 2.1. By considering $r=r_{(m-1)} \ldots r_{2} r_{1}$, the result follows.

As an immediate consequence of Proposition 2.3, we get the following result.
Corollary 2.4. Let R be an (α, δ)-compatible ring. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g=$ $b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ be non-zero elements of $R[x ; \alpha, \delta]$ satisfy $f g=0$. If $S=R[x ; \alpha, \delta]$ is a left IN-ring with $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha, \delta])$, then there exists $r \in R$ such that $0 \neq r f$ and $r a_{i} b_{j}=0$, for each $0 \leq i \leq n$ and $0 \leq j \leq m$.

It is often taught in an elementary algebra course that if R is a commutative ring, and $f(x)$ is a zero-divisor in $R[x]$, then there is a non-zero element $r \in R$ with $f(x) r=0$. This was first proved by McCoy [16, Theorem 2]. Recall from [17] that a ring R is called left $M c C o y$ when the equation $f(x) g(x)=0$ over $R[x]$, where $f(x), g(x) \neq 0$, implies there exists a non-zero $r \in R$ with $r g(x)=0$.

Taking $\alpha=i d_{R}$ and $\delta=0$, the following result is immediate from Proposition 2.3.
Corollary 2.5. Let $S=R[x]$ be a left IN-ring with $\operatorname{Idm}(R)=\operatorname{Idm}(R[x])$. Then R is left McCoy.

Now, we give some classes of rings R, such that $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha, \delta])$. Recall that a ring R is called abelian if all idempotent elements of R are central.

Example 2.6. (i) Let R be an (α, δ)-compatible ring. If $R[x ; \alpha, \delta]$ is an abelian ring, then $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha, \delta])$.
(ii) Let R be an abelian α-compatible ring. Then $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha])$.

Proof. (i) Let $e=e_{0}+e_{1} x+\cdots+e_{n} x^{n}$ be an idempotent element of $R[x ; \alpha, \delta]$. Since $x e=e x$, we have

$$
\begin{align*}
& \delta\left(e_{0}\right)=0 \tag{2.1}\\
& \alpha\left(e_{0}\right)+\delta\left(e_{1}\right)=e_{0} \\
& \alpha\left(e_{1}\right)+\delta\left(e_{2}\right)=e_{1} \\
& \vdots \\
& \alpha\left(e_{n-1}\right)+\delta\left(e_{n}\right)=e_{n-1} \\
& \alpha\left(e_{n}\right)=e_{n}
\end{align*}
$$

Since $e^{2}=e$, then $e_{0}^{2}+e_{1} \delta\left(e_{0}\right)+\cdots+e_{n} \delta^{n}\left(e_{0}\right)=e_{0}$ and $e_{n} \alpha^{n}\left(e_{n}\right)=0$. Then by using (2.1), we have $e_{0}^{2}=e_{0}$. Now, by the abelian assumption on $R[x ; \alpha, \delta]$ and by using [12, Theorem 3.13], we obtain $e \in \operatorname{Idm}(R)$.
(ii) By a similar argument as used in the proof of (i), one can show that $\operatorname{Idm}(R)=\operatorname{Idm}(R[x ; \alpha])$.

Corollary 2.7. Let R be an (α, δ)-compatible ring and $g \in Z_{r}(R[x ; \alpha, \delta])$. If $R[x ; \alpha, \delta]$ is an abelian left $I N$-ring, then $\ell_{R[x ; \alpha, \delta]}(g) \cap R \neq\{0\}$.
Corollary 2.8. Let R be an abelian α-compatible ring and $g \in Z_{r}(R[x ; \alpha])$. If $R[x ; \alpha]$ is a left IN-ring, then $\ell_{R[x ; \alpha]}(g) \cap R \neq\{0\}$.
Question 1: Let R be an (α, δ)-compatible ring and $S=R[x ; \alpha, \delta]$ be a left IN-ring. Let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, g=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ be non-zero elements of $R[x ; \alpha, \delta]$ satisfy $f g=0$. Can we conclude $a_{i} b_{j}=0$, for each i, j ?

Let α be an endomorphism and δ an α-derivation on a ring R. Recall that an ideal I of R is called α-ideal if $\alpha(I) \subseteq I ; I$ is called a δ-ideal if $\delta(I) \subseteq I ; I$ is called an (α, δ)-ideal if it is both α - and δ-ideal. Clearly, if K is an (α, δ)-ideal of R, then $K[x ; \alpha, \delta]$ is an ideal of $R[x ; \alpha, \delta]$.

Proposition 2.9. Let R be an (α, δ)-compatible ring. If $S=R[x ; \alpha, \delta]$ is a left IN-ring, then for any (α, δ)-ideals I and J of $R, r_{R}(I)+r_{R}(J)=r_{R}(I \cap J)$.

