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Abstract
A ring R is called a left Ikeda-Nakayama ring (left IN-ring) if the right annihilator of the
intersection of any two left ideals is the sum of the two right annihilators. As a general-
ization of left IN-rings, a ring R is called a right SA-ring if the sum of right annihilators of
two ideals is a right annihilator of an ideal of R. It would be interesting to find conditions
under which an Ore extension R[x; α, δ] is IN and SA. In this paper, we will present some
necessary and sufficient conditions for the Ore extension R[x; α, δ] to be left IN or right
SA. In addition, for an (α, δ)-compatible ring R, it is shown that: (i) If S = R[x; α, δ] is a
left IN-ring with Idm(R) = Idm(R[x; α, δ]), then R is left McCoy. (ii) Every reduced left
IN-ring with finitely many minimal prime ideals is a semiprime left Goldie ring. (iii) If R
is a commutative principal ideal ring, then R and R[x] are IN. (iv) If R is a reduced ring
and n is a positive integer, then R is right SA if and only if R[x]/(xn+1) is right SA.

Mathematics Subject Classification (2020). 16D25, 16S36

Keywords. Armendariz ring, Ikeda-Nakayama ring, quasi-Armendariz ring, SA-ring,
skew polynomials ring, left McCoy ring

1. Introduction and preliminary definitions
According to [5], a ring R is called a left Ikeda-Nakayama ring (left IN-ring) if rR(I∩J) =

rR(I) + rR(J) for all left ideals I, J of R. For example, all left self-injective rings, all left
uniserial rings and all left uniform domains are left IN-ring. Kaplansky [13] introduced
Dual rings as rings which every right or left ideal of them is an annihilator. Hajarnavis
and Norton [7] proved that every dual ring is a right (and left) IN-ring. Wisbauer et al.
[19] extended the notion of an Ikeda-Nakayama ring to bimodules and derived various
characterizations and properties for modules with this property.

As a generalization of IN-rings, Birkenmeier et al. [3,4] introduced SA-rings. A ring R
is called a right SA-ring, if for any ideals I and J of R, there is an ideal K of R such that
rR(I) + rR(J) = rR(K). They showed that this class of rings is exactly the class of rings
for which the lattice of right annihilator ideals is a sub-lattice of the lattice of ideals. The
class of right SA-rings includes all quasi-Baer (hence all Baer) rings and all right IN-rings
(hence all right self-injective rings). Also they showed that this class is closed under direct
products, full and upper triangular matrix rings and certain classes of polynomial rings.
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Throughout this paper, R denotes an associative ring with unity, α : R −→ R is an
endomorphism, and δ is an α-derivation of R (i.e., δ is an additive map such that δ(ab) =
δ(a)b + α(a)δ(b), for all a, b ∈ R). We denote by S = R[x; α, δ] the Ore extension whose
elements are the polynomials over R, where addition is defined as usual and multiplication
by xb = α(b)x + δ(b) for any b ∈ R. For a subset A ⊆ R, we denote the right annihilator
and left annihilator of A in R by rR(A) and ℓR(A), respectively. The set of all right zero
divisors of R is denoted by Zr(R).

It is natural to ask if these properties (IN and SA) can be extended from R to R[x; α, δ].
The purpose of the present paper is to study Ore extensions over IN-rings and SA-rings.
In this note we show that some portions of the results in [18] can be generalized to the Ore
extension R[x; α, δ], where the base coefficient ring R is an (α, δ)-compatible ring. In addi-
tion, in Section 2, we show that if R[x; α, δ] is a left IN-ring with Idm(R[x; α, δ]) =Idm(R),
then ℓR[x;α,δ](g)∩R ̸= {0}, for each g ∈ Zr(R[x; α, δ]). Furthermore, it is proved that every
reduced left IN-ring R with finitely many minimal prime ideals is a semiprime left Goldie
ring and R[x; α, δ] is a left IN-ring. Finally, for a commutative principal ideal ring, it is
shown that the IN property is inherited by polynomial extensions. In the third section,
we investigate Ore extensions over SA-rings. For example, it is proved that if R[x; α, δ]
is a right SA-ring, then so is R, and the reverse is true when R satisfy SQA1 condition.
In addition, it is shown that for a reduced ring R and a positive integer n, R is right SA
if and only if R[x]/(xn+1) is right SA. Moreover, each section contains some examples to
show that the “(α, δ)-compatible” assumption on R is not superfluous. Also, examples of
non-reduced IN-ring R such that R[x] is left IN-ring are provided.

2. Skew polynomials over IN-rings
In this section, we will present some necessary and sufficient conditions for the Ore

extension R[x; α, δ] to be an IN ring. To fulfill this plan, we shall need to find a McCoy-
like property of an IN Ore extension. The aim of our first result in this section is to state
and prove it.

