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Abstract: Quantum integrable system related to SO(2,3) group manifold or hyperboloid

[x x]:x12+x§7x327x§7x52:1 in hyperbolic and parabolic coordinates systems is considered. The explicit

expressions for wave functions , spectra on S-matrices are given.
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Introduction

There are certain results on complete systems of quantum commuting wave function, spectra and so on. The review
presents, from a general point of view , the results obtained in these subjects [1] . The dynamics of some of these is
closely related to free  motion in the symmetric space (SS).

On the other hand, there are many coordinate systems which reduce to the separation of variables in
Laplace - Beltrami operators given in [2] . There is a simple transformation of Laplace-Beltrami operator on
symmetrical spaces (SS) to some Hamiltonian quantum systems only for geodesics relating to one parameter subgroup
of symmetry group. Hence only distortion of the symmetry of the free particle motion on
(SS) by the geodesic paths reduces to the dynamics of quantum systems.

The one dimensional integrable quantum systems related to free motion in some
symmetric spaces of noncompact groups are considered in [1,3,4,5,6].The dynamics of a quantum system depends on

stationary subgroup of the fixed point ?( and the chosen coordinate systems on (SS). For the case of the (SS) with the
compact stationary subgroup , the quantum system has only continuous spectrum , but for the case with the
noncompact quantum system , it has discrete and continuous spectrum [7] .

We consider hyperbolic and parabolic coordinate systems on hyperboloid [x x] = 1. For a related quantum system
we give explicit expressions for wave functions, spectra and S-matrix.

The quantum systems related with SO(2,3) Group Manifold
Let us consider bispherical and parabolic coordinate systems on the hyperboloid

[x x]= X12 + X% —X32, —xf - X52 =1 which definea SO(2,3) group manifold.

Bispherical Coordinate Systems
The bispherical coordinates are given by
X, =T cosh & cos @

X, =T cosh a sin 6 cos ¢
X3 =TI cosh & sin & sin ¢ (1)
X4 = sinh & sin y

X5 = sinh a cos

where 0<r<ow, O0<a<wo, 0<@,y<27, 0<f0<x.
From (1) we have
(9ab)= diag(l, —r2,r2cosh? @, r?cosh? & sin 6, —r?sinh? « ) 2)
Jg_ :(det(gab))l/2 =r* cosh « sinh & sin @ 3)
The component of the Laplace-Beltrami operator
ALB=7—1(’?.3196”3\/55% » o a,b=123,. “)
Jo

on the hyperboloid [x x] =1 is in the following form :
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ALg = iJr(Ztanh a +coth )i
LB 2a2 Py

(5)
1 o2 d 122 1 o
+———| —+cot 0—+——— |-
cosh? a | 86> 00 sin206¢2 sinh? & (’}y/z
Free motion on the hyperboloid [x x] =1 is defined by the equation
ALBCD(a,B,q),(//):—a(a+3)CIJ(a,H,go,l//) . 6)
After the substitution of
O(a.0.0.p )=T(a ) S(6)eMPe" (7)
in Eq.(6) we have
1 |d3s(0) ds(@) m?
to - S@)|T
coshz{ d6? e de sin? @ ( ) (a)
d2T(a) dT (@) n2 (3)
+{—[da2+(2tanha+cotha ) ia +sinh2aT(a) S(H)
=—o‘(o‘+3)T(a)S(0) .
From the Eq.(8) we have
d? d m?
——+coth —— S(@)=-v(v+1)s(o ©)
ng o szg} (0)=—+lv+1)s00)
and
g2 d v(v+1) n?
_da2+(2tanha+cotha)a+[w8hzamhza T(a) :a(a+3)T(a). (10)
Fory =0 , n = 0 Eq.(10)takes the form
[ 42
d—+(2tanh0{+c0th0¢)i T(O():O'(U+3)T(Ol) . an
daz da

_By the transformation
T(a )= (cosh ex )_]/2 (sinh & )_]/2 wla) (12)

Eq.(11) is reduced to the one dimensional Schrodinger equation for the continuous values of o—:,§+ip and
2

E:p2>0

rle) |5 (02 V | yte)-o a3)

with the potential
Viw)-—L4 (14)

sinh? &
and the energy spectrum

E:{mgf (15)

By the substitution T(a )= cosh* & W () and the transformation z = tanh’ar

Eq.(11) is reduced to the hypergeometric equation

-2 201 (ot Je | (-2 ) (25 Jw =0 (16)

By the regular solution of the equation (16) at Z =0 we have

T(er)=c cosh? F( —%, 70-271; 1 tanhzaj . 17

On the other hand, by using the relation [9]
pv/l(z ): 2/1(22 -1 T’u/zz‘/‘*#;

r(l_ﬂ) (18)
1 v+u v+u 1
x B ——————— - l-—
2 1[2 5 5 H sz

For , - we obtain
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P(z)= z”F(l—K, LAY 1—22) .

From the relations (19) and (20)
T(a )=c, (cosha )7' P, (cosha )

is found. Thus for v = —%4— ip we obtain

T(a ): C (cosha )_1 P,1/2+ip(cosha ) .