Proof. Let I, J be (α, δ)-ideals of R. Clearly $r_{R}(I)+r_{R}(J) \subseteq r_{R}(I \cap J)$. To prove the reverse inclusion, let $t \in r_{R}(I \cap J)$. Then $t \in r_{S}((I \cap J)[x ; \alpha, \delta])$, by Lemma 2.2. On the other hand, $r_{S}(I[x ; \alpha, \delta])+r_{S}(J[x ; \alpha, \delta])=r_{S}(I[x ; \alpha, \delta] \cap J[x ; \alpha, \delta])$, since S is a left IN-ring. Now, since $r_{S}((I \cap J)[x ; \alpha, \delta])=r_{S}(I[x ; \alpha, \delta] \cap J[x ; \alpha, \delta])$, it follows that $t=h(x)+k(x)$, for some $h(x)=\sum_{i=0}^{n} h_{i} x^{i} \in r_{S}(I[x ; \alpha, \delta])$ and $k(x)=\sum_{i=0}^{n} k_{i} x^{i} \in r_{S}(J[x ; \alpha, \delta])$. Then, since $I h_{0}=0=J k_{0}$ and $t=h_{0}+k_{0}$, hence $t \in r_{R}(I)+r_{R}(J)$ and thus $r_{R}(I)+r_{R}(J)=r_{R}(I \cap J)$ as claimed.

Lemma 2.10. Let R be a reduced ring and $\left\{P_{i}\right\}_{i \in I}$ be the set of all distinct minimal prime ideals of R. If X is a non-zero left ideal of R contained in $\cap_{j \neq i} P_{j}$, for some $i \in I$, then $r_{R}(X)=P_{i}$.
Proof. This follows from [6, Proposition 7.1].
Proposition 2.11. Let R be a reduced left IN-ring. If R has finitely many minimal prime ideals, then ${ }_{R} R$ has a finite left uniform dimension.

Proof. Assume that $P_{1}, P_{2}, \ldots, P_{n}$ are all of the distinct minimal prime ideals of R. It is easy to see that $r_{R}\left(P_{i}\right)=\cap_{j \neq i} P_{j}$ for each $1 \leq i \leq n$. Now since $\cap_{i=1}^{n} P_{i}=0$ and R is a left IN-ring, we have $r_{R}\left(P_{1}\right)+\cdots+r_{R}\left(P_{n}\right)=r_{R}\left(P_{1} \cap \cdots \cap P_{n}\right)=R$. Therefore, $\left(\cap_{i \neq 1} P_{i}\right) \oplus \cdots \oplus\left(\cap_{i \neq n} P_{i}\right)=R$ and it is sufficient to prove that $\cap_{j \neq i} P_{j}$ is a uniform left
ideal of R, for each $1 \leq i \leq n$. To see this, suppose that X, Y are non-zero left ideals of R contained in $\cap_{j \neq i} P_{j}$ with $X \cap Y=0$. By using the left IN property of R and Lemma 2.10, we have $P j=P j+P j=r_{R}(X)+r_{R}(Y)=r_{R}(X \cap Y)=R$, which is a contradiction. Therefore $\cap_{j \neq i} P_{j}$ is a uniform left ideal of R, for each $1 \leq i \leq n$.
Corollary 2.12. Let R be a reduced left $I N$-ring. If R has finitely many minimal prime ideals, then R is a semiprime left Goldie ring.
Proof. It follows from Proposition 2.11 and [15, Theorem 2.15].
Recall that an ideal P of R is called completely prime whenever R / P is a domain.
Theorem 2.13. Let R be a reduced (α, δ)-compatible left $I N$-ring. If R has finitely many minimal prime ideals, then $R[x ; \alpha, \delta]$ is a left IN-ring.

Proof. Let P_{1}, \ldots, P_{n} be all of the distinct minimal prime ideals of R. By using Lemma 2.10 and the left IN property of R, we have $P_{r}+P_{s}=r_{R}\left(\cap_{j \neq r} P_{j}\right)+r_{R}\left(\cap_{j \neq s} P_{j}\right)=$ $r_{R}(0)=R$, for each $r \neq s$. Now, by the Chinese Remainder Theorem, we have $R=$ $R / P_{1} \times \cdots \times R / P_{n}$. Since R is a reduced ring, hence P_{i} is completely prime and by Corollary 2.12 and [15, Theorem 2.5], R / P_{i} is a prime left Goldie ring, for each i. Also, since P_{i} is an annihilator ideal of R, hence P_{i} is an (α, δ)-compatible ideal of R, and so R / P_{i} is an $(\bar{\alpha}, \bar{\delta})$-compatible ring, by [8, Proposition 2.1], where $\bar{\alpha}: R / P_{i} \rightarrow R / P_{i}$ is defined by $\bar{\alpha}\left(a+P_{i}\right)=\alpha(a)+P_{i}$ and $\bar{\delta}: R / P_{i} \rightarrow R / P_{i}$ is defined by $\bar{\delta}\left(a+P_{i}\right)=\delta(a)+P_{i}$, for each $a \in R$. Then, by [14, Corollary 3.5], $R / P_{i}[x ; \bar{\alpha}, \bar{\delta}]$ is a left Ore domain, for each i.

