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Abstract

Let m be a positive integer. In this paper, we consider the exponential Diophantine equation
(6m2 + 1)x +(3m2− 1)y = (3m)z and we show that it has only unique positive integer
solution (x,y,z) = (1,1,2) for all m > 1. The proof depends on some results on Diophantine
equations and the famous primitive divisor theorem.

1. Introduction

Let u, v, w be relatively prime positive integers greater than one. Consider the exponential Diophantine equation

ux + vy = wz, x,y,z ∈ N. (1.1)

In 1956, Jeśmanowicz conjectured that if (u,v,w) is a Pythagorean triple then the above equation has only the unique positive
integer solution (x,y,z) = (2,2,2) [1]. In [2], Terai proposed that if up + vq = wr with p,q,r ∈ N, r ≥ 2 then (1.1) has only
the positive integer solution (x,y,z) = (p,q,r) except for a few triples (u,v,w). The following combined version of these two
conjectures are called the Terai-Jeśmanowicz conjecture [3].

Conjecture 1. [3, Conjecture 3.2] If (x,y,z) = (p,q,r) is a solution of (1.1) with min{p,q,r}> 1 then the only solution to
(1.1) with min{x,y,z}> 1 is (x,y,z) = (p,q,r).

Many research confirmed that these conjectures are true in many special cases [4]-[11]. Especially, the positive integer solutions
of the exponential Diophantine equation

(am2 +1)x +(bm2−1)y = (cm)z (1.2)

which is a special case of (1.1) with a,b,c,m are positive integers such that a+ b = c2 has already been investigated by a
number of authors and all of them justify Terai’s conjecture in their special cases. In [12], Terai consider the equation (1.2) with
(a,b,c) = (4,5,3) and he proved that (x,y,z) = (1,1,2) is the only positive integer solution of (4m2+1)x+(5m2−1)y = (3m)z

under some conditions. Remaining cases of this equation are completed in [13]-[15]. As a recent study, in [16], the complete
solution of (1.2) with (a,b,c) = (4,21,5) is also given. For some similar problems, see for example [8], [17]-[24]. In this
paper, we consider the exponential Diophantine equation

(6m2 +1)x +(3m2−1)y = (3m)z (1.3)

and we give the complete solution of this equation by proving the following theorem.
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Theorem 1.1. Let m be a positive integer. Then the equation (1.3) has only the unique positive integer solution (x,y,z)= (1,1,2)
for all m > 1.

We state the above theorem for m > 1, since for m = 1 the equation (1.3) turns intu the equation 7x +2y = 3z which is already
known that it has exactly two solutions as (x,y,z) = (1,1,2),(2,5,4) [25]. It is also worth to note that this equation 7x+2y = 3z

is one of the a few known exceptional cases of Terai’s conjecture [10]. So from now on we take m > 1. We refer to section 3
of [3] for various version of above conjecture and for a complete list of all known examples of (1.1) which has at least two
distinct solutions. The proof of the Theorem 1.1 mainly depends on the combinations of two methods. One of them is due to
[26, 27] which enable us to find the other possible solutions of the Diophantine equations X2 +DY 2 = kZ and aX2 +bY 2 = kZ

from the known solutions under some conditions and the other one is the famous primitive divisor theorem [28, 29]. The
details of these methods are given in the next chapter

2. Preliminaries

Let D be any positive integer. By h(−4D), we denote the class number of positive binary quadratic forms of discriminant −4D.

Lemma 2.1. [30, Theorems 11.4.3, 12.10.1 and 12.14.3]

h(−4D)<
4
π

√
D log(2e

√
D).

Lemma 2.2. [27, Theorems 1 and 2] Let D and k be relatively prime positive integers such that D > 1 and k is an odd integer.
If the equation

U2 +DV 2 = kW , U,V,W ∈ Z, gcd(U,V ) = 1, W > 0

has solutions (U,V,W ), then any solution of the above equation can be expressed as

U +V
√
−D = λ1(U1 +λ2V1

√
−D)t ,

W =W1t, t ∈ N,

where λ1,2 ∈ {±1}, U1,V1,W1 are positive integers satisfying U2
1 +DV 2

1 = kW1 , gcd(U1,V1) = 1 and W1 | h(−4D).

