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Abstract: This article presents a method of machining hypocycloidal internal and external polyhedral surfaces 
by adding rotations around parallel axes. This method can be employed on lathes, drilling and milling machines 
and machining centers, which significantly broadens their manufacturing capabilities. The kinematics of the 
method has been defined from the point of view of the design engineer of tools with a view to developing a 
generalized model of the cutting angles during the machining of hypocycloidal surfaces by adding rotations 
around parallel axes. The rational field of application of this method has been determined. 
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Paralel eksenlere dönme ekleyerek hypocycloid yüzeylerin talaşlı işlenmesi:  

Bölüm 1: takım gövdesinin geometrisi 
 

Özet: Bu makalede paralel eksenlere dönme ilave ederek hypocycloid iç ve polihedral dış yüzeylerin talaşlı iş-
lenmesinde kullanılan takım geometrisi sunuldu. Paralel eksenlere dönme ilave edilerek hypocycloid yüzeylerin 
talaşlı işlenmesinde temel kesme açıları matematiksel olarak modellendi.  Elde edilen model kesici takımın kul-
lanılabilir dizaynına müsade ederken, bahsedilen yöntemin mekanik diyağramlar arsındada kalmasını sağlar. 
 
Anahtar kelimeler:  Kesme, Kesme takımları, Hypocycloid yüzeyler, talaşlı işleme yöntemleri, poligon şaft 
bağlantıları, kesme açıları 

 
 
Introduction 

Forming by cutting of cross-profile surfaces can be implemented mostly by two methods: 
• Three-dimensional copying method; 
• Generating method. 
The implementation of the first method requires a special cutting machine, for example a broaching ma-

chine. In this aspect, the implementation of the second method allows a bigger freedom of choice of machine 
tools, including conventional machines.  

In the general case, the formation tool motion related to the fixed workpiece of the second method is a su-
perposition of complicated rotation and translation along the axis of the hole being formed. The rotation is 
around an instantaneous axis of rotation (IAR). The trajectories of the IAR in a coordinate system fixed to a 
workpiece is an axoid. When this axoid is a upright round cone or a upright round cylinder the case implemen-
tation is the simplest. In this case the complicated rotation is round coplanar axes, concurrent or parallel, re-
spectively. The adding rotations around intersecting axes is a basis of the mechanics of the method of cold hole 
expansion, called spherical mandrelling (Maximov, 2002a;  Maximov, 2002c;  Maximov and Anchev, 2003a;  
Maximov and Kalchev, 2003b;  Maximov, 2003c;  Maximov, 2004)  and of the method of forming of cross-
profile holes by simultaneous cutting and surface plastic deformation, called spherical broaching and mandrel-
ling (Maximov, 1990;  Maximov, 2002b).  
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Particular cases of forming square holes in fixed workpieces on machine tools with rotating primary mo-
tion, for which the tool and hole axes are parallel, are known. The holes are previously drilled cylindrically. 
The tool (Gardner, 1969) has an oval trihedral shape and carries out both rotating and feeding axial motion but 
its axis of rotation does not coincide with the symmetry axis of the square hole, and it circumscribes a cylindri-
cal surface. This complicated motion is obtained by fixing the tool in a special floating chuck which is directed 
by a jig bush during rotation.  

The shortcomings of this method are: its low efficiency, because of the magnitude constraints to the ma-
chine spindle angular velocity; impact load on the cutting edges of the tool; noisy performance; special floating 
chuck should be used. 

Particular cases of forming external and internal cross-profile surfaces are known when the tool (lathe tool) 
is fixed to a satellite wheel, rotating around parallel axes in a planetary gear mechanism with spur gears 
(Borenshteyn, 1978; Radev and Kolev, 1982). These particular applications do not offer the opportunity of us-
ing a multi-point tool with a view of enhancing productivity and improving the dynamics of the technological 
system. 

In the indicated cases the primary tool motion with respect to the fixed workpiece is a sum of rotations 
around parallel axes, but these cases are not subordinated and theoretically well-grounded in the general 
method. The primary tool motion is planar: rolling of a mobile centroid (a circumference) along a stationary 
centroid (also a circumference). Therefore the trajectories of points of the tool cutting edges are a kind of cyc-
loids and hence a priori the obtained holes have cycloidal profiles. 

On the basis of the formulated and proved theorem (Maximov, 2003c) specifying a necessary and sufficient 
condition of forming a hypocycloidal n-gon when rotating the linear (n-1)-gon around two parallel axes a 
method of manufacturing of hypocycloidal internal and external polyhedral surfaces in stationary as well as in 
rotating workpieces has been synthesized by adding up rotations around parallel axes. This method can be em-
ployed on lathes, drilling and milling machines and machining centers, which significantly broadens their 
manufacturing capabilities. 