Finally, suppose that X, Y are left ideals of $R[x ; \alpha, \delta]$. Since $R[x ; \alpha, \delta] \cong R / P_{1}[x ; \bar{\alpha}, \bar{\delta}] \times \cdots \times R / P_{n}[x ; \bar{\alpha}, \bar{\delta}]$, hence for each i, there exist left ideals I_{i}, J_{i} of $R / P_{i}[x ; \bar{\alpha}, \bar{\delta}]$, such that $X=I_{1} \times \cdots \times I_{n}$ and $Y=J_{1} \times \cdots \times J_{n}$. Then it is clear that $r_{R[x ; \alpha, \delta]}(X)=r_{R / P_{1}[x ; \bar{\alpha}, \bar{\delta}]}\left(I_{1}\right) \times \cdots \times r_{R / P_{n}[x ; \bar{\alpha}, \bar{\delta}]}\left(I_{n}\right)$ and by using the fact that $R / P_{i}[x ; \bar{\alpha}, \bar{\delta}]$ is a left Ore domain for each i, it follows that $r_{R[x ; \alpha, \delta]}(X)+r_{R[x ; \alpha, \delta]}(Y)=r_{R[x ; \alpha, \delta]}(X \cap Y)$, which implies that $R[x ; \alpha, \delta]$ is a left IN-ring.

Now, we give an example to show that the " α-compatible" assumption on R, in Theorem 2.13 is not superfluous.

Example 2.14. Let \mathbb{Z}_{2} be the field of integers modulo 2 and $R=\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Clearly R is a reduced commutative IN-ring. Let $\alpha: R \rightarrow R$ be the endomorphism defined by $\alpha((a, b))=(b, a)$. Then α is an automorphism of R, and since $(1,0)(0,1)=0$ but $(1,0) \alpha((0,1)) \neq 0$, hence R is not α-compatible. Now let $p(x)=(1,0)+(1,0) x$ and $q(x)=(0,1)+(0,1) x \in R[x ; \alpha]$. Let I and J be the left ideals of $R[x ; \alpha]$ generated by $p(x)$ and $q(x)$, respectively. By a simple computation one can show that

$$
\begin{aligned}
& I=\left\{\left(r_{0}, 0\right)+\left(r_{0}, s_{1}\right) x+\cdots+\left(r_{t}, s_{t-1}\right) x^{t}+\left(r_{t}, 0\right) x^{t+1} \mid r_{i}, s_{j} \in \mathbb{Z}_{2}, t=2 i\right\} \cup \\
& \left\{\left(r_{0}, 0\right)+\left(r_{0}, s_{1}\right) x+\cdots+\left(r_{t-1}, s_{t}\right) x^{t}+\left(0, s_{t}\right) x^{t+1} \mid r_{i}, s_{j} \in \mathbb{Z}_{2}, t=2 i+1\right\}
\end{aligned}
$$

and

$$
\begin{gathered}
J=\left\{\left(0, w_{0}\right)+\left(v_{1}, w_{0}\right) x+\cdots+\left(v_{k-1}, w_{k}\right) x^{k}+\left(0, w_{k}\right) x^{k+1} \mid v_{i}, w_{j} \in \mathbb{Z}_{2}, k=2 i\right\} \cup \\
\left\{\left(0, w_{0}\right)+\left(v_{1}, w_{0}\right) x+\cdots+\left(v_{k}, w_{k-1}\right) x^{k}+\left(v_{k}, 0\right) x^{k+1} \mid v_{i}, w_{j} \in \mathbb{Z}_{2}, k=2 i+1\right\}
\end{gathered}
$$

Then $I \cap J=0$ and hence $r_{R[x ; \alpha]}(I \cap J)=R[x ; \alpha]$. On the other hand, for each $g=$ $\left(r_{0}, s_{0}\right)+\left(r_{1}, s_{1}\right) x+\cdots+\left(r_{n}, s_{n}\right) x^{n} \in r_{R[x ; \alpha]}(I)$, we have $r_{0}=s_{n}=0$ and $r_{i}+s_{i-1}=0$, for each $1 \leq i \leq n$. Also, for each $h(x)=\left(v_{0}, w_{0}\right)+\left(v_{1}, w_{1}\right) x+\cdots+\left(v_{m}, w_{m}\right) x^{m} \in r_{R[x ; \alpha]}(J)$, we have $w_{0}=v_{m}=0$ and $w_{i}+v_{i-1}=0$, for each $1 \leq i \leq m$. Now, one can easily show that $(1,1) \notin r_{R[x ; \alpha]}(I)+r_{R[x ; \alpha]}(J)$. Therefore, $r_{R[x ; \alpha]}(I)+r_{R[x ; \alpha]}(J) \neq R[x ; \alpha]$, which implies that $R[x ; \alpha]$ is not a left IN-ring. Thus, the " α-compatible" assumption on R in Theorem 2.13 is not superfluous.

The following example shows that we cannot eliminate the "reduced δ-compatible" assumption in Theorem 2.13.

