Research Article / Araştırma Makalesi

ON VALUE GROUPS AND RESIDUE FIELDS OF VALUED FUNCTION FIELDS

Figen ÖKE

Trakya Üniversitesi Fen Edebiyat Fakültesi Matematik Bölümü, EDİRNE Tel. 090-284- 2352824 e-mail:fospo@hotmail.com

Received : 30.10.2003 Accepted : 28.01.2004

Abstract: In this paper studying on value groups and residue fields of valued rational function fields and valued function fields of conics is purposed. Let F be a function field over K; v be a valuation on K; w be an extension of v to F; k_w , k_v and G_w , G_v be residue fields and value groups of w and v respectively. If F is rational function field over K then either k_w/k_v is an algebraic extension or k_w is a simple transcendental extension of any finite extension of k_v . If F is a function field of conic over K and $chark_v \neq 2$ then either k_w/k_v is an algebraic extension or k_w is a regular function field of conics over any finite extension of k_v . In the both case either G_w/G_v is a torsion group or there exists a subgroup G_1 of G_w such that G_1/G_v is a torsion group and G_w is the direct sum of G_1 and an infinite cyclic group.

Key words: Conics, extension of valuations, value group, valued function fields, residue field.

Değerlenmiş Fonksiyon Cisimlerinin Rezidü Cisimleri Ve Değer Grupları Hakkında

Özet: Bu çalışmada değerlenmiş rasyonel fonksiyon cisimlerinin ve değerlenmiş konik fonksiyon cisimlerinin değer gruplarının ve rezidü cisimlerinin incelenmesi amaçlanmıştır. F, K cismi üzerinde bir fonksiyon cismi; v, K cismi üzerinde bir değerlendirme; w, v nin F cismine bir genişlemesi; G_w , G_v ve k_w , k_v sırasıyla w ve v nin değer grupları ve rezidü cisimleri olsun. Eğer F, K cismi üzerinde bir rasyonel fonksiyon cismi ise k_w/k_v ya bir cebirsel genişlemedir ya da k_w , k_v nin bir sonlu genişlemesinin bir basit transandant genişlemesidir. Eğer F, K cismi üzerinde bir konik fonksiyon cismi ise k_w/k_v ya bir cebirsel genişlemedir ya da k_w , k_v nin bir sonlu genişlemesi üzerinde bir regüler konik fonksiyon cismidir. Her iki durumda da G_w/G_v ya bir torsion gruptur ya da G_1/G_v bir torsion grup ve G_w , G_1 ile sonsuz devirli bir grubun direkt toplamı olacak şekilde G_w nın bir G_1 altgrubu vardır.

Anahtar kelimeler: Değer grubu, değerlendirmelerin genişlemeleri, değerlenmiş fonksiyon cisimleri, konikler, rezidü cismi.

Introduction

Let K be a field, v be a valuation on K. The old and important problem is finding all extensions of v to $K(x_1, x_2, ..., x_n)$ where $x_1, x_2, ..., x_n$ are indeterminates. This problem is solved completely for only K(x). The other problem is describing residue fields and residue fields of $K(x_1, x_2, ..., x_n)$ for the valuation which is extension of v. In this paper there are some results on this problem.

Let K(x) be a rational function field over K with valuation w which is extension of the valuation v. Let k_v and k_w be residue fields; G_v and G_w be value grups of v and w respectively. k_w/k_v is either an

algebraic extension or k_w a simple transcendental extension of any algebraic extension of k_v . G_w/G_v is either torsion group or there exists a subgroup G_1 of G_w such that $G_v \subseteq G_1$, $[G_1:G_v] < \infty$ and G_w is direct sum of G_1 and an infinite cyclic group.

Let F be a function field of a conic over a subfield K, v be a valuation on K with residue field k_v of characteristic $\neq 2$ and w be an extension of v to F having residue field k_w , G_v and G_w be value grups of v and w respectively. Either k_w is an algebraic extension of k_v or k_w is a regular function field of a conic over a finite extension of k_v . Either G_w/G_v is a torsion group or there exists a subgroup G_1 of G_w containing G_v with $[G_1:G_v]<\infty$ together with an element γ of G_w such that G_w is the direct sum of G_1 and the cyclic group $Z\gamma$.

This facts are proved by J. Ohm, S.K. Khanduja and U. Garg in 1988,1991,1993,1994.