The vertices of the cutting edges in the primary motion of the tool describe a hypocycloide in the workpiece 
coordinate system. The velocities of these points are periodic vector functions changing both in size and in di-
rection. Therefore the cutting angles in the primary motion will be scalar functions of the time. The presence of 
these functions is a necessary condition for determination of the tool geometry. 

The objective of the first part of this study is to define the kinematics of the method from the point of view 
of the design engineer of tools with a view to developing a generalized model of the cutting angles during the 
machining of hypocycloidal surfaces by adding rotations around parallel axes and to determine the rational 
field of application of this method. 

The following basic tasks have been solved as a result of the whole investigation: 
• The kinematics of the method has been defined from the point of view of the design engineer of tools; 
• The rational field of application of the method has been determined; 
• Generalized model of the cutting angles during the machining of hypocycloidal surfaces by adding rota-

tions around parallel axes has been developed. 
Nature of the method of machining hypocycloidal surfaces by adding rotations around parallel axes 
Figure 1 shows the kinematics of the proposal method. The essence of the method is that the tool 3 besides 

axial displacement at velocity f
r

 performs rotation around its own axis at angular velocity rω
r

 and at the same 
time rotates around the axis of symmetry of the  n - hedron (inner 2 or outer 1) being machined, at angular ve-

locity eω
r

 with respect to the static workpiece. The angular velocities have opposite directions and er ωω >  

and the absolute angular velocity is the vector sum rea ωωω
rrr

+= . The ratio of the magnitudes of the angular 
velocities is: 

n
1n

r

e −
−=

ω
ω

 (1) 
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Figure 1. Kinematic diagram of the proposal method: a. machining of inner hypocycloidal surfaces; b. machining of 

outer hypocycloidal surfaces 
 
The distance between the axes of the tool and the hypocycloidal n - hedron being machined is: 

limee0 <<   (2) 

where lime  is the magnitude of excentricity for which the curvature at the corners of the hypocycloidal n-
hedron is infinitely large. 

The number of cutting edges of the tool is ( )1n − . The diameter tD  of the circumference circumscribed 
around them is: 

e2DD nt −=  (3) 

If the tool-workpiece system is given angular velocity  eω
r

− , the method can be adapted on lathes where 
the workpiece and the tool carry out simple rotations around their own axes.   The workpiece rotates at angular 

velocity e1 ωω
rr

−= , and the tool – at angular velocity rω
r

. Both angular velocities are unidirectional and 

n
1n

r

1 −
=

ω
ω

. At the same time the tool carries out a rectilinear translation along its axis. 
Using one and the same device, at identical cutting conditions, outer and inner hypocycloidal polyhedrons 

of identical geometric parameters can be machined. This makes the method especially suitable for machining 
hypocycloidal joints. 
 

Kinematics of the method 
The primary motion of cutting performed by the tool with respect to the fixed workpiece is planar – a sum 

of rotations around parallel axes. For a rational choice of the geometric parameters of the tool cutting wedges, 
it is necessary to know the law of motion of a point from the circumference passing through the vertices of the 
cutting edges. In this paper this circumference is referred to as mobile and the circumference circumscribed 
around the hypocycloidal profile is referred to as stationary. 

Trajectories of the vertices of the cutting edges 
Figure 2 shows a scheme for determination of the trajectories of the vertices of the cutting edges. When the 

tool axis rotates around the axis of the polyhedron being machined at π2  radians ( )πϕ 2e = , the absolute an-
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gle of the tool rotation is 1n
2

a −
=

πϕ
. Each cutting edge forms more than one side of the polyhedron in cross 

section. Its profile is composed of the trajectories of vertices iM  of ( )1-n - gon, coinciding with the vertices 

of the cutting edges of the tool when it rotates at angle 1n
2

a −
=

πϕ
. Coordinate system 11 yx  is fixed to the 

tool. 

 
Figure 2. A diagram for determination of the trajectories of the points iM  
 

 The equations of motion of points iM  and their trajectories in parametric form in the stationary coordinate 
system xy are obtained from the transformation: 

[ ] [ ][ ] T
11

T y   xe Tyx  =  (4) 
where: 

[ ]


















−
ϕ

−
ϕ

ϕ

−
ϕ

−
ϕ

ϕ
=

 
1n

 cos           
1n

sin      sin -

 
1n

sin -        
1n

 cos        cos 
T

ee
e

ee
e

 (5) 
is a transforming matrix, 

[ ]
T

i
t

i
tT

11   ins
2

D     cos
2

D     ey   xe 



 αα=

 (6) 

is an enlarged vector of point iM  coordinates in 11 yx , 

( )1-i 
1n

2
i −

π
=α

 (7) 
[ ] 2 0,    tee π∈ω=ϕ ; ( )[ ] 1-n 1,  i∈ .  