Example 2.15. Let $R=\mathbb{Z}_{2}[t] /\left(t^{2}\right)$ with the derivation δ such that $\delta(\bar{t})=1$ where $\bar{t}=t+\left(t^{2}\right)$ is in R and $\mathbb{Z}_{2}[t]$ is the polynomial ring over the field \mathbb{Z}_{2} of two elements. It is clear that R is a non-reduced commutative IN-ring. Consider the differential polynomial ring $R[x ; \delta]$. By [2, Example 11], $R[x ; \delta] \cong M_{2}\left(\mathbb{Z}_{2}\left[x^{2}\right]\right) \cong M_{2}\left(\mathbb{Z}_{2}\right)[y]$, where $M_{2}\left(\mathbb{Z}_{2}\right)[y]$ is the polynomial ring over $M_{2}\left(\mathbb{Z}_{2}\right)$. Since $\mathbb{Z}_{2}[y]$ is not a left self-injective ring, hence by [5, Theorem 7$], M_{2}\left(\mathbb{Z}_{2}\right)[y]$ is not a left IN-ring.

In the following, we construct some classes of commutative non-reduced IN-rings R with the property that $R[x]$ is also IN. However, the reduced condition in Theorem 2.13 plays an important role in the proof, the following examples show that it is not a necessary condition.

For the remainder of this section, R will denote a commutative ring with identity. Following Zariski and Samuel [20, page 22], we say the elements $a, b \in R$ are relatively prime, if $(a, b)=1$. A principal ideal ring (PIR) is a ring with identity in which every ideal is principal. Any PIR is obviously Noetherian, and the PIR's may be considered the simplest type of Noetherian rings. By Zariski and Samuel [20, page 245], a PIR is called special if it has only one prime ideal $P \neq R$ and P is nilpotent, that is, $P^{n}=(0)$ for some positive integer n. If we place $P=p R$, and if we denote by m the smallest integer such that $p^{m}=0$, then every non-zero element x in R may obviously be written in the form $x=e p^{k}$, where $0 \leq k \leq m-1$, and where $e \notin R p$ (i.e, e and p are relatively prime). Special principal ideal rings are examples of uniserial rings.

A ring R is called Armendariz whenever polynomials $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f g=0$, then $a_{i} b_{j}=0$, for each i, j. The name "Armendariz ring" was chosen, because Armendariz had noted that a reduced ring satisfies this condition.

Proposition 2.16. Let R be a special principal ideal ring. Then $S=R[x]$ is an $I N$-ring.
Proof. Let R be a special principal ideal ring with maximal ideal $M=m R$ and n be the smallest integer such that $m^{n}=0$. For an ideal K of S, we denote

$$
K_{0}=\left\{a \in R \mid a \in C_{f} \quad \text { for some } f \in K\right\}
$$

Now let I, J be non-zero ideals of S. It is clear that I_{0}, J_{0} are ideals of R. Assume that $I_{0}=m^{k} R, J_{0}=m^{s} R$ such that $0 \leq k \leq s \leq n-1$. Since $r_{R}\left(I_{0}\right)=m^{n-k} R$, $r_{R}\left(J_{0}\right)=m^{n-s} R$ and R is an Armendariz ring, then we have $r_{S}(I)=r_{S}\left(I_{0}[x]\right)=m^{n-k} R[x]$ and $r_{S}(J)=r_{S}\left(J_{0}[x]\right)=m^{n-s} R[x]$. Hence $r_{S}(I)+r_{S}(J)=r_{S}(J)=m^{n-s} R[x]$.

Now we claim that $r_{S}(I \cap J)=r_{S}\left((I \cap J)_{0}\right)[x]=m^{n-s} R[x]$. Since $m^{k} \in I_{0}$, there exists a non-zero element $f \in I$ such that $m^{k} \in C_{f}$. Assume that $f=r_{0} m^{k+i_{0}}+r_{1} m^{k+i_{1}} x+$ $\cdots+r_{n} m^{k+i_{n}} x^{n}$ such that $\left(r_{i}, m\right)=1$ and $i_{j}=0$ for some $0 \leq j \leq n$. Then we have $f=m^{k} f_{1}(x)$, where $f_{1}(x)=r_{0} m^{i_{0}}+r_{1} m^{i_{1}} x+\cdots+r_{n} m^{i_{n}} x^{n}$ and $i_{j}=0$ for some $0 \leq j \leq n$. By a similar argument, we can show that there exists a non-zero element $g \in J$ such that $g=m^{s} g_{1}(x)$, where $g_{1}(x)=r_{0}^{\prime} m^{i_{0}^{\prime}}+r_{1}^{\prime} m^{i_{1}^{\prime}} x+\cdots+r_{n^{\prime}}^{\prime} m^{i^{\prime}{ }^{\prime}} x^{n^{\prime}},\left(r_{i}^{\prime}, m\right)=1$ for all $0 \leq i^{\prime} \leq n^{\prime}$ and $i_{j}^{\prime}=0$ for some $0 \leq j \leq n^{\prime}$. Thus, $(m, d)=1$, for some $d \in C_{f_{1} g_{1}}$. Therefore $m^{s} f_{1}(x) g_{1}(x) \in I \cap J$ and $m^{s} d \in(I \cap J)_{0}$ where m and d are relatively prime. Hence $r_{R}\left((I \cap J)_{0}\right) \subseteq r_{R}\left(m^{s} R\right)=m^{n-s} R$. Therefore, $r_{R}(I \cap J)=r_{R}\left((I \cap J)_{0}\right)[x] \subseteq$ $r_{S}\left(m^{s} R[x]\right)=m^{n-s} R[x]$. The reverse inclusion is trivial and the proof is completed.

