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Abstract
The joint Laplace transform of the two sided boundary crossing stopping rule is known for
the negative exponential model only under certain conditions. In this paper we eliminate
the need for such conditions. Our results also apply to the boundary crossing problem for
the geometric models. We further illustrate how the results can be used to obtain the dis-
tribution for the multidimensional boundary crossing stopping rules under the memoryless
models.
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1. Introduction
While monitoring an information stream, X1, X2, · · · , of independent random variables

with a common distribution, the following well known two sided boundary crossing stop-
ping rule has been studied in detail, [4, 8, 16, 17, 20], in various branches of statistics and
probability,

τ := τa,h := inf{n ≥ 1 : Sn ̸∈ (a, h)}, (1.1)
where Sn = Y1 + Y2 + · · · + Yn, Yj = Xj − E(Xj) − δ (here E(X1) is the initial mean
and δ is taken as a reference constant) and two specified boundary constants a ≤ 0 < h.
The optimality properties for appropriately chosen constants, a, h, are also well known,
[4, 8, 16]. While implementing such stopping rules the main problem lies with the lack
of exact closed form expressions for the joint distribution and/or moments of τ and the
stopped process Sτ . The analogous continuous time stopping rules for Markov processes
have been studied in quite detail and their links to partial differential equations are well
known, [13]. Although Brownian motion approximations, [17,20], sometimes can be quite
useful, such approximations of τ become useless while investigating the sizes of overshoot
and undershoot in discrete time models.

Closed form expressions for the joint distribution of τ, Sτ are known only for some
very specific models [12]. One of the earliest open problems has been to obtain the joint
distribution of τ, Sτ when the underlying distribution is negative exponential, P (Xi ≤
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x) := F (x, λ) = 1 − exp{−λx}, x > 0, going as far back as 1954 when Anscombe and
Page [2] proposed it in the context of the Sequential Probability Ratio Test (SPRT). The
average run length (ARL) of τ , namely E(τ), was studied by several authors, Chow et
al. [5], Cox and Roseberry [6] and Hoeffding [10]. Chow et al. [5] provided moments
of the stopped random walk, Sτ , in terms of the moments of the the SPRT τ . Using
Monte Carlo simulations, Cox and Roseberry [6] suspected that the standard deviation of
τ may be proportional to the ARL. Hoeffding [10] was able to derive lower bounds for the
ARL. Stadje [18] was the first to find an exact expression for E(τ) by solving some related
integral equations. De and Zacks [7] obtained the distribution of a truncated sequential
probability ratio test (SPRT) for the negative exponential model. Recently Starvaggi and
Khan [19] provided the joint Laplace transform of τ and Sτ under the assumption that
the roots of a certain characteristic polynomial are real, distinct and lied in the interval
(0, 1).

The goal of this paper is to show that the need for the existence of distinct real roots
of a certain characteristic polynomial can be avoided altogether and we provide the joint
Laplace transform of τ , Sτ in general. The technique of [19] leads to a similar type of root
finding problem for the geometric model. Additionally we show how one may drop this
condition for the geometric model as well. This is expected since both of these models obey
the memoryless property, P (Xi ≥ t + s|Xi ≥ s) = P (Xi ≥ t), for t, s ≥ 0, while for the
geometric case t, s are integers. The study of memoryless models is not only historically
interesting, they may also help in understanding the worst case scenarios, see Example
4.2 for more details. Furthermore, due to the fact that the inter-arrival times of a Poisson
process are negative exponential random variables, one may use the results of the present
paper to investigate stopping rules involving Poisson process.

Section 2 presents the main result. Its proof is presented in Section 3. Section 4
contains some examples where we also provide the exact distribution of a first passage
time stopping rule of a multidimensional random walk when its independent components
come from memoryless models. It seems to be the first result of this type for any model
in discrete time multivariate settings as far as we know, and suggests that such problems
need not be hopelessly complicated.