According to [8], an ideal I is called an α-compatible ideal if for each a, b ∈ R, ab ∈
I ⇔ aα(b) ∈ I. In addition, I is said to be a δ-compatible ideal if for each a, b ∈ R,
ab ∈ I ⇒ aδ(b) ∈ I. If I is both α-compatible and δ-compatible, we say that I is an (α, δ)-
compatible ideal. If I = 0 is α-compatible (resp., δ-compatible), then the ring R is called
α-compatible (resp., δ-compatible). Also, if R is both α-compatible and δ-compatible,
then R is said to be (α, δ)-compatible. The concept of α-compatible rings were defined in
[9], as a common generalization of α-rigid rings. It was proved [9, Lemma 2.2] that R is α-
rigid if and only if R is α-compatible and reduced. Clearly, each compatible endomorphism
is a monomorphism.

We begin this section with the following essential lemmas.

Lemma 2.1. [10, Lemma 2.1] Let R be an (α, δ)-compatible ring and a, b ∈ R. Then we
have the following:

(1) If ab = 0, then aαn(b) = 0 = αn(a)b for each non-negative integer n.
(2) If αk(a)b = 0 for some non-negative integer k, then ab = 0.
(3) If ab = 0, then αn(a)δm(b) = 0 = δm(a)αn(b) for any non-negative integers m, n.
(4) If ab = 0, then α(a)α(b) = 0 = δ(a)δ(b).
(5) If ab = 0, then axmb = 0 in R[x; α, δ], for each m ≥ 0.
(6) If axmb = 0 in R[x; α, δ], for some m ≥ 0, then ab = 0.

Lemma 2.2. [9, Lemma 2.3] Let R be an (α, δ)-compatible ring. If f = a0 + a1x + · · · +
anxn ∈ R[x; α, δ], r ∈ R and fr = 0, then air = 0 for each i.

We denote the set of all idempotent elements of R by Idm(R).
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Proposition 2.3. Let R be an (α, δ)-compatible ring. Also, let f = a0 + a1x + · · · + anxn

and g = b0 + b1x + · · · + bmxm be non-zero elements of R[x; α, δ] such that fg = 0. If
S = R[x; α, δ] is a left IN-ring with Idm(R) =Idm(R[x; α, δ]), then f = a0 or there exists
r ∈ R such that 0 ̸= ran and rang = 0.

Proof. Since fg = 0, then by Lemma 2.1, anbm = 0. Also, since S = R[x; α, δ] is left IN,
we have rS(f) + rS(an) = rS(Sf ∩ San). Now, we consider the following two cases:

Case 1: Assume that Sf ∩ San = {0}. Then there exists an idempotent e ∈ R, such
that Sf ⊆ Se and San ⊆ S(1 − e), by [5, Corollary 4]. Then f = fe and an = an(1 − e).
Hence an = anαn(e), and since R is α-compatible, we have an = ane. Therefore, an = 0,
which implies that f = a0.

Case 2: Assume that Sf ∩ San ̸= {0}. Let γ(1), β(1) ∈ S such that 0 ̸= γ(1)f = β(1)an.
Assume that β(1)an = β10 + β11x + · · · + β1t1xt1 , with β1t1 ̸= 0. Clearly, β1t1 = r1αt1(an),
for some r1 ∈ R. Since anbm = 0, hence by Lemma 2.1, β1ibm = 0, for each 0 ≤ i ≤
t1. Then (γ(1)f)g1 = (β(1)an)g1 = 0, where g1 = b0 + b1x + · · · + bm−1xm−1. Hence
β1t1bm−1 = 0, since R is α-compatible. Since S is left IN, we have rS(β(1)an) + rS(β1t1) =
rS((Sβ(1)an) ∩ (Sβ1t1)). If (Sβ(1)an) ∩ (Sβ1t1) = {0}, then by Case 1, β(1)an = β10. Since
β10bm = 0 = β10g1, hence β10g = 0, and the result follows.

If (Sβ(1)an) ∩ (Sβ1t1) ̸= {0}, then there exist γ(2), β(2) ∈ S such that 0 ̸= γ(2)(β(1)an) =
β(2)β1t1 . Assume that β(2)β1t1 = β20 + β21x + · · · + β2t2xt2 , with β2t2 ̸= 0. Clearly,
β2t2 = r2αt2(β1t1), for some r2 ∈ R. Hence β2t2 = r2αt2(β1t1) = r2αt2(r1αt1(an)) =
r2αt2(r1)αt1+t2(an). Since β1t1bm−1 = 0, hence by Lemma 2.1, β2ibm−1 = 0, for each
0 ≤ i ≤ t2. Then (γ(2)γ(1)f)g2 = (γ(2)β(1)an)g2 = (β(2)β1t1)g2 = 0, where g2 =
b0 + b1x + · · · + bm−2xm−2.
By continuing this process we can find a non-zero element β(m−1)t(m−1) ∈ R such that
β(m−1)t(m−1)g = 0 and β(m−1)t(m−1) = r(m−1)α

t(m−1)(r(m−2))α(t(m−1)+t(m−2))r(m−3)) . . .