Theorem 2.17. [20, Theorem 33] Every principal ideal ring R is the direct sum of principal ideal domains (PID) and special principal ideal rings.
Theorem 2.18. Let R be a principal ideal ring (PIR). Then $R[x]$ is an $I N$-ring.

Proof. By Theorem 2.17, R can be written in the form $R_{1} \times \cdots \times R_{n}$, where R_{i} is either a principal ideal domain or a special principal ideal ring for each $1 \leq i \leq n$. Then we have $R[x]=R_{1}[x] \times \cdots \times R_{n}[x]$. Now let I, J be ideals of $R[x]$. Hence, $I=I_{1} \times \cdots \times I_{n}$ and $J=$ $J_{1} \times \cdots \times J_{n}$, for some ideals I_{i}, J_{i} of $R_{i}[x]$. Clearly, $r_{R[x]}(I)=r_{R_{1}[x]}\left(I_{1}\right) \times \cdots \times r_{R_{n}[x]}\left(I_{n}\right)$. Now, since integral domains are IN-ring, hence by Proposition 2.16, one can easily prove that $r_{R[x]}(I \cap J)=r_{R[x]}(I)+r_{R[x]}(J)$.
Corollary 2.19. Every principal ideal ring is an Armendariz IN-ring.
Example 2.20. Let $R=F[x] /\left(x^{n}\right)$, where $n \geq 2, F$ is a field and $\left(x^{n}\right)$ denotes the ideal of $F[x]$ generated by x^{n}. Then it is clear that R is a principal ideal ring. Thus, R is a non-reduced IN-ring and by Theorem 2.18, $R[y]$ is an IN-ring.

Let R be a commutative ring and M an R-module. Recall that $R \oplus M$ with coordinatewise addition and multiplication given by $(r, m)\left(r^{\prime}, m^{\prime}\right)=\left(r r^{\prime}, r m^{\prime}+m r^{\prime}\right)$ is a commutative ring with unity called the idealization of M or the trivial extension of R by M. By Anderson and Camillo [1], a right R-module M is called Armendariz if $m(x) f=0$ with $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x]$ and $f=\sum_{i=0}^{k} f_{i} x^{i} \in R[x]$, implies $m_{i} f_{j}=0$ for each i, j.
Example 2.21. (i) Let R be an integral domain and M a torsion-free R-module. Then $T=R \oplus M$ is a commutative non-reduced ring. We show that T is an IN-ring. To see this, it suffices to know that for a non-zero ideal I of T, either I contains an element (r, m), where $0 \neq r \in R$ and $0 \neq m \in M$, which implies $r_{T}(I)=0$, or all elements of I has the form $(0, m)$, where $m \in M$, which implies $r_{T}(I)=0 \oplus M$. Then it is not hard to check that T is an IN-ring.
(ii) Let R be an integral domain and M an Armendariz torsion-free R-module. Now, since M is an Armendariz torsion-free module, $M[x]$ is a torsion-free as an $R[x]$-module. Therefore, by $(i), T[x]=R[x] \oplus M[x]$ is an IN-ring.

3. Skew polynomials over SA-rings

According to [3, Definition 2.1], a ring R is called a right SA-ring, if for any ideals I and J of R there is an ideal K of R such that $r_{R}(I)+r_{R}(J)=r_{R}(K)$. Since $r_{R}(X)=r_{R}(R X)$ for all right ideal X of R, R is a right SA-ring, if for any right ideals X and Y of R there is a right ideal V of R such that $r_{R}(X)+r_{R}(Y)=r_{R}(V)$. In this section, we will present some necessary and sufficient conditions for the Ore extension $R[x ; \alpha, \delta]$ to be an SA ring.

For a left (right) ideal I of R, we use $I[x ; \alpha, \delta]$ to denote the set of all polynomials of $R[x ; \alpha, \delta]$ with coefficients in I.

Proposition 3.1. Let R be an (α, δ)-compatible ring. If $S=R[x ; \alpha, \delta]$ is a right $S A$-ring, then R is a right $S A$-ring.
Proof. Let I, J be right ideals of R. It is easy to show that $I[x ; \alpha, \delta]$ and $J[x ; \alpha, \delta]$ are right ideals of S. Since S is a right SA-ring, there exists a right ideal K of S such that $r_{S}(I[x ; \alpha, \delta])+r_{S}(J[x ; \alpha, \delta])=r_{S}(K)$. Now let K_{0} be the right ideal of R generated by the set $\bigcup_{f \in K} C_{f}$. We show that $r_{R}(I)+r_{R}(J)=r_{R}\left(K_{0}\right)$. Let $b \in r_{R}(I)$ and $c \in r_{R}(J)$. Then $b \in r_{S}(I[x ; \alpha, \delta])$ and $c \in r_{S}(J[x ; \alpha, \delta])$, by Lemma 2.1. Thus $b+c \in r_{S}(K)$. Hence $b+c \in r_{R}\left(K_{0}\right)$, by Lemma 2.2. Therefore, $r_{R}(I)+r_{R}(J) \subseteq r_{R}\left(K_{0}\right)$.