2. The main result
Let X1, X2, · · · be independent and identically distributed with a negative exponential

(with mean 1/λ) or geometric distribution (with mean q/p, q = 1 − p). Let Yi = Xi − c
for i = 1, 2, · · · where c > 0, and let τ be the boundary crossing stopping time as defined
in (1.1). Note that under the fixed sample theory of testing hypothesis when one uses the
likelihood ratio,

Yi := ln
(

f1(Xi)
f0(Xi)

)
,

where f0, f1 are the densities of Xi under the null and the alternative hypotheses, one
obtains Yi = Xi − c where the constant c depends on the choices provided by H0 and
H1. For the more general boundary crossing problem considered here, c > 0, can be any
constant.

Introduce the unique natural number k such that (k − 1)c < h − a ≤ kc. Let Fn =
σ(Y1, · · · , Yn) be the sigma field generated by Y1, Y2, · · · , Yn. Throughout I(A) will stand
for the indicator function of the event A and In := I(An) with An := {τ > n} = {Sj ∈
(a, h) for j = 1, ..., n}. Let φ(θ) := E(eθYi) be the moment generating function of Yi.
We will use the notation fn := E

(
eλSnIn

)
, for both the negative exponential and the

geometric models, by taking q = e−λ in the latter case. In the geometric model the
constants a, h, c will be taken to be integers without loss of any generality. Also, f0 = 1
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and S0 = 0, and for the fixed k, let

ci,k = ci =


(−1)i+1 (pqc)i

i!

i−1∏
j=0

{h − a − (i − 1)c − 1 − j}, 1 ≤ i ≤ k, (geometric)

(−1)i+1 (λe−λc)i

i!
[h − a − (i − 1)c]i, 1 ≤ i ≤ k, (exponential).

For the geometric models we will use the notation bi(θ) for the following expressions.

b1(θ) = −φ(θ)(eθq)a+c+1

bk+1(θ) = −φ(θ)k+1[(eθq)h+c

−(eθq)a+kc+1(1 +
k−1∑
j=1

j−1∏
l=0

(h − a − (k − 1)c − 1 − l)(1 − eθq)j

(−1)jj!
)]

bi(θ) = φ(θ)i(eθq)a+(i−1)c+1(1 +
i−2∑
j=1

j−1∏
l=0

(h − a − (i − 2)c − 1 − l)(1 − eθq)j

(−1)jj!
)

−φ(θ)i(eθq)a+ic+1(1 +
i−2∑
j=1

j−1∏
l=0

(h − a − (i − 1)c − 1 − l)(1 − eθq)j

(−1)jj!
)

+(−1)iφ(θ)e(a+c+1)θ (pqc)i−1

(i − 1)!

i−2∏
j=0

[h − a − (i − 1)c − 1 − j], 2 ≤ i ≤ k.

For the negative exponential models bi(θ) stands for the following expressions.

b1(θ) = −φ(θ)e(θ−λ)(a+c),

bk+1(θ) = φ(θ){−φ(θ)ke(θ−λ)(h+c)

+
k−1∑
j=0

(−1)j (λe−λc)j

j!
φ(θ)k−je(θ−λ)(a+(k−j)c)(h − a − (k − 1)c)j},

bi(θ) =
i−2∑
j=0

(−1)j (λe−λc)j

j!
φ(θ)i−je(θ−λ)(a+(i−1−j)c)(h − a − (i − 2)c)j

−
i−2∑
j=0

(−1)j (λe−λc)j

j!
φ(θ)i−je(θ−λ)(a+(i−j)c)(h − a − (i − 1)c)j

+(−1)iφ(θ)e(θ−λ)(a+c) (λe−λc)i−1

(i − 1)!
(h − a − (i − 1)c)i−1, 2 ≤ i ≤ k.

The following is the main result of the paper which completely solves the discrete time
boundary crossing problem in memoryless models.