From (4)-(6) for the trajectories of points iM  in parametric form in xy is obtained: 
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 (8) 
The curve (8) has been obtained as a result of rolling the circumference of the mobile centroid 1 along the 

circumference of the stationary centroid 2 having equations, respectively: 

 ( )222 n eyx =+  (9) 
( ) 222

1
2
1 e1nyx −=+  (10) 

Therefore points iM  circumscribe ( )1-n  number of parts of the elongated hypocycloid which is a theo-
retical profile of the hypocycloidal n -hedron being obtained. Hypocycloidal n-hedrons can also be machined 
by a single-point tool. In this case, however, the profile will be formed when rotating tool axis around the 

polyhedron axis, not at π2 , but at ( )1-n2π  radians, respectively the productivity will be ( )1-n  times lower. 
Curvature of the hypocycloidal profile 
To determine the function of the curvature of the faces of the hypocycloidal polyhedron, the trajectory of 

point M1 from Fig. 2 has been studied with equations: 

1n
tsin  

2
Dtsin.e y

1n
tcos  

2
Dtcose   x

et
e

et
e

−
ω

+ω−=

−
ω

+ω=

  (11) 

where eet ϕω = . 
The upper curve is an elongated hypocycloid. Its curvature χ  is a relationship of the normal acceleration 

of point M1 and its velocity squared: 

( )2
3

22 yx

y x - x y

&&

&&&&&&

+
=χ

 (12) 

From (12) and (11) for ( )eϕχ  is obtained: 

( ) ( )
( )

( )

( )
2
3

et
2

2
t2

e
2

t 2
3

2
t

e

1n
ncos

1n
eD

1n4
De

1n
ncos

1-n2
2-neD  e - 

1n 4
D










−
ϕ

−
−

−
+

−
ϕ

+
−

=ϕχ

 (13) 

where πϕ 2  ,0e ∈ . 

The curvature is the largest at the corners of the hypocycloidal n -hedron. The limit value lime  of the ex-

centricity e  is obtained after putting 0e =ϕ  and the denominator of (13) to zero: 

( ) n2
D

1n2
De nt

lim =
−

=
 (14) 

When limee >  the curve (11) obtains double points.  
The value of e , for which the curvature in the middle of the side of the hypocycloidal n -gon is zero, is: 



Jordan MAXIMOV, Hristo HRISTOV 6

( ) ( )[ ]2
n

2
t

0 1n12
D

1n2
Dee

−+
=

−
==

 (15) 

When ( )0e 0,e∈  the hypocycloidal profile is convex and when )lim0 e ,ee∈  two points of each side exist 
in which the curvature changes its sign. 

It is substituted: 
nkDе =  (16) 

From (14)-(16) it follows: 

• When ( )[ ]20 1-n12
1kk0

+
=<<

 the hypocycloidal profile is convex (Fig. 3); 

• When 0kk =  the curvature in the middle of the side of the hypocycloidal n -gon is zero; 

• When 2n
1kkk lim0 =<<

 two points of each side exist in which the curvature changes its sign.; 

• When limkk =  the curvature at the corners obtains an infinitely large value; 

• When limkk >  the contour of the profile obtains double points. 
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Figure 3. Dependence of hypocycloidal profile on k  
 
Cutting speed in the primary motion 
From (11) and (16) for the speed projection on the fixed axes is obtained: 
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( ) 

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


−
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−

+ωω==
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Figure 4. Dependence of the F-function on eϕ  
 

The cutting speed in the primary motion is a vector function of the rotating angle eϕ  of the tool axis around 
the hole axis. Its magnitude (in m/min) is: 

( )ene FDn2v ϕπ=  (18) 
where 

( ) ( ) ( )

2
e

e

2
e

ee 1n
cos  

1n2
k21kcos- 

1n
sin  

1n2
k21ksinF 








−
ϕ

−
−

+ϕ+







−
ϕ

−
−

+ϕ=ϕ
 (19) 

and en  in tr/min is the rotation frequency of the tool axis around the hole axis , and nD  is in m. The function 
( )eF ϕ  is graphically illustrated in Fig. 4. 