Now let $d \in r_{R}\left(K_{0}\right)$. Then $d \in r_{S}(K)$, by Lemma 2.1. Hence there exist $h=\sum_{i=0}^{n} h_{i} x^{i} \in$ $r_{S}(I[x ; \alpha, \delta])$ and $g=\sum_{i=0}^{m} g_{i} x^{i} \in r_{S}(J[x ; \alpha, \delta])$ such that $d=h+g$ and so $d=h_{0}+g_{0}$. Since $h_{0} \in r_{R}(I)$ and $g_{0} \in r_{R}(J)$, we have $d \in r_{R}(I)+r_{R}(J)$. This shows that $r_{R}\left(K_{0}\right) \subseteq$ $r_{R}(I)+r_{R}(J)$ as claimed.

Authors in [8] introduced the SQA1 condition, which is a skew polynomial version of the quasi-Armendariz rings. Let α be a monomorphism of R and δ an α-derivation. We say R satisfies the SQA1 condition, if whenever $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and
$g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x ; \alpha, \delta]$ satisfy $f R[x ; \alpha, \delta] g=0$, then $a_{i} r b_{j}=0$, for each i, j and $r \in R$. They showed that if R is an ($\alpha, \delta)$-compatible quasi-Baer ring, then R satisfies SQA1 condition [8, Corollary 2.8].

Proposition 3.2. Let R be an (α, δ)-compatible right SA-ring. If R satisfies the SQA1 condition, then $S=R[x ; \alpha, \delta]$ is a right $S A$-ring.
Proof. For an ideal K of S, let K_{0} be the right ideal of R generated by the set $\bigcup_{f \in K} C_{f}$.
Assume that I, J are right ideals of $R[x ; \alpha, \delta]$. By assumption, there is a right ideal P of R such that $r_{R}\left(I_{0}\right)+r_{R}\left(J_{0}\right)=r_{R}(P)$. We claim that $r_{S}(I)+r_{S}(J)=r_{S}(P[x ; \alpha, \delta])$. To see this, let $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in r_{S}(I)$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in r_{S}(J)$. For each $a \in I_{0}$, there is $r_{i} \in R$ and $c_{i} \in C_{h_{i}}$, for some $h_{i} \in I$, such that $a=\sum_{i=1}^{k} c_{i} r_{i}$. Since R satisfies the SQA1 condition and $h_{i} S f=0$, for each $1 \leq i \leq k$, hence we have $c_{i} r a_{j}=0$, for each $c_{i} \in C_{h_{i}}, r \in R, 1 \leq i \leq k$ and $0 \leq j \leq n$. Thus $a a_{j}=0$, for each $0 \leq j \leq n$. It follows that $a_{j} \in r_{R}\left(I_{0}\right)$, for each $0 \leq j \leq m$. By a similar argument, one can show that $b_{i} \in r\left(J_{0}\right)$ for each $0 \leq i \leq m$ and hence $a_{i}+b_{i} \in r_{R}(P)$. Then by Lemma 2.1, we have $f+g \in r_{S}(P[x ; \alpha, \delta])$, which implies that $r_{S}(I)+r_{S}(J) \subseteq r_{S}(P[x ; \alpha, \delta])$.

To prove the reverse inclusion, let $h=d_{0}+d_{1} x+\cdots+d_{k} x^{k} \in r_{S}(P[x ; \alpha, \delta])$. Since R satisfies the SQA1 condition, we have $P d_{i}=0$, for each $0 \leq i \leq k$. Thus there exist $a_{i} \in r_{R}\left(I_{0}\right)$ and $b_{i} \in r_{R}\left(J_{0}\right)$ such that $d_{i}=a_{i}+b_{i}$, for each $0 \leq i \leq k$. Assume that $f=a_{0}+a_{1} x+\cdots+a_{k} x^{k}$ and $g=b_{0}+b_{1} x+\cdots+b_{k} x^{k}$. Then $h=f+g, f \in r_{S}(I)$ and $g \in r_{S}(J)$, by Lemma 2.1. Therefore, $r_{S}(P) \subseteq r_{S}(I)+r_{S}(J)$.

As a generalization of Armendariz rings, Hirano [11] introduced quasi-Armendariz rings. A ring R is called quasi-Armendariz if whenever polynomials $f=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and $g=b_{0}+b_{1} x+\cdots+b_{m} x^{m} \in R[x]$ satisfy $f R[x] g=0$, we have $a_{i} R b_{j}=0$, for each i, j. Clearly, each Armendariz ring is quasi-Armendariz, but the converse is not true in general. Birkenmeier et al. [3, Theorem 3.8] proved that if R is an Armendariz ring, then R is right SA if and only if $R[x]$ is right SA. Now we extend this result to quasi-Armendariz rings.