Theorem 2.1. For the memory less models, the joint Laplace transform of τ, Sτ is

E(eθSτ −rτ ) =
(

φ(θ)e(θ−λ)(h+c)−r +
k+1∑
i=1

bi(θ)e−ri

)
G(r) + T (θ, r), where

G(r) =
∑k−1

n=0 e−rnfn −
∑k−1

i=1 ci,ke−ri∑k−i−1
n=0 e−rnfn

1 −
∑k

i=1 ci,ke−ri
,

T (θ, r) =
k∑

n=1
E(eθSn−rnI(τ = n, Sn ≤ a)) −

k∑
i=1

bi(θ)e−ir
k−i∑
n=0

e−rnfn,

and fn =
∑k

i=1 ci fn−i, for n ≥ k.
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3. The proofs
For the proof of the main theorem the following result is needed.

Lemma 3.1. For both of the memoryless models the following holds for any d and n so
that 1 ≤ d ≤ k, d ≤ n,

E(eθSnIn · I(Sn > a + (k − d)c)) =
d∑

i=1
Qi,d(θ)fn−i,

E(q−SnIn · I(Sn > a + (k − d)c)) =
d∑

i=1
ci,dfn−i,

where, for the geometric case,

ci,d = (−1)i+1 (pqc)i

i!

i−1∏
j=0

[h − a − (k − d + i − 1)c − 1 − j],

Qi,d(θ) = −φ(θ)i(eθq)a+(k−d+i)c+1[(eθq)h−a−(k−d+i−1)c−1

−
i−1∑
j=1

((1 − eθq)j

(−1)jj!

j−1∏
l=0

(h − a − (k − d + i − 1)c − 1 − l)) − 1],

where the last sum stands for zero when i = 1. For the negative exponential case,

ci,d =(−1)i+1 (λe−λc)i

i!
[h − a − (k − d + i − 1)c]i,

Qi,d(θ) =
i−1∑
j=0

(−1)j (λe−λc)j

j!
φ(θ)i−je(θ−λ)(a+(k−d+i−j)c)(h − a − (k − d + i − 1)c)j

− φ(θ)ie(θ−λ)(h+c).

Proof: (of Lemma 3.1) We will prove this lemma by induction for the geometric model.
The corresponding result for the negative exponential model is known, cf. [19]. Let Gn be
the σ−field generated by X1, ..., Xn, Let d = 1, and n ≥ d,

E(eθSnIn · I(Sn > a + (k − 1)c))
= E(eθSn−1In−1 · E(eθ(Xn−c)I(a + (k − 1)c − Sn−1 + c < Xn < h − Sn−1 + c)|Gn−1))

= pe−θcE

{
eθSn−1In−1

(eθq)a+kc−Sn−1+1 − (eθq)h+c−Sn−1

1 − eθq

}
= −φ(θ)(eθq)a+kc+1((eθq)h−a−(k−1)c−1 − 1)fn−1 = Q1,1fn−1.

This gives that

E(q−SnIn · I(Sn > a + (k − 1)c)) = lim
θ→− ln q

E(eθSnIn · I(Sn > a + (k − 1)c))

= pqc(h − a − (k − 1)c − 1)fn−1 = c1,1fn−1.

Then for m = d, and all n ≥ d, k ≥ d,

E(eθSnIn · I(Sn > a + (k − d)c))
= e−θcE(eθSn−1In−1 · E(eθXnI(a + (k − (d − 1))c − Sn−1 < Xn < h + c − Sn−1)|Gn−1))
= e−θcE(eθSn−1In−1(I(Sn−1 ≤ a + (k − (d − 1))c) + I(Sn−1 > a + (k − (d − 1))c))

·E(eθXnI(a + (k − (d − 1))c − Sn−1 < Xn < h + c − Sn−1)|Gn−1))
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= e−θcE

eθSn−1In−1I(Sn−1 ≤ a + (k − (d − 1))c) ·
h+c−Sn−1−1∑

j=a+(k−(d−1))c−Sn−1+1
pqjeθj


+e−θcE(eθSn−1In−1I(Sn−1 > a + (k − (d − 1))c) ·

h+c−Sn−1−1∑
j=0

pqjeθj)