α(t(m−1)+···+t2)(r1)α(t(m−1)+···+t2+t1)(an), for some r1, . . . , r(m−1) ∈ R and some non-negative
integers t1, . . . , t(m−1). Then r(m−1) . . . r2r1ang = 0, by Lemma 2.1. By considering
r = r(m−1) . . . r2r1, the result follows. □

As an immediate consequence of Proposition 2.3, we get the following result.

Corollary 2.4. Let R be an (α, δ)-compatible ring. Let f = a0 + a1x + · · · + anxn, g =
b0 + b1x + · · · + bmxm be non-zero elements of R[x; α, δ] satisfy fg = 0. If S = R[x; α, δ]
is a left IN-ring with Idm(R) =Idm(R[x; α, δ]), then there exists r ∈ R such that 0 ̸= rf
and raibj = 0, for each 0 ≤ i ≤ n and 0 ≤ j ≤ m.

It is often taught in an elementary algebra course that if R is a commutative ring, and
f(x) is a zero-divisor in R[x], then there is a non-zero element r ∈ R with f(x)r = 0. This
was first proved by McCoy [16, Theorem 2]. Recall from [17] that a ring R is called left
McCoy when the equation f(x)g(x) = 0 over R[x], where f(x), g(x) ̸= 0, implies there
exists a non-zero r ∈ R with rg(x) = 0.

Taking α = idR and δ = 0, the following result is immediate from Proposition 2.3.

Corollary 2.5. Let S = R[x] be a left IN-ring with Idm(R) = Idm(R[x]). Then R is left
McCoy.

Now, we give some classes of rings R, such that Idm(R) = Idm(R[x; α, δ]). Recall that
a ring R is called abelian if all idempotent elements of R are central.

Example 2.6. (i) Let R be an (α, δ)-compatible ring. If R[x; α, δ] is an abelian ring, then
Idm(R) = Idm(R[x; α, δ]).

(ii) Let R be an abelian α-compatible ring. Then Idm(R) = Idm(R[x; α]).



On sum annihilator ideals in Ore extensions 707

Proof. (i) Let e = e0 + e1x + · · · + enxn be an idempotent element of R[x; α, δ]. Since
xe = ex, we have

δ(e0) = 0; (2.1)

α(e0) + δ(e1) = e0;
α(e1) + δ(e2) = e1;
...
α(en−1) + δ(en) = en−1;
α(en) = en.

Since e2 = e, then e2
0+e1δ(e0)+· · ·+enδn(e0) = e0 and enαn(en) = 0. Then by using (2.1),

we have e2
0 = e0. Now, by the abelian assumption on R[x; α, δ] and by using [12, Theorem

3.13], we obtain e ∈ Idm(R).
(ii) By a similar argument as used in the proof of (i), one can show that

Idm(R) = Idm(R[x; α]). □
Corollary 2.7. Let R be an (α, δ)-compatible ring and g ∈ Zr(R[x; α, δ]). If R[x; α, δ] is
an abelian left IN-ring, then ℓR[x;α,δ](g) ∩ R ̸= {0}.

Corollary 2.8. Let R be an abelian α-compatible ring and g ∈ Zr(R[x; α]). If R[x; α] is
a left IN-ring, then ℓR[x;α](g) ∩ R ̸= {0}.

Question 1: Let R be an (α, δ)-compatible ring and S = R[x; α, δ] be a left IN-ring. Let
f = a0 + a1x + · · · + anxn, g = b0 + b1x + · · · + bmxm be non-zero elements of R[x; α, δ]
satisfy fg = 0. Can we conclude aibj = 0, for each i, j?

Let α be an endomorphism and δ an α-derivation on a ring R. Recall that an ideal I of
R is called α-ideal if α(I) ⊆ I; I is called a δ-ideal if δ(I) ⊆ I; I is called an (α, δ)-ideal
if it is both α- and δ-ideal. Clearly, if K is an (α, δ)-ideal of R, then K[x; α, δ] is an ideal
of R[x; α, δ].

Proposition 2.9. Let R be an (α, δ)-compatible ring. If S = R[x; α, δ] is a left IN-ring,
then for any (α, δ)-ideals I and J of R, rR(I) + rR(J) = rR(I ∩ J).

