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Abstract 
In this study, unlike the literature, the discontinuous contact problem of two elastic layers resting on a loaded elastic 

semi-infinite plane with two rigid rectangular blocks is analyzed analytically. P and Q loads are.transferred to the layers 

through blocks. Sheet weights were included in the problem. When the load value 𝜆 applied to the system exceeds the 

critical load value 𝜆cr, discontinuities occur on the contact surfaces. The problem is reduced to a singular integral equation 

using Fourier integral transform techniques in case of discontinuous contact.  Singular integral equation is solve using 

Gauss-Chebyshev integral formulation. These discontinuities have been examined for the change in distance between 

blocks, block widths and changes in load ratios. Moreover, the swelling rates occurring during the separations are 

presented in graphics. In addition, the results obtained have been solved and compared with the help of ANSYS package 

program using the Finite Element Method. 

Keywords: Discontinuous contact, elasticity, finite element analysis, integral equations 

 

İki Rijit Dikdörtgen Blok ile Yüklenen Elastik İki Tabakanın Süreksiz Temas 

Problemi 

 
Öz 

Bu çalışmada, literatürden farklı olarak, iki rijit dikdörtgen blok yüklü elastik yarı sonsuz bir düzlem üzerinde duran 

iki elastik tabakanın süreksiz temas problemi analitik olarak analiz edilmiştir. P ve Q yükleri bloklar aracılığıyla 

tabakalara aktarılır. Problemde tabaka ağırlıkları dahil edilmektedir. Sisteme uygulanan yük değeri 𝜆, kritik yük değerini 

𝜆𝑐𝑟 aştığında temas yüzeylerinde süreksizlikler meydana gelmektedir. Problem süreksiz temas durumunda Fourier 

integral dönüşüm teknikleri kullanılarak tekil bir integral denkleme indirgenir. Tekil integral denklemi Gauss-Chebyshev 

integral formülü kullanılarak çözülür. Bu süreksizlikler bloklar arası mesafe, blok genişlikleri ve yük oranlarındaki 

değişimler açısından incelenmiştir. Yine ayrılmalar sırasında meydana gelen kabarma oranları grafiklerle verilmektedir. 

Ayrıca elde edilen sonuçlar Sonlu Elemanlar Metodunun kullanıldığı ANSYS paket programı yardımıyla çözülmüş ve 

karşılaştırılmıştır. 

 
Anahtar Kelimeler: Süreksiz temas, elastisite, sonlu elemanlar analizi, integral denklemler

INTRODUCTION 

The biggest reason why contact problems 

continue to attract attention today is that most of the 

mechanical system components are in contact with 

each other. Knowing the contact character, length and 

the stress distribution on the contact area in these 

systems facilitates material design and production for 

engineers. In fact, the components have weights, and, 

in this case, it is necessary to include the mass forces 

for each component, but in practice two types of 

problems arise. In the first type of problems, the effect 

of weight is considered, and the separation takes place 

in a finite region. When the applied load is less than a 

certain critical value, the contact is continuous, and 

when the load exceeds a certain value, separations 

occur between the interfaces. Frictionless contact 

problem between elastic plane and elastic layer (Keer 
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and Chantaramungkorn, 1972), the problem of 

frictionless contact in the elastic layer sitting on two 

elastic quarter planes (Erdogan and Ratwani, 1974),  

frictionless contact problem of an elastic layer under 

an axially symmetrical load resting on a rigid plane. 

(Gecit, 1978), the problem of continuous and 

discontinuous contact between the semi-infinite plane 

and an elastic layer (Çakıroğlu and Çakıroğlu, 1991), 

the contact problem of anisotropic layers sitting on an 

elastic semi-infinite plane and loaded by a rigid 

rectangular block is investigated. (Urquhart and 

Pindera ,1994). On the other hand, Özşahin has 

solved the frictionless contact problem of the system 

consisting of layers with different properties loaded 

with two rigid flat blocks (Özşahin, 2007.) Studies in 

the literature can be shown as an example of the first 

type of problems (Argatov 2013; Bora P. 2016; 

Çömez 2010; ETLİ 2021; Oner at al., 2014; 