= φ(θ)E(q−Sn−1In−1I(Sn−1 ≤ a + (k − (d − 1))c) · ((eθq)a+(k−(d−1))c+1 − (eθq)h+c))
+φ(θ)E((eθSn−1 − q−Sn−1(eθq)h+c)In−1I(Sn−1 > a + (k − (d − 1))c))

= φ(θ){E(eθSn−1In−1I(Sn−1 > a + (k − (d − 1))c)) + ((eθq)a+(k−(d−1))c+1

−(eθq)h+c)fn−1 − (eθq)a+(k−(d−1))c+1E(q−Sn−1In−1I(Sn−1 > a + (k − (d − 1))c))}.

Using the induction hypothesis,

E(eθSnIn · I(Sn > a + (k − d)c))

= φ(θ)
d−1∑
i=1

Qi,d−1(θ)fn−1−i + φ(θ)((eθq)a+(k−(d−1))c+1 − (eθq)h+c)fn−1

−φ(θ)(eθq)a+(k−(d−1))c+1
d−1∑
i=1

ci,d−1fn−1−i

=:
d∑

i=1
Q̂i,d(θ)fn−i, where,

Q̂1,d = φ(θ)((eθq)a+(k−(d−1))c+1−(eθq)h+c) = φ(θ)(eθq)a+(k−d+1)c+1(−(eθq)h−a−(k−d)c−1+
1) and when 2 ≤ i ≤ d, Q̂i,d(θ) = φ(θ)(Qi−1,d−1(θ) − (eθq)a+(k−(d−1))c+1ci−1,d−1). Clearly,
Q̂1, d = Q1, d when i = 1. When 2 ≤ i ≤ d,

Q̂i,d(θ) = φ(θ){−φ(θ)i−1(eθq)a+(k−(d−1)+i−1)c+1[(eθq)h−a−(k−(d−1)+i−1−1)c−1

−
i−1−1∑

j=1

(1 − eθq)j

(−1)jj!

j−1∏
l=0

(h − a − (k − (d − 1) + i − 1 − 1)c − 1 − l) − 1] −

(eθq)a+(k−(d−1))c+1(−1)i−1+1 (pqc)i−1

(i − 1)!

i−1−1∏
j=0

[h − a − (k − (d − 1) + i − 1 − 1)c − 1 − j]}.

A simple algebra shows that this equals Qi,d(θ). To obtain ci,d as the limit of Qi,d(θ), it
is convenient to take t = eθq and note that

lim
θ→− ln q

Qi,d(θ) = − lim
θ→− ln q

((pe−θc)i(eθq)a+(k−d+i)c+1) · lim
t→1

N(t)
D(t)

,

where N(t) = th−a−(k−d+i−1)c−1 −
i−1∑
j=1

j−1∏
l=0

(h − a − (k − d + i − 1)c − 1 − l) (1−t)j

(−1)jj! − 1 and

D(t) = (1 − t)i. Now a trite calculation shows that the right hand side is indeed ci,d. This
proves Lemma 3.1. 2

Proof: (of Theorem 2.1) We first derive the generating function of the sequence fn.
Choose d = k in the second equation of Lemma 3.1 to get,

fn = E(q−SnIn) =
k∑

i=1
ci,kfn−i, n ≥ k.
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Note ci,k = ci, i = 1, 2, · · · , k. Using this result, and interchanging the order of summations
gives that,

+∞∑
n=0

e−rnfn =
k−1∑
n=0

e−rnfn +
+∞∑
n=0

e−rnfn ·
k∑

i=1
ci,ke−ri −

k∑
i=1

(ci,ke−ri
k−i−1∑

n=0
e−rnfn).

Hence the generating function of fn is
+∞∑
n=0

e−rnfn =
∑k−1

n=0 e−rnfn −
∑k−1

i=1 ci,ke−ri∑k−i−1
n=0 e−rnfn

1 −
∑k

i=1 ci,ke−ri
= G(r).