Proof. Let I, J be (α, δ)-ideals of R. Clearly rR(I) + rR(J) ⊆ rR(I ∩ J). To prove the
reverse inclusion, let t ∈ rR(I ∩ J). Then t ∈ rS((I ∩ J)[x; α, δ]), by Lemma 2.2. On the
other hand, rS(I[x; α, δ])+rS(J [x; α, δ]) = rS(I[x; α, δ]∩J [x; α, δ]), since S is a left IN-ring.
Now, since rS((I ∩J)[x; α, δ]) = rS(I[x; α, δ]∩J [x; α, δ]), it follows that t = h(x)+k(x), for
some h(x) =

∑n
i=0 hix

i ∈ rS(I[x; α, δ]) and k(x) =
∑n

i=0 kix
i ∈ rS(J [x; α, δ]). Then, since

Ih0 = 0 = Jk0 and t = h0 +k0, hence t ∈ rR(I)+rR(J) and thus rR(I)+rR(J) = rR(I ∩J)
as claimed. □
Lemma 2.10. Let R be a reduced ring and {Pi}i∈I be the set of all distinct minimal prime
ideals of R. If X is a non-zero left ideal of R contained in ∩j ̸=iPj, for some i ∈ I, then
rR(X) = Pi.

Proof. This follows from [6, Proposition 7.1]. □
Proposition 2.11. Let R be a reduced left IN-ring. If R has finitely many minimal prime
ideals, then RR has a finite left uniform dimension.

Proof. Assume that P1, P2, . . . , Pn are all of the distinct minimal prime ideals of R. It
is easy to see that rR(Pi) = ∩j ̸=iPj for each 1 ≤ i ≤ n. Now since ∩n

i=1Pi = 0 and R
is a left IN-ring, we have rR(P1) + · · · + rR(Pn) = rR(P1 ∩ · · · ∩ Pn) = R. Therefore,
(∩i ̸=1Pi) ⊕ · · · ⊕ (∩i ̸=nPi) = R and it is sufficient to prove that ∩j ̸=iPj is a uniform left
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ideal of R, for each 1 ≤ i ≤ n. To see this, suppose that X, Y are non-zero left ideals of R
contained in ∩j ̸=iPj with X ∩ Y = 0. By using the left IN property of R and Lemma 2.10,
we have Pj = Pj + Pj = rR(X) + rR(Y ) = rR(X ∩ Y ) = R, which is a contradiction.
Therefore ∩j ̸=iPj is a uniform left ideal of R, for each 1 ≤ i ≤ n. □

Corollary 2.12. Let R be a reduced left IN-ring. If R has finitely many minimal prime
ideals, then R is a semiprime left Goldie ring.

Proof. It follows from Proposition 2.11 and [15, Theorem 2.15]. □

Recall that an ideal P of R is called completely prime whenever R/P is a domain.

Theorem 2.13. Let R be a reduced (α, δ)-compatible left IN-ring. If R has finitely many
minimal prime ideals, then R[x; α, δ] is a left IN-ring.

Proof. Let P1, . . . , Pn be all of the distinct minimal prime ideals of R. By using Lemma
2.10 and the left IN property of R, we have Pr + Ps = rR(∩j ̸=rPj) + rR(∩j ̸=sPj) =
rR(0) = R, for each r ̸= s. Now, by the Chinese Remainder Theorem, we have R =
R/P1 × · · · × R/Pn. Since R is a reduced ring, hence Pi is completely prime and by
Corollary 2.12 and [15, Theorem 2.5], R/Pi is a prime left Goldie ring, for each i. Also,
since Pi is an annihilator ideal of R, hence Pi is an (α, δ)-compatible ideal of R, and so
R/Pi is an (ᾱ, δ̄)-compatible ring, by [8, Proposition 2.1], where ᾱ : R/Pi → R/Pi is
defined by ᾱ(a + Pi) = α(a) + Pi and δ̄ : R/Pi → R/Pi is defined by δ̄(a + Pi) = δ(a) + Pi,
for each a ∈ R. Then, by [14, Corollary 3.5], R/Pi[x; ᾱ, δ̄] is a left Ore domain, for each i.

Finally, suppose that X, Y are left ideals of R[x; α, δ]. Since
R[x; α, δ] ∼= R/P1[x; ᾱ, δ̄] × · · · × R/Pn[x; ᾱ, δ̄], hence for each i, there exist left ideals Ii, Ji

of R/Pi[x; ᾱ, δ̄], such that X = I1 × · · · × In and Y = J1 × · · · × Jn. Then it is clear that
rR[x;α,δ](X) = rR/P1[x;ᾱ,δ̄](I1)×· · ·×rR/Pn[x;ᾱ,δ̄](In) and by using the fact that R/Pi[x; ᾱ, δ̄]
is a left Ore domain for each i, it follows that rR[x;α,δ](X)+ rR[x;α,δ](Y ) = rR[x;α,δ](X ∩ Y ),
which implies that R[x; α, δ] is a left IN-ring. □

Now, we give an example to show that the “α-compatible” assumption on R, in Theorem
2.13 is not superfluous.