Zhupanska 2011). In the second type of problems, the 

effect of weight is neglected, and the separation zone 

is in infinite length. These types of problems are 

called "receding contact" (Adiyaman at al., 2018; 

Adıbelli at al., 2013; Comez at al., 2004; El-Borgi at 

al., 2006; Kahya at al., 2007; Yan and Li , 2015). In 

contact problems, it is also possible to encounter 

various studies on functionally graded (FG) layers 

using functionally graded materials (FGM) varying 

from one surface of the material to another. When 

these studies are examined, we might encounter 

separation contact problems (Adıbelli at al., 2013; El-

Borgi at al., 2006; Rhimi at al, 2011) and  in which 

the weight effect is neglected and contact problems 

including the weight effect ( Adiyaman and Öner, 

2017; Çömez and Guler, 2017; Comez, 2013; Dag at 

al., 2009; Giannakopoulos and Pallot, 2000; Polat and 

Özsahin, 2018; Volkov at al., 2013; Yang and Ke, 

2008). Yaylacı et al. analyzed a separating contact 

problem with analytical and finite element method 

comparatively (Yaylaci at al., 2014). Öner et al. 

comparatively investigated the continuous contact 

problem of a functionally graded layer resting on an 

elastic semi-infinite plane (Oner at. al., 2017). Kaya 

and Polat the continuous contact problem of the FG 

layer sitting on the semi-infinite plane is investigated 

comparatively (Kaya and Polat, 2019). Kaya et al. 

investigated the continuous contact problem in an FG 

layer loaded with three flat rigid blocks and fitted on 

an elastic semi-infinite plane using the finite element 

method (Polat and Kaya 2018). In the related 

literature, it is possible to encounter many problems 

solved using the finite element method (Abhilash and 

Murthy 2014; Bendine and Polat 2020; Birinci at 

al.,2015; Güler at al., 2017; Kaya at al., 2020; Polat at 

al., 2019). 

In this study, the problem of discontinuous 

contact for two elastic layers resting on an elastic 

semi-infinite plane is investigated. The rectangular 

rigid block problem has important applications in soil 

mechanics, especially in predicting the safety of 

foundations. The blocks can be taken as foundations 

placed on elastic layers.  By installing the foundations 

at certain distances, it is possible to prevent 

overlapping of pressures of different settlements. In 

the current studies in the literature, the number of 

layers, loading conditions and basic types differ, and 

although the solution methods are similar, the 

analytical solution must be done separately for each. 

With this study, the general solution of the 

discontinuous contact problems in a layered medium 

resting on an elastic base will be obtained, and a 

computer program based on this solution will provide 

results regarding any geometry and loading situation 

to be entered by the user.  
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SOLUTION OF THE PROBLEM 

In this study, the discontinuous contact problem 

is investigated for two layers with frictionless 

surfaces. The mass forces of the layers are taken into 

account. It lies along the x-axis in the range of layers 

and semi-infinite plane (-∞, +∞). The problem is 

solved for the plane state; unit thickness is taken in 

the z-axis direction. 

 

 

 

 

 

 

 

 

 

Discontinuity at the Interface of the Layers 

In order for separation to occur at the interface 

of the layers, load value (λ1) must take values greater 

than critical load value (λcr1) that will create the first 

separation on this surface. 
11 crλ λ It is seen that the 

layers are separated from each other. It is taken equal 

to an unknown function such as the derivative of the 

vertical displacement difference in the interval (e, f). 

The integral of this function will give the separation 

between layers in the interval (e, f). 

The boundary conditions can be written as: 

 

𝜎𝑦1(𝑥, ℎ) =

{
−𝑝(𝑥)𝑎 < 𝑥 < 𝑏
−𝑞(𝑥)𝑐 < 𝑥 < 𝑑

0 −∞ < 𝑥 < 𝑎, 𝑏 < 𝑥 < 𝑐, 𝑑 < 𝑥 < ∞

}                     (1a)                                                   

 

 

The discontinuous contact problem has been 

studied separately for two cases. The first of these is 

the discontinuity occurring at the interface of the two 

elastic layers, and the second is the discontinuity at 

the interface of the lower layer and the semi-infinite 

plane. 
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As equilibrium conditions for the problem 

 

 

 

 

 

 

Figure 1. Discontinuous contact between layers 
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( )
b

I

a

p x dx P=          ( )
d

I

c

q x dx Q=                        (2a-b)                                                                                                                              

can be written. 