Now first consider the Laplace transform of the stopped process at the upper exit. For
0 < θ < − ln q and n ≥ 1,

E(eθSτ · I(τ = n, Sn ≥ h)) = E[eθSn−1In−1E(eθ(Xn−c) · I(Xn ≥ h − Sn−1 + c)|Gn−1)]

= e−θcE

eθSn−1In−1

+∞∑
i=h−Sn−1+c

eθipqi


= e−θcp(eθq)h+c

1 − eθq
E(q−Sn−1In−1) = φ(θ)(eθq)h+c · fn−1.

Therefore the joint one-sided Laplace transform of τ and Sτ is

E(eθSτ −rτ · I(Sτ ≥ h)) =
+∞∑
n=1

e−rnE(eθSτ · I(τ = n, Sn ≥ h))

= φ(θ)(eθq)h+ce−r G(r). (∗)
Second, consider the Laplace transform of stopped process at the lower exit.
E(eθSn · I(τ = n, Sn ≤ a))

= e−cθE[eθSn−1In−1I(Sn−1 > a + c)E(eθXnI(Xn ≤ a + c − Sn−1)|Gn−1)]
+e−cθE[eθSn−1In−1I(Sn−1 ≤ a + c)E(eθXnI(Xn ≤ a + c − Sn−1)|Gn−1)]

= 0 + e−cθE(eθSn−1In−1I(Sn−1 ≤ a + c)E(eθXnI(Xn ≤ a + c − Sn−1)|Gn−1))
= φ(θ)E(eθSn−1In−1I(Sn−1 ≤ a + c)) − φ(θ)(eθq)a+c+1E(q−Sn−1In−1I(Sn−1 ≤ a + c))
= φ(θ)[E(eθSn−1In−1) − E(eθSn−1In−1I(Sn−1 > a + c))]

−φ(θ)(eθq)a+c+1[E(q−Sn−1In−1) − E(q−Sn−1In−1I(Sn−1 > a + c))].
Choose d = k, k − 1 respectively in Lemma 3.1. When n ≥ k + 1,

E(eθSn · I(τ = n, Sn ≤ a))

= φ(θ)[
k∑

i=1
Qi,k(θ)fn−1−i −

k−1∑
i=1

Qi,k−1(θ)fn−1−i] − φ(θ)(eθq)a+c+1[fn−1

−
k−1∑
i=1

ci,k−1fn−1−i]

= φ(θ)
k∑

i=2
(Qi−1,k(θ) − Qi−1,k−1(θ) + (eθq)a+c+1ci−1,k−1)fn−i + φ(θ)Qk,k(θ)fn−1−k

−φ(θ)(eθq)a+c+1fn−1

=
k+1∑
i=1

bi(θ)fn−i,

where b1(θ) = −φ(θ)(eθq)a+c+1, bk+1(θ) = φ(θ)Qk,k(θ) and bi(θ) = φ(θ)(Qi−1,k(θ) −
Qi−1,k−1(θ) + e(a+c+1)θci−1,k−1), 2 ≤ i ≤ k. Substituting the expressions of Qi,j(θ) and
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ci,d from Lemma 3.1 gives the bi(θ) as used in the theorem. Therefore the joint lower-
sided-exit Laplace transform of τ and Sτ is

E(eθSτ −rτ · I(Sτ ≤ a))

=
k∑

n=1
E(eθSn−rnI(τ = n, Sn ≤ a)) +

∞∑
n=k+1

e−rn
k+1∑
i=1

bi(θ)fn−i

=
k∑

n=1
E(eθSn−rnI(τ = n, Sn ≤ a)) +

k+1∑
i=1

bi(θ)e−ir(G(r) −
k−i∑
n=0

e−rnfn)