Corollary 3.3. Let R be a quasi-Armendariz ring. Then R is right $S A$ if and only if $R[x]$ is right SA.

Question 2: Let R be an ($\alpha, \delta)$-compatible ring and $S=R[x ; \alpha, \delta]$ be a right SA-ring. Does R satisfy SQA1 condition?

We end this section with study SA property over a special subring of upper triangular matrix rings. Let R be a ring and n a positive integer. An $(n+1) \times(n+1)$ matrix A with entries in R is called an upper triangular Toeplitz matrix if

$$
A=\left(\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \ldots & a_{n} \\
0 & a_{0} & a_{1} & \ddots & \vdots \\
0 & 0 & a_{0} & \ddots & a_{2} \\
\vdots & \ddots & \ddots & \ddots & a_{1} \\
0 & \ldots & \ldots & \ldots & a_{0}
\end{array}\right),
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are elements of R. For simplicity we can write

$$
A=\left(a_{i}\right)=\left(\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & \ldots & a_{n}
\end{array}\right) .
$$

We denote the set of all such matrices by $S_{n}(R)$ that is a subring of upper triangular matrix ring. In [3, Theorem 3.5], the authors proved that R is a right SA-ring if and only if $T_{m}(R)$ is a right SA-ring, for some positive integer m (where $T_{m}(R)$ denotes the set of all m-by- m upper triangular matrices over R).

In the following, we will prove an analogous result for $S_{n}(R)$.

Theorem 3.4. Let $T=S_{n}(R)$ be a right $S A$-ring for some positive integer n. Then R is a right SA-ring.
Proof. Let I and J be right ideals of R. Set $I^{\prime}=\mathrm{S}_{n}(I)$ and $J^{\prime}=\mathrm{S}_{n}(J)$. It is clear that I^{\prime} and J^{\prime} are right ideals of T. By assumption, there is a right ideal K of T such that $r_{T}\left(I^{\prime}\right)+r_{T}\left(J^{\prime}\right)=r_{T}(K)$. Clearly the set

$$
Y=\left\{c \in R \mid c=c_{0} \text { for some } C=\left(c_{i}\right) \in K\right\}
$$

is a right ideal of R. We claim that $r_{R}(I)+r_{R}(J)=r_{R}(Y)$. To see this, let $x \in r_{R}(I)$ and $y=r_{R}(J)$. Since $\left(\begin{array}{lllll}x & 0 & 0 & \ldots & 0\end{array}\right) \in r_{T}\left(I^{\prime}\right)$ and $\left(\begin{array}{lllll}y & 0 & 0 & \ldots & 0\end{array}\right) \in r_{T}\left(J^{\prime}\right)$, then we have $\left(\begin{array}{lllll}x+y & 0 & 0 & \ldots & 0\end{array}\right) \in r_{T}\left(I^{\prime}\right)+r_{T}\left(J^{\prime}\right)=r_{T}(K)$. Thus $x+y \in r_{R}(Y)$ and hence $r_{R}(I)+r_{R}(J) \subseteq r_{R}(Y)$.
Now, let $z \in r_{R}(Y)$. Hence $\left(\begin{array}{lllll}0 & 0 & \ldots & 0 & z\end{array}\right) \in r_{T}(K)=r_{T}\left(I^{\prime}\right)+r_{T}\left(J^{\prime}\right)$. Therefore, there exist $A=\left(a_{i}\right) \in r\left(I^{\prime}\right)$ and $B=\left(b_{i}\right) \in r_{T}\left(J^{\prime}\right)$ such that $A+B=\left(\begin{array}{lllll}0 & 0 & \ldots & 0 & z\end{array}\right)$. Then $z=a_{n}+b_{n}$. Since for each $x \in I,\left(\begin{array}{lllll}x & 0 & 0 & \ldots & 0\end{array}\right) \in S_{n}(I)=I^{\prime}$, then $a_{n} \in r_{R}(I)$. Also, since for each $y \in J,\left(\begin{array}{lllll}y & 0 & 0 & \ldots & 0\end{array}\right) \in S_{n}(I)=J^{\prime}$, then $b_{n} \in r_{R}(J)$. Therefore, $z \in r_{R}(I)+r_{R}(J)$ and the proof is complete.

Theorem 3.5. Let R be a reduced right $S A$-ring. Then $T=S_{n}(R)$ is a right $S A$-ring, for each positive integer n.