By solving the set of equations obtained as a 

result of applying stress and displacement 

expressions under the boundary conditions given in 

equations unknown coefficients are obtained 

depending on the unknown contact stresses p (x), q 

(x) and ω(x).  

2 1 11
( , ) - 0  x h gh e x fy  =                               

(3)                                                                                        

In order to find these functions, boundary conditions 

(1k), (1l) and Equation (3) are used. 

 

1

1 1 1 1 1

1 1 1

1

2 2 1 1 2

1 2 1

1

11 1 1
- ( ) ( , )

4 ( - )

11 1 1
- ( ) ( , )   0

4 ( - )

                                                         

b

a

d

c
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q t dt k x t
t x

a x b
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 
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 
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 (4a) 
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1 1

4 3 3
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4(1 ) 1
[ ( , ) - ] 
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(1 ) (1 )

( ) - 0,                            e<x <f 

b d

a c

f

e

k x t p t dt k x t q t dt

k x t
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t dt gh
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 
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 


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+
−

+ + +

=

 

        (4c) 

k g  is the mass force in the y-axis direction, k  and 

g are the density of the layer and the acceleration of 

gravity, respectively. k  and k  shows the shear 

stress modulus and elastic material constants. It is 

known that  k   material constants of elastic layers 

are (3 4 )k k = −  if plane is in deformation, and 

(3 ) /(1 )k k k  = − +  if the plane is in stress.  k  

shows the Poisson ratio (k=1,2,3). Index 1 and 2 

represent elastic layers, while the index 3 represents 

the elastic semi-infinite plane. 

The Δ and k1, k2, k4 kernels mentioned in the 

equations can be seen in the reference (Bora, 2016) 

The index of integral Equations (4a) and (4b) is 

+1. Conversely, the index of the singular integral 

Equation (4c) is -1 because of the physical necessity 

of uniform contact at the e and f endpoints (Erdogan 

and Gupta 1972)The univalence condition can be 

written as follows. 

( ) 0

f

e

x dx =                                                          (5) 

If we define the dimensionless quantities below, 

3 3 3 3

- -
     

2 2 2 2

f e f e f e f e
x r t s

+ +
= + = +                     (6a) 

3 3 1 3

-
( )   / /   

2 2

f e f e
g s s P h 

+ 
= + 

 
                          (6b) 

Other equations can be seen in reference (Bora, 

2016). 

Discontinuity at the Interface of the Elastic. 

Semi-Infinite. Plane with the Lower-layer 

For separation to occur between the semi-infinite 

plane and the lower-layer, the load ( 2 ) must be 

greater than the load (
2cr ) that will cause the initial 

separation at the interface. In case of 
22 cr  , the 

elastic semi-infinite plane and the lower-layer are 

separated from each other and the derivative of the 

vertical displacement difference in the interval (k, l) 

is taken equal to an unknown function such as ( )x . 

The integral of this function will give the separation 

between the elastic semi-infinite plane in the interval 

(k, l) and the lower-layer. 

When the boundary conditions are rearranged; 

The other boundary conditions remain the same but 

the changing boundary conditions are written as 

follows.                                                                                                                                                                                                                                                                                                                                                                                  
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Equilibrium conditions for the problem; 

( )

b

II

a

p x dx P=       ( )

d

II

c

q x dx Q=                   (8a-b)                                                                                                                                                                                                                                             

can be written as given above. 

By solving the set of equations obtained as a 

result of applying stress and displacement 

expressions under the boundary conditions given in 

equations unknown coefficients are obtained 

depending on the unknown contact stresses p (x), q 

(x) and φ (x).  

2 1 1 2 2
( ,0) - ( ) 0     

y
x gh gh k x l  + =                             (9)  

In order to find these functions, boundary 

conditions and Equation (9) are used. 
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The k3, k5, kernels mentioned in the equations can be 

seen in the reference (Bora, 2016). 