=
k+1∑
i=1

bi(θ)e−irG(r) +
k∑

n=1
E(eθSn−rnI(τ = n, Sn ≤ a)) −

k∑
i=1

bi(θ)e−ir
k−i∑
n=0

e−rnfn

= B(θ, r)G(r) + T (θ, r),

where B(θ, r) =
k+1∑
i=1

bi(θ)e−ri, and T (θ, r) is as defined in the theorem. Collecting the two

one-sided expressions for the joint Laplace transforms finishes the proof. 2

4. Examples & discussion
Boundary crossing stopping rules have a wide range of applications. For instance, it

is known that as the probabilities of type I and type II errors become small, the ARL of
the SPRT can be substantially smaller than the corresponding fixed sample size obtained
by the Neyman-Pearson lemma for a simple versus simple hypothesis. This is illustrated
in the first example below. Another application of the theory of boundary crossing arises
in financial engineering where pricing a barrier option leads to finding the average run
length of τ as defined in (1.1). In quality control such stopping rules provide monitoring
algorithms that are more sensitive than the traditional Shewhart or exponentially weighted
moving average control charts. The second example below illustrates how the theory of
boundary crossing is related to the cusum stopping rules. Example three shows how one
may extend the results to multidimensional stopping rules.

Example 4.1. (SPRT vs. NP test) Let X1, X2, ... be i.i.d. negative exponential
random variables with density function f(x) = λe−λx and τ = inf{n ≥ 1, Sn =

n∑
i=1

(Xi −

c) /∈ (a, h)}. We choose a = −c and h = c so k = 2, and furthermore we choose
c = 1. This gives c1,k = c1 = 2λe−λ = f1 and c2,k = c2 = −1

2(λe−λ)2. In the one
sided joint Laplace transform (*) of τ and Sτ , and taking θ = r = 0, gives the following
expression for the probability of upper exit. Next plugging θ = 0 in E(eθSτ −rτ ) and the first
derivative with respect to r gives the following expression from the ARL. Here b1(0) = −1,
b2(0) = 1−e−λ+λe−λ and b3(0) = e−λ(1−λ−e−λ). Also P (τ = 2, Sτ ≤ a) = 1−e−λ−λe−λ

and P (τ = 1, Sτ ≤ a) = 0 since a = −c and Xi are nonnegative random variables.

E(τ) =6λeλ − λ2 − 2eλ − 4e2λ + 4
4λeλ − λ2 − 2e2λ

P (Sτ ≥ h) = e−2λ

1 − 2λe−λ + 1
2λ2e−2λ

Figure 1 shows the ARL and the standard deviation of the SPRT. The figure shows that
the ARL and the standard deviation seem to be approximately proportional as conjectured
by [6] by observing some simulations.

Continuing with the above model we may compare the performance of the most powerful
Neyman-Pearson (N.P.) test and the sequential probability ratio test (SPRT) for the same
probabilities of type I and type II errors. To test H0 : λ = λ0 vs H1 : λ = λ1 > λ0, we
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take Neyman-Pearson constant c = log λ1−log λ0
λ1−λ0

as the reference constant. Without loss
of generality we can take λ0 = 1 since λ0Xi ∼ f1(x). Picking a = −c and h = c, so
k = 2, the SPRT will reject H0 if Sτ ≤ a and accept H0 when Sτ ≥ h. Figure 2 shows the
comparison between N-P test and SPRT.
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Figure 1. The ARL and standard deviation of the SPRT.
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Figure 2. Comparison of N.P. test & SPRT.

Under both hypotheses the ARL is lower than the corresponding N.P. sample size.

Example 4.2. (Cusum) The cumulative sum (cusum) procedure is a process monitoring
stopping rule,

Nh := inf{n ≥ 1 : Dn ≥ h}, Dn := Sn − min
0≤k≤n

Sk, S0 = 0.

This stopping rule has a close link with the boundary crossing problem, cf. [12, 14],
Nh = τ0,h + N∗ I(Sτ0,h

≤ 0),

where τ0,h is the boundary crossing stopping rule (1.1) with a = 0, and N∗ is another
identically distributed cusum process as Nh which is independent of Sτ0,h

given τ0,h (see
[12] for details.). Using this link and Theorem 2.1, one may derive the distribution and
all the moments of the cusum stopping rule Nh. In particular we may obtain the ARL of
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the cusum procedure in the negative exponential model which was first obtained by [9] by
direct calculations.