Example 2.14. Let Z2 be the field of integers modulo 2 and R = Z2 ⊕ Z2. Clearly
R is a reduced commutative IN-ring. Let α : R → R be the endomorphism defined
by α((a, b)) = (b, a). Then α is an automorphism of R, and since (1, 0)(0, 1) = 0 but
(1, 0)α((0, 1)) ̸= 0, hence R is not α-compatible. Now let p(x) = (1, 0) + (1, 0)x and
q(x) = (0, 1) + (0, 1)x ∈ R[x; α]. Let I and J be the left ideals of R[x; α] generated by
p(x) and q(x), respectively. By a simple computation one can show that

I = {(r0, 0) + (r0, s1)x + · · · + (rt, st−1)xt + (rt, 0)xt+1|ri, sj ∈ Z2, t = 2i}∪

{(r0, 0) + (r0, s1)x + · · · + (rt−1, st)xt + (0, st)xt+1 |ri, sj ∈ Z2, t = 2i + 1}
and

J = {(0, w0) + (v1, w0)x + · · · + (vk−1, wk)xk + (0, wk)xk+1|vi, wj ∈ Z2, k = 2i}∪

{(0, w0) + (v1, w0)x + · · · + (vk, wk−1)xk + (vk, 0)xk+1|vi, wj ∈ Z2, k = 2i + 1}.

Then I ∩ J = 0 and hence rR[x;α](I ∩ J) = R[x; α]. On the other hand, for each g =
(r0, s0)+(r1, s1)x+ · · ·+(rn, sn)xn ∈ rR[x;α](I), we have r0 = sn = 0 and ri +si−1 = 0, for
each 1 ≤ i ≤ n. Also, for each h(x) = (v0, w0) + (v1, w1)x + · · · + (vm, wm)xm ∈ rR[x;α](J),
we have w0 = vm = 0 and wi + vi−1 = 0, for each 1 ≤ i ≤ m. Now, one can easily show
that (1, 1) /∈ rR[x;α](I) + rR[x;α](J). Therefore, rR[x;α](I) + rR[x;α](J) ̸= R[x; α], which
implies that R[x; α] is not a left IN-ring. Thus, the “α-compatible” assumption on R in
Theorem 2.13 is not superfluous.
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The following example shows that we cannot eliminate the “reduced δ-compatible”
assumption in Theorem 2.13.

Example 2.15. Let R = Z2[t]/(t2) with the derivation δ such that δ(t̄) = 1 where
t̄ = t + (t2) is in R and Z2[t] is the polynomial ring over the field Z2 of two elements. It is
clear that R is a non-reduced commutative IN-ring. Consider the differential polynomial
ring R[x; δ]. By [2, Example 11], R[x; δ] ∼= M2(Z2[x2]) ∼= M2(Z2)[y], where M2(Z2)[y] is
the polynomial ring over M2(Z2). Since Z2[y] is not a left self-injective ring, hence by
[5, Theorem 7], M2(Z2)[y] is not a left IN-ring.

In the following, we construct some classes of commutative non-reduced IN-rings R with
the property that R[x] is also IN. However, the reduced condition in Theorem 2.13 plays
an important role in the proof, the following examples show that it is not a necessary
condition.

For the remainder of this section, R will denote a commutative ring with identity.
Following Zariski and Samuel [20, page 22], we say the elements a, b ∈ R are relatively
prime, if (a, b) = 1. A principal ideal ring (PIR) is a ring with identity in which every
ideal is principal. Any PIR is obviously Noetherian, and the PIR’s may be considered the
simplest type of Noetherian rings. By Zariski and Samuel [20, page 245], a PIR is called
special if it has only one prime ideal P ̸= R and P is nilpotent, that is, P n = (0) for some
positive integer n. If we place P = pR, and if we denote by m the smallest integer such
that pm = 0, then every non-zero element x in R may obviously be written in the form
x = epk, where 0 ≤ k ≤ m − 1, and where e /∈ Rp (i.e, e and p are relatively prime).
Special principal ideal rings are examples of uniserial rings.

A ring R is called Armendariz whenever polynomials f = a0 + a1x + · · · + anxn and
g = b0 + b1x + · · · + bmxm ∈ R[x] satisfy fg = 0, then aibj = 0, for each i, j. The name
“Armendariz ring” was chosen, because Armendariz had noted that a reduced ring satisfies
this condition.

Proposition 2.16. Let R be a special principal ideal ring. Then S = R[x] is an IN-ring.

Proof. Let R be a special principal ideal ring with maximal ideal M = mR and n be the
smallest integer such that mn = 0. For an ideal K of S, we denote

K0 = {a ∈ R | a ∈ Cf for some f ∈ K}.

Now let I, J be non-zero ideals of S. It is clear that I0, J0 are ideals of R. Assume
that I0 = mkR, J0 = msR such that 0 ≤ k ≤ s ≤ n − 1. Since rR(I0) = mn−kR,
rR(J0) = mn−sR and R is an Armendariz ring, then we have rS(I) = rS(I0[x]) = mn−kR[x]
and rS(J) = rS(J0[x]) = mn−sR[x]. Hence rS(I) + rS(J) = rS(J) = mn−sR[x].