Proof. Let K be a right ideal of $S_{n}(R)$. For each $0 \leq i \leq n$, let

$$
K_{i}=\{a \in R \mid a \text { is the } i \text {-th entry of some elements of } K\} .
$$

Clearly, each K_{i} is a right ideal of R and $K_{i} \subseteq K_{i+1}$, for each $0 \leq i \leq n-1$. Let $K^{(1)}=\left\{\left(a_{i}\right) \in S_{n}(R) \mid a_{j} \in K_{j}\right.$, for each $\left.0 \leq j \leq n\right\}$. Clearly, $K^{(1)}$ is a right ideal of $S_{n}(R)$ and $K \subseteq K^{(1)}$. Let $\left(a_{i}\right),\left(b_{j}\right) \in S_{n}(R)$, with $\left(a_{i}\right)\left(b_{j}\right)=0$. Let $j \in\{0,1, \ldots, n\}$. Since R is reduced, one can easily show that $a_{i} b_{j}=0$, for each $0 \leq i \leq n-j$. Then $r_{T}(K)=r_{T}\left(K^{(1)}\right)$.
Let I and J be right ideals of T. As mentioned in the previous paragraph, $r_{T}(I)=$ $r_{T}\left(I^{(1)}\right)$ and $r_{T}(J)=r_{T}\left(J^{(1)}\right)$. Since R is right SA, hence for each $0 \leq i \leq n, r_{R}\left(I_{i}\right)+$ $r_{R}\left(J_{i}\right)=r_{R}\left(K_{i}\right)$, for some right ideal K_{i} of R. Since $r_{R}\left(I_{i+1}\right) \subseteq r_{R}\left(I_{i}\right)$ and $r_{R}\left(J_{i+1}\right) \subseteq$ $r_{R}\left(J_{i}\right)$, for each i, hence $r_{R}\left(K_{i+1}\right) \subseteq r_{R}\left(K_{i}\right)$, and so we can assume that $K_{i} \subseteq K_{i+1}$, for each i. Now, by a simple calculation, one can show that $r_{T}\left(I^{(1)}\right)+r_{T}\left(J^{(1)}\right)=r_{T}\left(K^{(1)}\right)$, and the proof is complete.

For each positive integer n, it is a well known result that $S_{n}(R) \cong R[x] /\left(x^{n+1}\right)$, where $\left(x^{n+1}\right)$ denotes the ideal of $R[x]$ generated by x^{n+1}. Then, by using Theorems 3.4 and 3.5, we have the following result.
Corollary 3.6. Let R be a reduced ring and n be a positive integer. Then R is right $S A$ if and only if $R[x] /\left(x^{n+1}\right)$ is right $S A$.
Acknowledgment. We would like to appreciation the referee for his/her valuable comments and suggestions which significantly improved the manuscript quality.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26, 2265-2272, 1998.
[2] E. P. Armendariz, H. K. Koo and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15, 2633-2652, 1987.
[3] G. F. Birkenmeier, M. Ghirati and A. Taherifar, When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra 43, 2690-2702, 2015.
[4] G. F. Birkenmeier, M. Ghirati, A. Ghorbani, A. Naghdi and A. Taherifar, Corrigendum to: When is a sum of annihilator ideals an annihilator ideal?, Comm. Algebra 46 (10), 4174-4175, 2018.
[5] V. Camillo, W. K. Nicholson and M. F. Yousif, Ikeda-Nakayama rings, J. Algebra 226, 1001-1010, 2000.
[6] K. R. Goodearl and R. B. Warfield Jr, An Introduction to Noncommutative Noetherian Rings, London Mathematical Society Student Texts 61, 2nd ed. Cambridge: Cambridge University Press, 2004.
[7] C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93, 253-266, 1985.
[8] E. Hashemi, Compatible ideals and radicals of Ore extensions, New York J. Math. 12, 349-356, 2006.
[9] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107, 207-224, 2005.
[10] E. Hashemi, M. Hamidizadeh and A. Alhevaz, Some types of ring elements in Ore extensions over noncommutative rings, J. Algebra Appl. 16 (11), 1750201, 2017.
[11] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168, 45-52, 2002.
[12] A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (3-4), 355-363, 1992.
[13] I. Kaplansky, Dual rings, Ann. of Math. 49, 689-701, 1948.
[14] A. Leroy and J. Matczuk, Goldie conditions for ore extensions over semiprime rings, Algebr. Represent. Theory 8 (5), 679-688, 2005.
[15] J. C. McConnell, J. C. Robson and L. W. Small, Noncommutative Noetherian Rings, Vol. 30. Providence, Rhode Island: American Mathematical Society, 2001.
[16] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49, 286-295, 1942.
[17] P. P. Nielsen, Semi-commutativity and the McCoy condition, J. Algebra 298, 134-141, 2006.
[18] M. Paykanian, E. Hashemi and A. Alhevaz, On skew polynomials over IkedaNakayama rings, Comm. Algebra 49 (9), 4038-4049, 2021.
[19] R. Wisbauer, M. F. Yousif and Y. Zhou, Ikeda-Nakayama modules, Beitr. Algebra Geom. 43, 111-119, 2002.
[20] O. Zariski and P. Samuel, Commutative Algebra, volume I, Van Nostrand, Princeton, 1960.

[^0]: *Corresponding Author.
 Email addresses: mahsapeikanian@gmail.com (M. Paykanian), eb_hashemi@yahoo.com (E. Hashemi), a.alhevaz@shahroodut.ac.ir (A. Alhevaz)

 Received: 21.12.2021; Accepted: 29.07.2023