Preliminaries:

Let F/K be a finitely generated field extension. F/K is said to be a function field of a conic over K if the transcendence degree of F/K is one and if F=K(x,y) where x and y satisfy an irreducible polynomial relation total degree 2 over K.

F/K is said to be a regular function field of a conic over K if

- i) F/K is seperable extension i.e. either x is seperably algebraic over K(y) or y is seperably algebraic over K(x)
 - ii) K is algebraic closed in F.

Throughout the paper if K is a field and v is a valuation on K then G_v and k_v will denote the value group and residue field of v respectively. For any η in the valuation ring of v, η^* will denote its v-residue i.e. the image of η in k_v .

If k_{ν}' algebraic closure of k_{ν} in k_{ν} , we shall denote by $I = [G_{\nu}: G_{\nu}]$, $R = [k_{\nu}': k_{\nu}]$ and by D the henselian defect of the finite extension $(F, w)/(K(\xi), v^{\xi})$ where v^{ξ} is the restriction of w to $K(\xi)$.

Results:

Theorem 1: Let v be a valuation of K with value group G_v and the residue field k_v . Let w be an extension of v to K(x) with value group G_w and residue field k_w such that G_w/G_v is not a torsion group. Then there exists $\beta \in \overline{K}$ with minimal polynomial say P(x) of degree n over K and $\theta \in G_w$, θ not torsion mod G_v such that if $f(x) = \sum_{i=0}^r f_i(x)P(x)^i$ is the canonical representation of $f(x) \in K[x]$ with respect o P(x), one has

$$w(f(x)) = \min_{0 \le i \le r} (\overline{v}(f_i(\beta)) + i\theta).$$

Then G_w is the direct sum of $G_1 = v(K(\beta) \setminus \{0\})$ and an infinite cyclic group.

Proof: Let \overline{K} be an algebraic closure of K and \overline{w} be an extension of w $\overline{K}(x)$. Since G_w/G_v is not a torsion group, $G_{\overline{w}}/G_v$ satisfies the same property. So the subset M of \overline{K} defined by

$$M = \{ \alpha \in \overline{K} | \overline{w}(x - \alpha) \text{ is not torsion mod } G_v \}$$

is non-empty. Choose an element β of M so that $[K(\beta):K] \leq [K(\alpha):K]$ for all α in M.

We denote by P(x) the minimal polynomial of β over K of degree n (say). Its roots $\beta = \beta_1...,\beta_n$ are arranged such that $\overline{w}(x-\beta_i)$ is not torsion mod G_v for $1 \le i \le m$ and $\overline{w}(x-\beta_i)$ is torsion mod G_v for $m+1 \le i \le n$. We define μ and θ by

$$\mu = \overline{w}(x - \beta), \qquad \theta = w(P(x)).$$

Observe that for any element α of M, $\overline{w}(x-\alpha)$ must be μ ; for $\overline{w}(x-\beta)$ cannot be equal to $\overline{w}(x-\beta_i)$ which is torsion mod G_v and hence by the strong triangle law

$$\overline{w}(x-\alpha) = \min(\overline{w}(x-\beta), \ \overline{w}(\beta-\alpha)) = \overline{w}(x-\beta)$$
 (1)

A similar argument yield that if $\,\delta\in\overline{K}\setminus M$, then

$$\overline{w}(x-\delta) = \overline{w}(\beta-\delta) < \mu. \tag{2}$$

Using (1) and (2), it is immediately verified that

$$\theta = \overline{w}(P(x)) = \sum_{i=1}^{n} \overline{w}(x - \beta_i) = m\mu + \sum_{i=m+1}^{n} \overline{v}(\beta - \beta_i), \qquad (3)$$

which shows that θ is not torsion mod G_{ν} .

We next show that if h(x) is a non-zero polynomial over K, none of whose roots lies in M, then

$$\overline{w}((h(x)/h(\beta)) - 1) > 0 \tag{4}$$

For this write $h(x) = a \prod (x - \delta_i)$ as a product of linear factors over \overline{K} . By hypothesis $\delta_i \notin M$, so by (2)

$$\overline{w}(x-\delta_i) = \overline{w}(\beta-\delta_i) < \mu$$
.

