Voltage Type First Order All-Pass Filter Employing Fully Differential Current Feedback Operational Amplifier and Quadrature Oscillator

Mahmut ÜN*, Fırat KACAR**

*Elect-Communication Eng. Dept, Faculty of Eng.-Arch., Beykent University
Ayazağa, Şişli, İstanbul, TURKEY, e-mail: umahmut@beykent.edu.tr
**Elect.-Electronic Eng. Dept. Faculty of Eng., Istanbul University, 34320 Avrasya, İstanbul, TURKEY, e-mail: fkacar@istanbul.edu.tr

Alımı: 10 Temmuz 2007
Kabul Ediliş: 14 Kasım 2007

Abstract: An improvement voltage mode first order all-pass filter configuration is proposed. The presented circuit uses a single fully differential current feedback operational amplifier (FDCFOA), resistors and a grounded capacitor. High input impedance of the proposed filter enables the circuit to be cascaded without additional buffers. It does not impose any component matching constraint in analog signal processing circuits. Also higher order all-pass filter could be achieved by cascading the proposed all-pass sections. In order to demonstrate the performance of the proposed filter a new voltage mode oscillator is introduced as an application example. Furthermore the theoretical results are verified with SPICE simulations using a CMOS realization of FDCFOA.

Key words: All-pass filter, fully differential current feedback operational amplifier, analog integrated circuits, quadrature oscillator.

Introduction
All-pass filters are one of the most important building block of many analog signal processing applications and therefore have received much attention. They are generally used for introducing a frequency dependent delay while keeping the amplitude of the input signal constant over the desired frequency range. Other type of the active circuits such as oscillators and high-Q band-pass filters are also realized by using all-pass filters [1-6]. The active devices that have been used for the realizations of first order all-pass circuits include operational amplifiers (OP-AMP), second generation current conveyor (CCII), current feedback op-amps (CFOA), operational transconductance amplifier (OTA) and four terminal floating nullor (FTFN). Several voltage and current mode first order all-pass filters are available in the literature [2-10]. A literature survey shows that there are only a few transadmittance mode filters. Since the introduction of FDCFOA by Soliman, a few realizations of first order all-pass circuits include operational amplifiers (OP-AMP), second generation current conveyor (CCII), current feedback op-amps (CFOA), operational transconductance amplifier (OTA) and four terminal floating nullor (FTFN). Several voltage and current mode first order all-pass filters are available in the literature [2-10]. A literature survey shows that there are only a few transadmittance mode filters. Since the introduction of FDCFOA by Soliman, a few realizations of first order all-pass circuits include operational amplifiers (OP-AMP), second generation current conveyor (CCII), current feedback op-amps (CFOA), operational transconductance amplifier (OTA) and four terminal floating nullor (FTFN). Several voltage and current mode first order all-pass filters are available in the literature [2-10].

The Proposed All-Pass Filter Circuit
The FDCFOA is basically a fully differential device as shown in Figure 1. The Y1 and Y2 terminals are high impedance terminals while X1 and X2 terminals are low impedance ones. The differential input voltage \(V_{X12} \) applied across Y1 and Y2 terminals is conveyed to differential voltage across the X1 and X2 terminals, i.e., \((V_{X12} = V_{Y12}) \). The input currents applied to the X1 and X2 are conveyed to the Z1 and Z2 terminals are high impedance output nodes suitable for current outputs. The differential voltage developed across the Z1 and Z2 terminals are buffered by a unity gain fully differential voltage buffer to the output terminals O1 and O2, i.e., \((V_{O12} = V_{Z12}) \).

The port relations at an ideal FDCFOA, shown in Figure 1a, can be given by
Figure 1: **a)** The Symbol of the FDCFOA **b)** The CMOS circuit of the FDCFOA

\[
\begin{bmatrix}
V_{y12} \\
I_{y1} \\
I_{y2} \\
V_{x12}
\end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix}
V_{x12} \\
I_{y1} \\
I_{y2} \\
V_{x12}
\end{bmatrix}
\]

(1)

Figure 2: The proposed voltage mode first order all-pass filter configuration

The proposed configuration is shown in Figure 2. Routine analysis yields the voltage mode transfer function as follows

\[
\frac{V_o}{V_i} = \frac{1 + R C \delta}{1 + R C \delta}
\]

(2)

This transfer function allows the designer both inverting and noninverting types of first order voltage mode all-pass filters by exchanging \(C_1 \) and \(R_1 \) using only a single FDCFOA. Thus both inverting and noninverting types of first order voltage mode all-pass filters are realized using only a single FDCOA, resistors and a grounded capacitor, without imposing any passive element condition. Furthermore transfer function analysis of the proposed all-pass filter can be made for the nonideal FDCFOA by following the same procedure gives for the ideal case.