Cusum procedure have also found a large collection of applications. For instance, the
classic trading the line strategy used for fast financial trading platforms can be analyzed
by using the boundary crossing stopping rule τ [1]. The monitoring process of the cusum
stopping rule, Dn, is related to the ladder index concept of queuing theory [15], as well
as some other related fields such as insurance risk, dams, and data communication. The
MAC layer of communication systems contains the back off protocol, should two clients
approach the server exactly at the same time and cause a collision. There is a potential
for client misbehavior. Cardenas et al. [3] showed that the geometric model, if followed
by the misbehaving client, leads to the most difficult detection case.

Example 4.3. (Multivariate SPRT for memoryless models) When dealing with
multidimensional boundary crossing and/or cusum stopping times, relatively few results
are known, cf. [11] which are primarily asymptotic as the threshold constants get large
and the component processes are independent. Recently, Yao and Khan [21], obtained a
closed form result for the average run length for the multinomial cusum procedure. In
this example we illustrate how exact expressions for the multidimensional boundary cross-
ing stopping can be obtained from the univariate results of Theorem 2.1 for memoryless
models.

Consider m independent memoryless processes as defined in Theorem 2.1 with their
respective constants, p(i), a(i), h(i) in the geometric case or λ(i), a(i), h(i) for the negative
exponential case, with reference constants c(i) > 0, i = 1, 2, · · · , m. Consider the case
when h(i) ≤ a(i) + c(i), i = 1, 2, · · · , m. Define τ = min{τ1, τ2, · · · , τm}, then we claim

E(e−rτ ) = 1 − A + (A + B) · e−r

er − B
, where,

A =
m∏

i=1
((q(i))a(i)+c(i)+1 − qh(i)+c(i)

i ), B =
m∏

i=1
((p(i)q(i))c(i)(h(i) − a(i) − 1)) for the geometric

case, and A =
m∏

i=1
(e−λ(i)(a(i)+c(i)) − e−λ(i)(h(i)+c(i))), B =

m∏
i=1

(λi(h(i) − a(i))e−λ(i)c(i)) for the

negative exponential case. We illustrate the derivation for the geometric case since the
negative exponential case is quite similar.

With d = k = 1 in Lemma 3.1 and recalling f0 = 1 gives for n ≥ 1 and dropping any
fixed superscript, i = 1, 2, · · · , m, for a moment for convenience,

E(eθSnIn) = φ(θ)((eθq)a+c+1 − (eθq)h+c)fn−1,

fn = E(q−SnIn) = (pq)c(h − a − 1)fn−1 = ((pq)c(h − a − 1))n

Letting θ → 0 gives

P (τi > n) =E(e0SnIn) = φ(0)((e0q)a+c+1 − (e0q)h+c)fn−1

=(qa+c+1 − qh+c)[(pq)c(h − a − 1)]n−1.

The above results hold for each i = 1, 2, · · · , m. Therefore for τ = min{τ1, τ2, · · · , τm},

P (τ > n) =
m∏

i=1
((q(i))a(i)+c(i)+1 − (q(i))h(i)+c(i))

{
m∏

i=1
(p(i)q(i))c(i)(h(i) − a(i) − 1)

}n−1

= A · Bn−1.

Therefore for n > 1, the probability mass function is

P (τ = n) = P (τ > n − 1) − P (τ > n) = ABn−2(1 − B),
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and P (τ = 1) = 1 − P (τ > 1) = 1 − A. This gives that

E(e−rτ ) =
+∞∑
n=1

e−rnP (τ = n) = 1 − A + (A + B) · e−r

er − B
.

In particular, E(τ) = 1 + A
1−B , and V ar(τ) = A·(1+B−A)

(1−B)2 .
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