The index of integral Equations (10a) and (10b) 

is +1. Also, the index of the singular integral Equation 

(10c) is -1 due to the physical requirement of uniform 

Figure 2. Discontinuous contact between the elastic semi-infinite plane and the lower-layer 

 

 

 

 

 

 

 



  
Int. J. Pure Appl. Sci. 8(2);266-278 (2022) 

 

  

Research article/Araştırma makalesi 

DOI:10.29132/ijpas.1038088                                                                                                                                         
 

 

271 

 
 

 

contact at the k and l endpoints (Erdogan, F. and 

Gupta 1972) The univalence condition can be 

written as follows.  

( ) 0

l

k

x dx =                (11)                                                                                                                                                      

If we define the dimensionless quantities below, 

4 4 4 4

- -
       

2 2 2 2

l k l k l k l k
x r t s

+ +
= + = +            (12a)                                                                        

4 4 2 4

-
( ) /

2 2
  /   

l k l k
s s P hg  

+ 
= + 

 
                         (12b)                                                                                                              

Other equations can be seen in reference (Bora P. 

2016) 

In Figures 3 a-b, when the stresses under the first 

block are examined, it is seen that as the load value 

on the second block increases, the stresses under the 

first block also increase. Considering the interaction 

between the blocks, the lowest stress value occurs at 

the corner of the first block that is close to the second 

block. When the contact stress under the second block  

 

RESULTS AND DISCUSSION 

In the solution of the problem, the appropriate 

Gauss-Chebyshev integration formulas are used. The 

effects of the change of distance between blocks on 

elastic layers and elastic semi-infinite plane interfaces 

have been studied (Initial separation points, 

separation distances and distances where the 

interaction ends). In addition, the effects of change in 

block widths and change in load ratios on departure 

distances and swells are graphically presented. 

Analytical solutions were compared with the 

solutions obtained by finite element method and the 

results were found to be very close. 

examined, it is seen that the contact stresses under the 

second block increase if the load is twice or four 

times. The stresses have their greatest value at the 

block edges. The graphs were obtained by both 

analytical and finite element methods. It has been 

observed that the results obtained with both methods 

are consistent. 

 

                  

Figure 3a-b.1.and 2. Stress distribution under the blocks (μ2 μ1⁄ = 2,μ3 μ2⁄ = 0.5, a/h=3, (b-a)/h=0.5,(d-c)/h=0.5,(c-

b)/h=1) 
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In Figures 4a-4b, contact stress distributions are 

given for three different values of load factor λ. 

(λ<λcr, λ=λcr, λ>λcr) In Figure 4a, if 
cr

λ=20<λ , there is 

continuous contact and there is no separation at any 

point. If 
cr

λ=30.340=λ ,  there is a possibility that the 

first separation will occur to the right of the second 

block ((c-b)/h=1, cr
x =6.65). 

cr
λ=40>λ , a separation 

zone (k/h=6.260, l/h=7.2477) occurs between the 

lower-layer and the elastic semi-infinite plane and the 

stress values in this region are zero.  

In Figure 4b, if
cr

λ=18<λ , there is continuous 

contact. It is understood that for 
cr

λ=22.101=λ  value, 

the first separation will occur between blocks ((c-

b)/h=3, cr
x =4.961). In case of 

cr
λ=31>λ ,  a 

separation zone (k/h = 4.5912, l/h = 5.3001) is formed 

at the interface of the elastic semi-infinite plane with 

the lower-layer and the stress values in this region are 

            

Figure 4 a-b. In continuous contact (λ < λcr) and discontinuous contact, in case of (λ > λcr) (c-b)/h=1 and (c-b)/h=3, 

theoretical and numerical results of the dimensionless stress distribution of σy(x, 0)/(P/h), (μ2 μ1⁄ =1, μ3 μ2⁄ =1, a/h=3, 

(b-a)/h=0.5, (d-c)/h=05, Q=2P 

 
Table 1. The variation of critical load factor (λcr) values with distance between blocks ((c-b) / h) (Q = 2P, μ2/ μ1=2, 

μ3/μ2=2, a / h = 3, (b-a) / h = (d-c) / h = 1) at the elastic semi-infinite plane interface with the lower-layer 

 