Quadrature Oscillator As An All-Pass Filter Application

It is well-known fact that a sinusoidal oscillator can be realized using an all-pass filter and an integrator [13] as shown in Figure 3.
Voltage Type First Order All-Pass Filter Employing Fully Differential Current Feedback Operational Amplifier and Quadrature Oscillator

In this circuit, the proposed allpass filter and a voltage mode integrator employing a FDCFOA with two matched resistors and capacitors are used. For providing a sinusoidal oscillation the loop gain of the circuit is set the unity at $s=j\omega$, i.e.

$$
\left[\frac{s-1}{s+1} \right] \left[\frac{1}{sR_2C_2s} \right] = 1
$$

From Eq. (3), oscillation condition and frequency can be found respectively as

$$(k) \quad R_2C_2 = R_3C_3$$

$$\omega_o = \frac{1}{RC}$$

For simplicity, if we choose $R_1 = R_2 = R$ and $C_1 = C_2 = C$, oscillation condition is satisfied and oscillation frequency becomes

$$\omega_o = \frac{1}{RC}$$

Also oscillator condition and frequency can be calculated in terms of nonideality parameters of FDCFOA for the nonideal FDCFOA. It is assumed that all FDCFOAs are ideal for all transfer function analysis given above.

Simulation Results

The performance of the proposed FDCFOA circuit was verified by performing PSpice simulations with supply voltages ±1.5 V and using 0.35 μm CMOS technology parameters. The aspect ratios of the transistors are given in Table 1. To verify the theoretical study the first order all-pass filter was constructed and simulated with PSpice program. For this purpose, passive components were chosen as $R=10k\Omega$, $R_1=10k\Omega$ and $C=1pF$, which results in 1.59MHz center frequency. Since there is no any commercial implementation of the FDCFOA, the SPICE simulations were performed using a CMOS realization of FDCFOA [12]. Simulated magnitude and phase responses of the filter are given in Figure 4. Actually, the parasitic resistance and capacitances of CMOS-FDCFOA, that is not mentioned in the limited space available here, causes the deviations in the frequency and phase response of the filter from theoretical values. For either discrete or integrated implementation of the filter circuit, the designers should pay much attention to reduce the parasitics of FDCFOA. Furthermore, sinusoidal input-output waveforms of allpass filter is presented in Figure 5 for the component values given above. Oscillator employing the proposed allpass filter has also been simulated using PSpice. In this simulation, $k=2$, all resistances and capacitances were taken as $10k\Omega$ and $10pF$ respectively which results in a 1.59 MHz oscillation frequency. The output waveforms of the oscillator are shown in Figure 6. Because of the parasitic effects of the FDCFOAs some deformations are observed in the output waveforms of the filter and oscillator.

<table>
<thead>
<tr>
<th>Transistors</th>
<th>W ((\mu)m)</th>
<th>L ((\mu)m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1, M6</td>
<td>0.7</td>
<td>5.6</td>
</tr>
<tr>
<td>M7, M16</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>M17, M19, M37</td>
<td>14</td>
<td>0.7</td>
</tr>
<tr>
<td>M20, M38</td>
<td>17.5</td>
<td>0.7</td>
</tr>
<tr>
<td>M31, M39</td>
<td>35</td>
<td>0.7</td>
</tr>
<tr>
<td>M22, M26, M28, M33, M35</td>
<td>70</td>
<td>0.7</td>
</tr>
<tr>
<td>M23, M28, M30, M34, M36</td>
<td>35</td>
<td>0.7</td>
</tr>
<tr>
<td>M34</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>M25, M27, M31, M32</td>
<td>1.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Figure 4: PSPICE simulation result of the proposed voltage-mode first-order allpass filter (Gain: ---, Phase: ----)

Figure 5: Simulated output waveforms of the All-pass filter (Input: ■ Output: ▲)

Figure 6: Simulated output waveforms of the Quadrature oscillator (Input: ■ Output: ▲)
Conclusion

A voltage mode first order all-pass filter configuration is presented. The proposed circuit uses only a single FDCFOA, resistors and capacitors. The output of the filter exhibits low output impedance so that the synthesized filter can be cascaded without additional buffers. The proposed circuit uses grounded capacitor and resistors which simplifies integrated circuit implementation. Higher order all-pass filter could be achieved by cascading the proposed all-pass section since filter sections have high input and low output impedance. As an application of the filter, a new quadrature oscillator was realized. SPICE simulations were performed by using a fully differential CMOS-CFOA. PSPICE simulation results of the filter response are in good agreement with the predicted theory. It also provides an alternative solution to the realization of phase equalizer for analog signal processing applications. It is supposed that all FDCFOAs used in the proposed circuits analyzed in the paper are ideal. Analysis of the effects of tracking error parameters of FDCFOA on the proposed circuits are considered for the another studies.

References