Now we claim that rS(I ∩ J) = rS((I ∩ J)0)[x] = mn−sR[x]. Since mk ∈ I0, there exists
a non-zero element f ∈ I such that mk ∈ Cf . Assume that f = r0mk+i0 + r1mk+i1x +
· · · + rnmk+inxn such that (ri, m) = 1 and ij = 0 for some 0 ≤ j ≤ n. Then we have
f = mkf1(x), where f1(x) = r0mi0 + r1mi1x + · · · + rnminxn and ij = 0 for some
0 ≤ j ≤ n. By a similar argument, we can show that there exists a non-zero element g ∈ J

such that g = msg1(x), where g1(x) = r′
0mi′

0 + r′
1mi′

1x + · · · + r′
n′m

i′
n′ xn′ , (r′

i, m) = 1 for
all 0 ≤ i′ ≤ n′ and i′

j = 0 for some 0 ≤ j ≤ n′. Thus, (m, d) = 1, for some d ∈ Cf1g1 .
Therefore msf1(x)g1(x) ∈ I ∩ J and msd ∈ (I ∩ J)0 where m and d are relatively prime.
Hence rR((I ∩ J)0) ⊆ rR(msR) = mn−sR. Therefore, rR(I ∩ J) = rR((I ∩ J)0)[x] ⊆
rS(msR[x]) = mn−sR[x]. The reverse inclusion is trivial and the proof is completed. □

Theorem 2.17. [20, Theorem 33] Every principal ideal ring R is the direct sum of prin-
cipal ideal domains (PID) and special principal ideal rings.

Theorem 2.18. Let R be a principal ideal ring (PIR). Then R[x] is an IN-ring.
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Proof. By Theorem 2.17, R can be written in the form R1 × · · · × Rn, where Ri is either
a principal ideal domain or a special principal ideal ring for each 1 ≤ i ≤ n. Then we have
R[x] = R1[x]×· · ·×Rn[x]. Now let I, J be ideals of R[x]. Hence, I = I1 ×· · ·×In and J =
J1 × · · · × Jn, for some ideals Ii, Ji of Ri[x]. Clearly, rR[x](I) = rR1[x](I1) × · · · × rRn[x](In).
Now, since integral domains are IN-ring, hence by Proposition 2.16, one can easily prove
that rR[x](I ∩ J) = rR[x](I) + rR[x](J). □
Corollary 2.19. Every principal ideal ring is an Armendariz IN-ring.

Example 2.20. Let R = F [x]/(xn), where n ≥ 2, F is a field and (xn) denotes the ideal
of F [x] generated by xn. Then it is clear that R is a principal ideal ring. Thus, R is a
non-reduced IN-ring and by Theorem 2.18, R[y] is an IN-ring.

Let R be a commutative ring and M an R-module. Recall that R ⊕M with coordinate-
wise addition and multiplication given by (r, m)(r′, m′) = (rr′, rm′+mr′) is a commutative
ring with unity called the idealization of M or the trivial extension of R by M . By
Anderson and Camillo [1], a right R-module M is called Armendariz if m(x)f = 0 with
m(x) =

∑n
i=0 mix

i ∈ M [x] and f =
∑k

i=0 fix
i ∈ R[x], implies mifj = 0 for each i, j.

Example 2.21. (i) Let R be an integral domain and M a torsion-free R-module. Then
T = R⊕M is a commutative non-reduced ring. We show that T is an IN-ring. To see this,
it suffices to know that for a non-zero ideal I of T , either I contains an element (r, m),
where 0 ̸= r ∈ R and 0 ̸= m ∈ M , which implies rT (I) = 0, or all elements of I has the
form (0, m), where m ∈ M , which implies rT (I) = 0 ⊕ M . Then it is not hard to check
that T is an IN-ring.

(ii) Let R be an integral domain and M an Armendariz torsion-free R-module. Now,
since M is an Armendariz torsion-free module, M [x] is a torsion-free as an R[x]-module.
Therefore, by (i), T [x] = R[x] ⊕ M [x] is an IN-ring.

3. Skew polynomials over SA-rings
According to [3, Definition 2.1], a ring R is called a right SA-ring, if for any ideals I and

J of R there is an ideal K of R such that rR(I)+ rR(J) = rR(K). Since rR(X) = rR(RX)
for all right ideal X of R, R is a right SA-ring, if for any right ideals X and Y of R there
is a right ideal V of R such that rR(X) + rR(Y ) = rR(V ). In this section, we will present
some necessary and sufficient conditions for the Ore extension R[x; α, δ] to be an SA ring.

For a left (right) ideal I of R, we use I[x; α, δ] to denote the set of all polynomials of
R[x; α, δ] with coefficients in I.