(c-b)

h
 

BLOCK I BLOCK II 

λcrsol  xcrsol  λcrsağ xcrsağ λcrsol  xcrsol λcrsağ xcrsağ 

0.5 71.2228 1.2556  48.7765 7.2451 

1 82.4970 1.2284 47.0447 7.7476 

3 92.9404 1.2317 48.3093 9.7452 

5 94.4009 1.2402 46.2553 7.2439 46.2553 7.2439 48.4878 11.743 

6.0647 94.6074 1.2430 94.6074 5.2570 48.5176 8.3303 48.5176 12.799 
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zero. When the two figures are compared, it is seen 

that if the distance between the blocks increases, the 

first separation occurs between the blocks. And the 

initial separation load and separation zone are 

smaller. In addition, it is seen in both graphs that the 

results obtained by analytical and finite element 

methods are quite close. 

Table 1 shows the effect of inter-block distance 

variation on the initial separation load and initial 

separation distance at the interface of the lower-layer 

and the elastic semi-infinite plane. Accordingly, for 

small values of (c-b) / h ((c-b) / h) <3), two separation 

zones may occur depending on λ. Since Q / hP / h, 

the first separation zone is on the right side of the 

second block. In this case, if λ is large enough, the 

second separation zone may occur to the left of the 

first block. If the distance between blocks ((c-b) / 

h>3) is further increased, another separation zone 

occurs between the blocks. And this zone is probably 

the first separation zone. When the distance between 

the layers continues to increase ((c-b) / h> 5), there  

is a possibility that four separation zones will occur  

 

depending on the load factor λ. The first separation 

zone is again formed between the blocks and after a 

certain value of (c-b) / h ((c-b) /h=6.0647), the 

interaction between the blocks is lost. If the distance 

between two blocks is greater than a limit value, each 

block can be considered separately. 

Figure 5a shows effects of the change in distance 

between the blocks on the separation zone between 

the layers. Accordingly, for small values of (c-b) / h, 

there is a possibility that two separation zones 

depending on ((c-b) / h) <3) will occur, while Q / h≥ 

is P / h, the first separation zone is on the right side of 

the second block. If the distance between blocks ((c-

b) / h = 3) is further increased, it appears that there 

may also be a separation zone between blocks. And 

this zone is probably the first separation zone. If the 

distance between the blocks is continued to be 

increased ((c-b) / h> 5), it is understood that four 

separation zones can occur depending on the load 

factor λ. In this case, the possible first separation zone 

occurs near the second block and after a certain value 

of (c-b) / h, the interaction between the blocks is lost. 

 

                 

Figure 5a-b. The change in the dimensionless stress distribution of σy (x, h2) / (P / h) and σy (x, 0) / (P / h) with distance 

between blocks (μ2⁄μ1 = 1, μ3⁄μ2 = 1, a / h = 3, (b-a) /h=0.5, (d-c) / h = 05, Q = 2P, λ = 30) 
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Figure 5b shows the effects of the change in distance 

between the blocks on the separation zone between 

the lower-layer and the elastic semi-infinite plane. 

Accordingly, for small values of (c-b) / h, ((c-b) / h) 

<3), the possibility of two separation zones depending 

on λ arises, and when Q / h≥ P / h, the first separation 

zone is on the right side of the second block. If the 

distance between blocks ((c-b) / h = 3) is further 

increased, another separation zone arises between the 

blocks. And this zone is probably the first separation 

zone. When the distance between the blocks 

continues to increase ((c-b) / h> 5), the possibility of 

four separation zones arises depending on the load 

factor λ. The first detachment zone again occurs 

between blocks and after a certain value of (c-b) / h, 

the interaction between blocks disappears. 

 Figure 6a shows the variation of swellings 

occurring at the interface of the layers with the 

distance between the blocks. 