Let D1,D2 be relatively prime positive integers greater that 1 and let (X ,Y,Z) be a fixed solution of the equation

D1X2 +D2Y 2 = kz, gcd(X ,Y ) = 1, 2 - k, Z > 0 and X ,Y,Z ∈ Z. (2.1)

Then there exists a unique positive integer l such that l = D1αX +D2βY, 0 < t < k, where α ,β are integers with βX−αY = 1
[27, Lemma 1]. The positive integer l is called the characteristic number of this particular solution (X ,Y,Z) and it is denoted
by < X ,Y,Z > . if < X ,Y,Z >= l then it is known that D1X ≡ −lY (mod k) [27, Lemma 6]. Let (X0,Y0,Z0) be a solution
of (2.1) and let < X0,Y0,Z0 >= l0. Then the set of all solutions (X ,Y,Z) with < X ,Y,Z >≡±l0 (mod k) is called a solution
class of (2.1) and it is denoted by S(l0).

Lemma 2.3. [27, Theorems 1 and 2] For any fixed solution class S(l0) of (2.1), there exists a unique solution (X1,Y1,Z1)∈ S(l0)
such that X1 > 0, Y1 > 0 and Z1 ≥ Z, where Z runs through all solutions (X ,Y,Z) ∈ S(l0). The solution (X1,Y1,Z1) is called
the least solution of S(l0). If (X ,Y,Z) is a solution belongs to S(l0) then

Z = Z1t, 2 - t, t ∈ N,

X
√

D1 +Y
√
−D2 = s1

(
X1
√

D1 + s2Y1
√
−D2

)t
, s1,s2 ∈ {−1,1}.

Lemma 2.4. [26, Theorem 2] Let (X1,Y1,Z1) be the least solution of S(l0). If (2.1) has a solution (X ,Y,Z) ∈ S(l0) satisfying
X > 0 and Y = 1, then Y1 = 1. Further, if (X ,Z) 6= (X1,Z1), then one of the following conditions is satisfied:

(i) D1X2
1 = 1

4 (k
Z1 ±1),D1 =

1
4 (3kZ1 ±1),(X ,Z) = (X1|D1X2

1 −3D2|,3Z1).

(ii) D1X2
1 = 1

4 F3r+3ε ,D2 =
1
4 L3r,kZ1 = F3r+ε ,

(X ,Z) = (X1|D2
1X4

1 −10D1D2X2
1 +5D2

2|,5Z1), where ε ∈ {−1,1}, r is a positive integer, and Fn is nth Fibonacci number.

The primitive divisor theorem is another powerful tool for solving some Diophantine equations. Let α,β be algebraic integers.
A Lucas pair is a pair (α,β ) such that α +β and αβ are non-zero relatively prime integers and

α

β
is not a root of unity. If

(α,β ) is any Lucas pair then the corresponding sequences of Lucas numbers are defined by

Ln(α,β ) =
αn−β n

α−β
, n = 0,1,2, . . . .

Recall that primitive divisors of Ln(α,β ) are the prime numbers p such that p | Ln(α,β ) and p - (α−β )2L1(α,β ) . . .Ln−1(α,β )

(n > 1). Any two Lucas pairs (α1,β1) and (α2,β2) are called equivalent if
α1

α2
=

β1

β2
=±1.
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Lemma 2.5. [28] If n > 30 then Ln(α,β ) has a primitive divisor.