Proposition 3.1. Let R be an (α, δ)-compatible ring. If S = R[x; α, δ] is a right SA-ring,
then R is a right SA-ring.

Proof. Let I, J be right ideals of R. It is easy to show that I[x; α, δ] and J [x; α, δ] are
right ideals of S. Since S is a right SA-ring, there exists a right ideal K of S such that
rS(I[x; α, δ]) + rS(J [x; α, δ]) = rS(K). Now let K0 be the right ideal of R generated by
the set

∪
f∈K Cf . We show that rR(I) + rR(J) = rR(K0). Let b ∈ rR(I) and c ∈ rR(J).

Then b ∈ rS(I[x; α, δ]) and c ∈ rS(J [x; α, δ]), by Lemma 2.1. Thus b + c ∈ rS(K). Hence
b + c ∈ rR(K0), by Lemma 2.2. Therefore, rR(I) + rR(J) ⊆ rR(K0).

Now let d ∈ rR(K0). Then d ∈ rS(K), by Lemma 2.1. Hence there exist h =
∑n

i=0 hix
i ∈

rS(I[x; α, δ]) and g =
∑m

i=0 gix
i ∈ rS(J [x; α, δ]) such that d = h + g and so d = h0 + g0.

Since h0 ∈ rR(I) and g0 ∈ rR(J), we have d ∈ rR(I) + rR(J). This shows that rR(K0) ⊆
rR(I) + rR(J) as claimed. □

Authors in [8] introduced the SQA1 condition, which is a skew polynomial version
of the quasi-Armendariz rings. Let α be a monomorphism of R and δ an α-derivation.
We say R satisfies the SQA1 condition, if whenever f = a0 + a1x + · · · + anxn and
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g = b0 + b1x + · · · + bmxm ∈ R[x; α, δ] satisfy fR[x; α, δ]g = 0, then airbj = 0, for each i, j
and r ∈ R. They showed that if R is an (α, δ)-compatible quasi-Baer ring, then R satisfies
SQA1 condition [8, Corollary 2.8].

Proposition 3.2. Let R be an (α, δ)-compatible right SA-ring. If R satisfies the SQA1
condition, then S = R[x; α, δ] is a right SA-ring.

Proof. For an ideal K of S, let K0 be the right ideal of R generated by the set
∪

f∈K Cf .
Assume that I, J are right ideals of R[x; α, δ]. By assumption, there is a right ideal P

of R such that rR(I0) + rR(J0) = rR(P ). We claim that rS(I) + rS(J) = rS(P [x; α, δ]).
To see this, let f = a0 + a1x + · · · + anxn ∈ rS(I) and g = b0 + b1x + · · · + bmxm ∈ rS(J).
For each a ∈ I0, there is ri ∈ R and ci ∈ Chi

, for some hi ∈ I, such that a =
∑k

i=1 ciri.
Since R satisfies the SQA1 condition and hiSf = 0, for each 1 ≤ i ≤ k, hence we have
ciraj = 0, for each ci ∈ Chi

, r ∈ R, 1 ≤ i ≤ k and 0 ≤ j ≤ n. Thus aaj = 0, for each
0 ≤ j ≤ n. It follows that aj ∈ rR(I0), for each 0 ≤ j ≤ m. By a similar argument, one
can show that bi ∈ r(J0) for each 0 ≤ i ≤ m and hence ai + bi ∈ rR(P ). Then by Lemma
2.1, we have f + g ∈ rS(P [x; α, δ]), which implies that rS(I) + rS(J) ⊆ rS(P [x; α, δ]).

To prove the reverse inclusion, let h = d0 + d1x + · · · + dkxk ∈ rS(P [x; α, δ]). Since
R satisfies the SQA1 condition, we have Pdi = 0, for each 0 ≤ i ≤ k. Thus there exist
ai ∈ rR(I0) and bi ∈ rR(J0) such that di = ai + bi, for each 0 ≤ i ≤ k. Assume that
f = a0 + a1x + · · · + akxk and g = b0 + b1x + · · · + bkxk. Then h = f + g, f ∈ rS(I) and
g ∈ rS(J), by Lemma 2.1. Therefore, rS(P ) ⊆ rS(I) + rS(J). □

As a generalization of Armendariz rings, Hirano [11] introduced quasi-Armendariz rings.
A ring R is called quasi-Armendariz if whenever polynomials f = a0 + a1x + · · · + anxn

and g = b0 + b1x + · · · + bmxm ∈ R[x] satisfy fR[x]g = 0, we have aiRbj = 0, for each i, j.
Clearly, each Armendariz ring is quasi-Armendariz, but the converse is not true in general.
Birkenmeier et al. [3, Theorem 3.8] proved that if R is an Armendariz ring, then R is right
SA if and only if R[x] is right SA. Now we extend this result to quasi-Armendariz rings.