 

 

When the change in distance between blocks is (c-b) 

/ h = 1, (c-b) / h = 5, first separations occur on the 

right side of the second block, and when (c-b) / h = 3, 

separation occurs between blocks. As the distance 

between the blocks increases, the resulting swelling 

and separation zones get smaller. Figure 6b shows the 

variation of swellings at the interface of the lower-

layer and elastic semi-infinite plane with the distance 

between the blocks. When the distance value between 

blocks is (c-b) / h = 1, the first separation occurs on 

the right side of the second block, the swelling value 

and the separation zone are smaller. When (c-b) / h = 

3, (c-b) / h = 5, the first separations occur between the 

blocks. While (c-b) / h = 3, the swelling value and the 

separation zone grows, in the case of (c-b) / h = 5, the 

swelling value and separation region get smaller.  

 

 

 

         

Figure 6a-b. The change in the dimensionless stress distribution of σy (x, h2) / (P / h) and σy (x, 0) / (P / h) with distance 

between blocks (μ2⁄μ1 = 1, μ3⁄μ2 = 1, a / h = 3, (b-a) /h=0.5, (d-c) / h = 05, Q = 2P, λ = 30) 
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The variation of the separation zone according to 

the load rate is examined in Figure 7a. As seen in the 

figure, the separation becomes easier and the  

separation zone increases as the load ratio increases. 

When the load is increased, the end point of   

 

separation increases in l / h, while the starting point 

of separation decreases in k / h and approaches a fixed 

value. As seen in Figure 7b, when the load ratio is 

increased, the separation zone at the interface of the 

            

Figure 7a-b. σy (x, 0) / (P / h) variation of dimensionless stress distribution and variation of swelling with load ratio 

(μ2/μ1 = 2, μ3/μ2 = 0.5, a / h = 3, (b-a) / h = 0.5, (d-c) / h = 0.5, (c-b) / h = 1, λ = 55) 

 

 

            

Figure 8a-b σy (x, 0) / (P / h) change of dimensionless stress distribution with block width, swelling (μ2/μ1 = 2, μ3/μ2 = 

0.5, a / h = 3,  (c-b) / h = 1, λ = 60) 
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lower-layer and the elastic semi-endless plane grows 

and the swelling in this region increases.  

In Figure 8a, as the second block width 

increases, the change in the separation zones at the 

interface of the lower layer and the elastic semi-

infinite plane is observed. Accordingly, as the block 

width increases, the separation zone becomes smaller. 

When block widths are increased, initial separation 

distances and initial separation loads also increase. 

Figure 8b shows the variation of swellings at the 

interface of the lower-layer and elastic semi-endless 

plane with the width of the 2nd block. According to 

the figure, as the block width is increased, the 

separation zone becomes smaller and the swelling 

occurring in this area decreases. As the block width is 

increased, the separation zone moves away from the 

y initial axis. 

The following conclusions can be drawn from 

the study. 

 

CONCLUSION 

In this study, the discontinuous contact problem 

of two layers with different material properties, 

loaded with two rigid flat blocks and resting on an 

elastic semi-infinite plane was solved using linear 

elasticity theory and the finite element method 

(FEM). The rectangular rigid block problem has 

important applications in soil mechanics, especially 

in predicting the safety of foundations. The blocks 

can be taken as foundations placed on elastic layers. 

Larger openings occur when the blocks are close to 

each other. It can be said that block interactions 

directly affect the openings.   As the distance between 

blocks increases, separation may occur in more than 

one area. Usually, the first separation occurs between 

blocks. Increasing the distance causes the initial 

separation load and the separation zone to decrease. 

When the distance exceeds a certain value, the effect 

of the blocks on each other disappears. While the 

change in load ratios causes small changes in the 

initial separation distances, it causes an increase in the 

size of the stress and separation zone. 

When the first block width is kept constant and 

the second block width is increased, the first 

separation distances and  the first separation loads 

increase while the separation zone (swelling) 

becomes smaller.  

In contact problems, the analytical solution is 

complex and requires lengthy mathematical 

calculations. The finite element method (FEM) is 

practical and offers a fast solution. 

When compared with the analytical solution 

results, it is seen that the error rates of the separation 

distances and swells obtained with FEM are at 

acceptable levels. For this reason, it can be said that 

the finite element method (FEM) is an alternative 

solution to analytical solutions in the solution of 

discontinuous contact problems. 

In later studies, the layers can be functionally 

graded, the stresses occurring in this case can be 

calculated, compared with the stresses in the case of 

linearity, and the advantages and disadvantages can 

be discussed.  
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