Lemma 2.6. [29] If 4 < n≤ 30 and n 6= 6 then, up to equivalence, Ln(α,β ) has a primitive divisor except for the following
parameters (e, f )

• (1,5),(1,−7),(2,−40),(1,−11),(1,−15),(12,−76) or (12,−1364) if n = 5,
• ((1,−7) or (1,−19) if n = 7,
• (1,−7) or (2,−24) if n = 8,
• (2,−8),(5,−3) or (5,−47) if n = 10,
• (1,−5),(1,−7),(1,−11),(2,−56),(1,−15) or (1,−19) if n = 12,
• (1,−7) if n = 13,18 or 30.

where (α,β ) =

(
e+
√

f
2

,
e−
√

f
2

)
.

3. Proof of Theorem 1.1

We treat the (1.3) according to the parity of m. For the case m is even, the proof of Theorem 1.1 easily follows from the next
lemma.

3.1. The case 2 | m

Lemma 3.1. If m is even then (x,y,z) = (1,1,2) is the unique positive integer solution of equation (1.3).

Proof. If z ≤ 2, then (x,y,z) = (1,1,2) is clearly the unique solution of the equation (1.3). So assume that z ≥ 3. Taking
equation (1.3) modulo m2 we get that 1+(−1)y ≡ 0 (mod m2) and hence we see that y is odd since m2 > 2. Taking equation
(1.3) modulo 3m3 we find that

1+6m2x+(−1)+3m2y≡ 0 (mod 3m3)

2x+ y≡ 0 (mod m),

which is false because y is odd and m is even. So we conclude that the equation (1.3) has no positive integer solution when
z≥ 3. Therefore (1.3) has only the unique positive integer solution (1,1,2) when m is even.

From now on we deal with the case m is odd.

3.2. The case 2 - m

Let (x,y,z) be any solution of (1.3). Clearly (x,y,z) = (1,1,2) is a solution of (1.3). Since m > 1, taking (1.3) modulo m2 we
see that, as in the previous case, y is odd.
From now on we separate two cases according to the parity of x. First suppose that x is also odd. Now consider the Diophantine
equation

(6m2 +1)X2 +(3m2−1)Y 2 = (3m)Z , Z > 0 and X ,Y,Z ∈ Z. (3.1)

Since (x,y,z) is any solution of (1.3), we see that

(X ,Y,Z) =
(
(6m2 +1)

x−1
2 ,(3m2−1)

y−1
2 ,z

)
(3.2)

is a solution of (3.1). Let l =< (6m2 +1)
x−1

2 ,(3m2−1)
y−1

2 ,z > be a characteristic number of the solution given in (3.2). Then,
from the congruence

(6m2 +1)
x+1

2 ≡−l(3m2−1)
y−1

2 (mod 3m),

we see that l ≡±1 (mod 3m).
Note that (X1,Y1,Z1) = (1,1,2) is also a solution of the equation (3.1) and let l0 =< 1,1,2 > be the characteristic number of
this solution. So, we have that

(6m2 +1) ·1≡−l0 ·1 (mod 3m),

l0 ≡−1 (mod 3m).
(3.3)

So we see that l ≡ ±l0 (mod 3m), which implies that the solutions (X1,Y1,Z1) = (1,1,2) and one in (3.2) are in the same
solution class S(l0) of (3.1). Further (X ,Y,Z) = (1,1,2) is clearly the least solution of S(l0). So by Lemma (2.3), we get that

(6m2 +1)
x−1

2
√

6m2 +1+(3m2−1)
y−1

2
√

1−3m2 = λ1(
√

6m2 +1+λ2

√
1−3m2 )t , (3.4)
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with
z = 2t, 2 - t, t ∈ N and λ1,2 ∈ {−1,1}.

Expanding the right hand side of (3.4) and equating the coefficients of
√

1−3m2, we find that

(3m2−1)
y−1

2 = λ1λ2 ∑

t−1
2

i=0

( t
2i+1

)
(6m2 +1)

t−1
2 −i(1−3m2)i (3.5)

At this point we claim that y = 1. For this purpose, assume that y > 1. Then from (3.5), we find that

0≡ λ1λ2t (6m2 +1)
t−1

2 (mod (3m2−1))

0≡±3
t−1

2 t (mod (3m2−1)),

which is a contradiction, since it implies that 2 | 3 t−1
2 t since m is odd. So we have that y = 1 and hence Y = (3m2−1)

y−1
2 = 1.