The variable angle ( )eϕθθ =  is between the speed vector vr  and the tangent at the same point to the mo-
bile circumference (Fig. 5). The change in the static cutting angles in the principal motion is due  to the func-

tion ( )eϕθθ =  and therefore the knowledge of this function is of the utmost importance for defining the ge-

ometry of the tool cutting wedges. From Fig. 5 it follows for ( )eϕθθ = : 

ψ−ϕ−
π

=θ a2  (20) 
where  

1-n
e

a
ϕ

=ϕ
 ; x

yarctg
&

&
=ψ

 (21) 
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Figure 5. A diagram for determination of the trajectories of the kinematic angle θ  
 
From (21), (17) and (20): 
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Figure 6. Dependence of θ  on eϕ  
 

Fig. 6 shows graphically the function ( )eϕθθ = . It does not depend on the absolute value of the geometric 

parameters e  and nD , and only on their relation and on the number of faces n . 
 
Rational field of application of the method 

The field of the method application is restricted by the maximum value 
*

max θθ =  of the kinematic angle 
θ  (relationship (22)). The parameters on which 

*θ  depends are k and n. Although there is a correlation be-
tween them which defines characteristic shapes of the hypocycloidal profile, they could be assumed to be inde-

pendent parameters of the function ( )n k,** θθ = . The latter is obtained from (22). To this end, its argument 
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( )n k,*
e ϕϕ = , which maximizes (22) is approximated numerically in a suitable manner, as a function of k and 

n. The investigation of (22) shows that n has a stronger impact on ( )n k,*
e ϕϕ =  compared to k, and therefore: 

0.4920.157n-0.007n2* ++=ϕ  (23) 
From (22) and (23): 

( ) ( )

( ) 1n
sin

1n2
k21sink

1n
cos

1n2
k21cosk

arctg
1-n2

n,k *
*

*
*

*
*

−
ϕ

−
−

+ϕ

−
ϕ

−
−

+ϕ−
−

ϕ
−

π
=θ

 (24) 
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Figure 7. Dependence of 

*θ  on n and k 
 

Figure 7 shows the impact of k and n (considered as independent parameters)  on 
*θ  and each combination 

of k and n defines a concrete hypocycloidal profile. However, when 
*θ  is to be  juxtaposed for hypocycloidal 

profiles with equal convexity (e. g. k=k0), differing only in the number of sides n, then the correlation between 
k and n has to be taken into account (Fig. 8). It is seen from that in this case when the number n of sides in-

creases, 
*θ  decreases exponentially. 
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Figure 8. Dependence of 

*θ  on n  with a correlation between k and n 
 

The increase in 
*θ  deteriorates the cutting process: the change in the cutting angles in the principal motion 

of the tool increases as well as the cutting speed irregularity. Therefore, a trade-off optimum region should be 
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found in plane k n, which should define the set of combinations between k and n, for which 
*θ  does not ex-

ceed a preset value. 
The governing parameters vector is : 
{ } [ ]TnkX =  (25) 
The parametric constrains are: 

maxnn3 ≤≤  (26) 

The functional constraints are determined by characteristic values of k, respectively 0k  and limk : 

( )[ ]21-n12
1k0

+
<<

 (27) 
for hypocycloidal surfaces of convex profile; 

( )[ ] n2
1k

1-n12
1

2 ≤≤
+  (28) 

for hypocycloidal surfaces of concave profile. 

The geometric loci of points ( )ii
*
i n,kθ , where the function ( )n k,** θθ =  assumes constant values are 

called level lines. They are obtained from (24) after putting const* =θ  and solving with respect to k: 

( ) ( )nF1
0.5nk
+

=
 (29) 

where: 

( ) ( ) ( )
( ) ( )nFnF

nFnFnF
43

21

−
+

=
 ; ( ) ( ) *

1 sin1-nnF ϕ=  ; 
( ) ( ) 








θ+

ϕ
ϕ= *

*
*

2 1-n
tgcos1-nnF

 

( ) 
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
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ϕϕ
= *
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4
ϕ

=
 

and 
*ϕ  is found from (23). 
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Figure 9. Rational field of application of the method for various level lines 
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In Fig 9 in plane kn trade-off optimum regions are shown for various level lines 
*
iθ  for 12nmax = , from 

which rational combinations of k and n can be found depending on the preset value of 
*θ

. For instance, for 
0* 5≤θ

 in the interval 12n3 ≤≤  only hypocycloidal surfaces with convex profiles can be machined, 

wheareas when 
0* 10=θ

 only for 9n ≥  hypocycloidal surfaces with concave profile can be machined, etc. 
 

Conclusions 
A method of machining hypocycloidal internal and external polyhedral surfaces by adding rotations around 

parallel axes has been presented. This method can be employed on lathes, drilling and milling machines and 
machining centers, which significantly broadens their manufacturing capabilities. 

The kinematics of the method has been defined and a rational field of application has been determined. 
The utilization of the method on lathes is particularly effective. Using one and the same device, at identical 

cutting conditions, outer and inner hypocycloidal polyhedrons of identical geometric parameters can be ma-
chined. This makes the method especially suitable for machining hypocycloidal joints. 
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