(19)

(20)

2

(22)

37

. 3 . A . .
For continuous spectrum o = _E+ ip, E= p2 >0 we calculate the S-matrix using the analytical continuous

formula (23) for the hypergeometric function of [8] ;

F(a,b:c;z)= AF(a,b;a+b—-c+11-12)

+A(1-2)*PF(c-ac-bic—a-b+Ll-2) , farg(l-2)|<x

r(c)r(c-a-b) _T(c)r(a+b-c)

A Te—are—s) © 7T r@re)

From the Eq. (23) and Eq. (20) we have the asymptotic expression.
T(a)=cre 2 [Aco)e™ + Apye 7|

o—>0
where
AP =—r +1/2r(lp)i 32
(252 25
2 2

From Eq.(25) it follows that the normalizing factor is chosen to satisfy the condition

TT (a)m(cosh a)z sinhada = E(p' - p)
and is found to be
2 1
ol =—— -
(o)
The S-matrix is found to be given by

. —ip+1/2 —ip+3/2j
C(ip)r| —/—"= || ===
S=ol= G ( 2 ] [ 2

2

By the transformation 7 = cos & Eq.(8) becomes Associated Legendre Equation

dz? -2

By the transformation

S(z)= (z2 —JMZW(Z)

we have

2 2
(l_zz)u_uﬁ{vw)_ m
dz 1

2
(17zz)t_\/zv+72(m+l)zt—vzv+(vfm)(v+m+l)W =0 .
z

1-z

(23)

24

(25)

(26)

@7

(2%)

29

(30)

G

By substituting z'= = Eq. (31) is transformed to the Hypergeometric Equation and the solutions of the equation

are

W, :F(m—v,m+v+1;m+l;1_72)

1-z)" 1-2
Wy, =|— | F|-v,v+Ll-m——
2 2

From (30), for Eq(29), considering the relation [9]
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(32

(33)
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1 (z+1)™? -7
PM(2)=———|—| F|l-vyy+ll-m—=|[9
o= male) L

we find the solution
S(@) =(-2)"T(1-2)P"(cosb) .

Parabolic Coordinates
The parabolic coordinates are given by
t

t 1 5 2
X; =r| cosh———e?
1 273 q

t

X, =rqe’
t
X; =rq,e’
t
X, =rg,e?

. t | 2
Xs =I| sinh—+—e?2
5 >3 q

where qzquz—qf—qi, O<r<oo,—00<t<00, _Oo<q13q2aq3<oo

From (36) we have
=diag| 1,-r2/4, r?e!, —r2e',—r2%e!
(9ap)=diag( 1,- 12/

and

t

J = (derlgas )2 = 2

2

The Laplace-Beltrami operator on the parabola [x x]=1 is given as

3t 2 2 A2
Aol A0l o oo 0" O
He e% ol o) e'|oaf o0y oa3
On the other hand; the equation

A = CD( t’qnqz’q}): _O-(O- +3)(D( t’ql’qZ’q3)
where

M=y =3 =
and

cD( t,quqzjq3 ):T(t )eI/‘|q| elluzqz ellusq3

is equivalent to

2

d>  d  u°
{4m—2+ 6E+e_t T =o(c+3)T(1)
Applying the transformation
=3t
Tt =e * p(t)
Eq .(43) becomes;

2

o+=

Ay | 4 ( 2)
R

which reduces to the Schrodinger Equation , where energy spectrum

(=3
o-+5
E=—~ 2/

4

and the potential
)
V(t)=—£
4e

Applying the change of variable
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(34)

(3%)

(36)

(37

(38)

(39)

(40)
(41)

(42)

(43)

(44)

(45)

(46)

(47)
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1
z=¢e'!
in Eq.(45), we arrive at the equation

2 2
Z2M+Zdv/(2){yzzz 7[J+%j }//(2):0

dz2 dz
In the case of ;, > < ¢ ; changing variable as
Z'=uz
at Eq.(49) we obtain

) 2
2 dduzfz(_zhz_d‘/éiz)-[zh[m%] }v/(z)=0

Modified Bessel equation. The solution of the Eq. (51) are given by

pluz)=cK ;(uz)
2

where

K 3(ﬂZ)=”3{| 3 (u2)-1 mn}
7y 25in(a+5j7z T3 7ty

Thus; the solution of the Eq. (43) is
3t t

T(t)=4e 4K;,| ue 2

. . . . 3 .
This is the solution corresponding to the continous values o = Y +ip

The normalization factor C, is
2 psinh pr
|C1| = 2
T
Chosen to satisfy the condition

JT()T(t)dt=5( p-p')
Considering the Asymptotic expression

K; (y e‘t/2)=+[ Ae At/2 L peTint/2
» 2i sinh pr

t—w
where

__ —xu2)?
2i sinh pr F(l+ip)

is found in the form of S-matrix
_ _(#/2 )Zip l—‘(l — |,0)

5= M(i+ip)

o > >

in the case of 4~ > 0. By the substitution of 7' = 47 inEq. (49) we obtain

2
20v@  dyv(@)
dz? dz

32
ZZ(U+EJ}wU)—O-

Since I ‘ w(z )‘Zdz <o » for discrete specturum ¢ =| we obtain the solution of (57) in the form of

y(uz)=c,d (uz)

Thus for Eq.(43), the solution

_3t s
T(t)=c,e 4J|3(ue 2]

2

is found . The normalization factor C, is

e, |"=21+3
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(48)

(49)

(50)

(51

(52)

(53)

(54)

(5%)

(56)

(7

(58)

(59

(60)

(61)

(62)

(63)
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where
)z ()

o l+= I+= 1

[—2 dz' = (64)

0 7' 21+3

and invariant volume element in parabolic coordinates is

1 r? >

dX=TT(et)2 dtdql dqqu3 . (65)
g
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