Now we check two conditions in Lemma 2.4. Since (X1,Y1,Z1) = (1,1,2) is the least solution of S(l0), by Lemma 2.4, we
have that either

6m2 +1 =
1
4
(32m2∓1)

or
F3r+ε = (3m)2

where ε =±1. The first one implies that 4(6m2+1) = (32m2∓1). But this means that 4≡±1 (mod m2), which is impossible.
On the other hand since only square Fibonacci number greater than 1 is F12 = 122 [31], the second one implies that 3m = 12
which is also false because of parity of m. Thus, by Lemma 2.4, we conclude that (X ,Z) = ((6m2+1)

x−1
2 ,z) = (X1,Z1) = (1,2).

Hence the equation (1.3) has no positive integer solution other than (x,y,z) = (1,1,2) when x is odd.
Now we treat the case x is even. Then from (1.3), the equation

U2 +(3m2−1)V 2 = (3m)W , gcd(U,V ) = 1, W > 0

has a solution

(U,V,W ) =
(
(6m2−1)

x
2 ,(3m2−1)

y−1
2 ,z

)
Thus from Lemma 2.2, we have that

z =W1t, t ∈ N,

(6m2 +1)
x
2 +(3m2−1)

y−1
2
√

1−3m2 = λ1

(
U1 +λ2V1

√
1−3m2

)t
,

(3.6)

where λ1,2 ∈ {−1,1} and U1,V1,W1 are positive integers satisfying

U2
1 +(3m2−1)V 2

1 = (3m)W1 , gcd(U1,V1) = 1 (3.7)

h(−4(3m2−1))≡ 0 (mod W1). (3.8)

Suppose that 2|t and let

U2 +V2

√
1−3m2 =

(
U1 +λ2V1

√
1−3m2

) t
2
. (3.9)

Taking the norm of both sides of (3.9) in Q(
√

1−3m2) and taking into account (3.7), we get that

U2
2 +(3m2−1)V 2

2 = (3m)
W1t

2 = (3m)
z
2 . (3.10)

Substituting (3.9) into (3.6), we have that

(6m2 +1)
x
2 +(3m2−1)

y−1
2
√

1−3m2 = λ1

(
U2 +V2

√
1−3m2

)2

and therefore it follows that

(6m2 +1)
x
2 = λ1(U2

2 −V 2
2 (3m2−1)). (3.11)

(3m2−1)
y−1

2 = 2λ1U2V2. (3.12)
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Since gcd(6m2 +1,3m2−1) = 1, from (3.11) and (3.12) we deduce that |U2|= 1. So |V2|= 1
2 (3m2−1)

y−1
2 . Substituting |U2|

and |V2| into (3.10), we get that

1+
1
4
(3m2−1)y = (3m)

z
2 ,

which implies that 3≡ 0 (mod 3m), a contradiction since 3m > 3. So we conclude that 2 - t. Let

α =U1 +V1

√
1−3m2, β =U1−V1

√
1−3m2

Then, from (3.6), taking its complex conjugate, we get that

(6m2 +1)
x
2 − (3m2−1)

y−1
2
√

1−3m2 = λ1

(
U1−λ2V1

√
1−3m2

)t
. (3.13)

By subtracting (3.13) from (3.6) we get that

(3m2−1)
y−1

2 =V1

∣∣∣∣α t −β t

α−β

∣∣∣∣=V1|Lt(α,β )|. (3.14)

By (3.7), we have α +β = 2U1, α−β = 2V1
√

1−3m2, αβ = (3m)W1 . Since gcd(U1,V1) = 1, the integers α +β = 2U1 and
αβ = (3m)W1 are also relatively prime by (3.7) and α

β
6=±1, units of ring of algebraic integers of Q(

√
1−3m2). So Lt(α,β )

is a Lucas sequence. From (3.14), we see that the Lucas numbers Lt(α,β ) have no primitive divisors. So, from Lemma 2.5
and Lemma 2.6, we get that t ≤ 30 and if 4 < t ≤ 30 and t 6= 6 then the parameters

(e, f ) := (2U1,4V 2
1 (1−3m2))

must be one of the parameters given in Lemma 2.6. But none of them match with any one of these parameters. So, it follows
that

t ≤ 3.