Corollary 3.3. Let R be a quasi-Armendariz ring. Then R is right SA if and only if R[x]
is right SA.

Question 2: Let R be an (α, δ)-compatible ring and S = R[x; α, δ] be a right SA-ring.
Does R satisfy SQA1 condition?

We end this section with study SA property over a special subring of upper trian-
gular matrix rings. Let R be a ring and n a positive integer. An (n + 1) × (n + 1) matrix
A with entries in R is called an upper triangular Toeplitz matrix if

A =



a0 a1 a2 . . . an

0 a0 a1
. . . ...

0 0 a0
. . . a2

... . . . . . . . . . a1
0 . . . . . . . . . a0


,

where a0, a1, . . . , an are elements of R. For simplicity we can write

A = (ai) =
(
a0 a1 a2 . . . an

)
.

We denote the set of all such matrices by Sn(R) that is a subring of upper triangular
matrix ring. In [3, Theorem 3.5], the authors proved that R is a right SA-ring if and only
if Tm(R) is a right SA-ring, for some positive integer m (where Tm(R) denotes the set of
all m-by-m upper triangular matrices over R).

In the following, we will prove an analogous result for Sn(R).
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Theorem 3.4. Let T = Sn(R) be a right SA-ring for some positive integer n. Then R is
a right SA-ring.

Proof. Let I and J be right ideals of R. Set I
′ = Sn(I) and J

′ = Sn(J). It is clear that
I

′ and J
′ are right ideals of T . By assumption, there is a right ideal K of T such that

rT (I ′) + rT (J ′) = rT (K). Clearly the set

Y = {c ∈ R | c = c0 for some C = (ci) ∈ K}

is a right ideal of R. We claim that rR(I) + rR(J) = rR(Y ). To see this, let x ∈ rR(I)
and y = rR(J). Since

(
x 0 0 . . . 0

)
∈ rT (I ′) and

(
y 0 0 . . . 0

)
∈ rT (J ′), then

we have
(
x + y 0 0 . . . 0

)
∈ rT (I ′) + rT (J ′) = rT (K). Thus x + y ∈ rR(Y ) and hence

rR(I) + rR(J) ⊆ rR(Y ).
Now, let z ∈ rR(Y ). Hence

(
0 0 . . . 0 z

)
∈ rT (K) = rT (I ′) + rT (J ′). Therefore,

there exist A = (ai) ∈ r(I ′) and B = (bi) ∈ rT (J ′) such that A + B =
(
0 0 . . . 0 z

)
.

Then z = an + bn. Since for each x ∈ I,
(
x 0 0 . . . 0

)
∈ Sn(I) = I

′
, then an ∈ rR(I).

Also, since for each y ∈ J ,
(
y 0 0 . . . 0

)
∈ Sn(I) = J

′
, then bn ∈ rR(J). Therefore,

z ∈ rR(I) + rR(J) and the proof is complete. □

Theorem 3.5. Let R be a reduced right SA-ring. Then T = Sn(R) is a right SA-ring,
for each positive integer n.

Proof. Let K be a right ideal of Sn(R). For each 0 ≤ i ≤ n, let

Ki = {a ∈ R | a is the i-th entry of some elements of K}.

Clearly, each Ki is a right ideal of R and Ki ⊆ Ki+1, for each 0 ≤ i ≤ n − 1. Let
K(1) = {(ai) ∈ Sn(R) | aj ∈ Kj , for each 0 ≤ j ≤ n}. Clearly, K(1) is a right ideal of
Sn(R) and K ⊆ K(1). Let (ai), (bj) ∈ Sn(R), with (ai)(bj) = 0. Let j ∈ {0, 1, . . . , n}.
Since R is reduced, one can easily show that aibj = 0, for each 0 ≤ i ≤ n − j. Then
rT (K) = rT (K(1)).

Let I and J be right ideals of T . As mentioned in the previous paragraph, rT (I) =
rT (I(1)) and rT (J) = rT (J (1)). Since R is right SA, hence for each 0 ≤ i ≤ n, rR(Ii) +
rR(Ji) = rR(Ki), for some right ideal Ki of R. Since rR(Ii+1) ⊆ rR(Ii) and rR(Ji+1) ⊆
rR(Ji), for each i, hence rR(Ki+1) ⊆ rR(Ki), and so we can assume that Ki ⊆ Ki+1, for
each i. Now, by a simple calculation, one can show that rT (I(1)) + rT (J (1)) = rT (K(1)),
and the proof is complete. □

For each positive integer n, it is a well known result that Sn(R) ∼= R[x]/(xn+1), where
(xn+1) denotes the ideal of R[x] generated by xn+1. Then, by using Theorems 3.4 and 3.5,
we have the following result.

Corollary 3.6. Let R be a reduced ring and n be a positive integer. Then R is right SA
if and only if R[x]/(xn+1) is right SA.
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