Now we will show that the case t = 3 is also not possible. To see this, assume that t = 3. So, expanding the right hand side of
(3.6) for t = 3 as(

U1 +λ2V1

√
1−3m2

)t
=U3

1 +3U2
1 λ2V1

√
1−3m2 +3U1V 2

1 (1−3m2)+λ2V 3
1 (1−3m2)

√
1−3m2

and equating the coefficients of both sides of it, we get that

(6m2 +1)
x
2 = λ1U1

(
U2

1 −3(3m2−1)V 2
1
)

(3.15)

and

(3m2−1)
y−1

2 = λ1λ2V1
(
3U2

1 − (3m2−1)V 2
1
)
. (3.16)

Note that from (3.7) one can see that gcd(3U1,3m2−1) = 1, so from (3.16) we have that 3U2
1 − (3m2−1)V 2

1 =±1. In fact
taking modulo 3 we see that only the positive sign can occur and

3U2
1 − (3m2−1)V 2

1 = 1. (3.17)

Thus, it follows that

|V1|= (3m2−1)
y−1

2 . (3.18)

Substituting (3.18) into (3.15) we get that

(6m2 +1)
x
2 = λ1U1

(
U2

1 −3(3m2−1)y) . (3.19)

By reducing (3.17) and (3.18) modulo 3m, we find that 3X2
1 − (−1)1≡±1 (mod 3m), which means that U1 ≡ 0 (mod m).

Then from (3.19) we find that 1
x
2 ≡ 0 (mod m), which is clearly false. Thus, we may have only t = 1. Thus z =W1t =W1 and

by (3.8) we know that W1 ≤ h(−4(3m2−1)). Using the upper bound in Lemma 2.1, we get that

z <
4
π

√
3m2−1log

(
2e
√

3m2−1
)
. (3.20)
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Assume that z = 3. Then at least one of x or y must be greater than 1. x≥ 2 gives (3m)3 > (6m2 +1)x ≥ (6m2 +1)2 > 62m4,
and hence 33 > 62m > 36, a contradiction. Similarly if y≥ 2 then the inequality (3m)3 ≥ (3m2−1)2 +(6m2 +1) also leads
us a contradiction. So z≥ 4. Taking equation (1.3) modulo (9m4), it implies that

6m2x+3m2y≡ 0 (mod 9m4)

and therefore

2x+ y≡ 0 (mod 3m2).

So

3m2 ≤ 2x+ y. (3.21)

Since (6m2 +1)x < (3m)z and (3m2−1)y < (3m)z, we see that x < z and y < z. So from (3.21) we find m2 < z. Thus from the
inequality

m2 < z <
4
π

√
3m2−1log

(
2e
√

3m2−1
)

we find that m≤ 11. Then z and hence x and y are also bounded. Taking into account (3.20) together with x,y < z we wrote a
short computer program with Maple to check all possible solutions of (1.3) in the range 3≤ m≤ 11 and we found no positive
integer solutions (m,x,y,z) of (1.3) when z≥ 3. This completes the proof.

4. Discussion

In this paper, we take into account the equation (1.2) in the special case with the parameters (a,b,c) = (6,3,3) and we show
that the corresponding equation (6m2 +1)x +(3m2−1)y = (3m)z has only the unique solution (x,y,z) = (1,1,2) when m > 1.
By the results of this paper we get that another support of the Terai’s Conjecture. As a generalization of the results of this
paper one can consider to solve the equation (1.2) in more general case where 2 | a, 2 - b, a+b = c2.
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