Consequently

$$\overline{w}\left(\frac{x-\delta_i}{\beta-\delta_i}-1\right)=\overline{w}\left(\frac{x-\beta}{\beta-\delta_i}\right)=\mu-\overline{w}(\beta-\delta_i)>0,$$

which shows that the \overline{w} -residues of $(x - \delta_i)/(\beta - \delta_i)$ and 1 are the same on taking product over i, one concludes that (4) holds.

An immediate consequence of the assertion proved above is that if all irreducible factors of a non-zero polynomial h(x) of K[x] are of degree less than n, then $\overline{w}((h(x)/h(\beta))-1)>0$, in particular

$$w(h(x)) = \overline{v}(h(\beta)). \tag{5}$$

We now prove (a) and (b). Let $f(x) = \sum_{i=0}^{r} f_i(x) P(x)^i$ be the canonical representation of a non-zero polynomial f(x) with respect to P(x). Since deg f(x) < n, by (5) $w(f_i(x)) = \overline{v}(f_i(\beta))$ holds for each i. So the triangle law gives

$$w(f(x)) \ge \min_{0 \le i \le r} (w(f_i(x)p(x)^i)) = \min_{i} (\overline{v}(f_i(\beta) + i\theta))$$
(6)

It is to be shown that equality holds in (6). Suppose that strict inequality holds, then the minimum in (6) is attained for at least two subscripts i an j, which implies that a non-zero integral multiple of θ is free mod G_0 proved in (3). \square

Let K be a field, v be a valuation on K, w be an extension of v to K(x) and W be valuation ring of w. We shall define that $S = \left\{ \xi \in W \middle| \xi^* trans \middle/ k_v \right\}$ and $\min S = \left\{ \eta \in S \middle| \deg \eta \leq \deg \xi \text{ for all } \xi \in S \right\}$.

Theorem 2: k_w is not algebraic over k_v and let $\xi \in \min S$. Then $k_w = k_v'(\xi^*)$, where k_v' is the algebraic closure of k_v in k_w .

Proof: The inclusion \supseteq is immediate, so it remains to show \subseteq . By [5, Lemma 3.1] we may assume $\xi = f/g$, where $\deg f = n > \deg g$. For any $\xi \in V$, we may write, by [5, Lemma 3.2],

$$\xi = (a_m \xi^m + a_{m-1} \xi^{m-1} + \dots + a_0) / (b_m \xi^m + b_{m-1} \xi^{m-1} + \dots + b_0),$$

where a_i , b_i are elements of K[x] which are either of $\deg < n$ or are 0. Let d be an element of least value from among $\{a_i,b_i|i=0,...,m\}$, and let $\alpha_i=a_i/d$, $\beta_i=b_i/d$.

Then

$$\xi = (a_m \xi^m + a_{m-1} \xi^{m-1} + \dots + a_0) / (\beta_m \xi^m + \beta_{m-1} \xi^{m-1} + \dots + \beta_0),$$

where now the coefficients α_i , β_i are elements of K(x) which are either of $\deg < n$ or are 0. Moreover, $v(\alpha_i), v(\beta_i), i=0,...,m$, are all ≥ 0 . We may therefore consider the equality

$$(\beta_m^* \xi^{*m} + ... + \beta_0^*) \xi^* = \alpha_m^* \xi^{*m} + ... + \alpha_0^*.$$

Since $\xi \in \min S$ and the α_i , β_i are either 0 or of $\deg < \deg \xi$, it follows that the β_i^* are all algebraic over k_0 . But ξ^* is tr. over k_0 and we know some α_i^* or β_i^* is 1, some β_i^* must be $\neq 0$. Therefore $\beta_m^* \xi^{*m} + \ldots + \beta_0^* \neq 0$, and hence

$$\boldsymbol{\xi}^* = (\alpha_m^* \boldsymbol{\xi}^{*^m} + \ldots + \alpha_0^*) / (\beta_m^* \boldsymbol{\xi}^{*^m} + \ldots + \beta_0^*) \in k_0' \ (\boldsymbol{\xi}^*) \,.$$

Theorem 3: Let v be a valuation of a field K and w be an extension of v to an overfield F=K(x,y) of transcendence degree one over K where $y^2=P(x)$ is in K[x]. If $G_v\subseteq G_w$ are the value groups of v and w then either G_w/G_v is a torsion group or there exists a subgroup G_1 of G_w containing G_v with $[G_1:G_v]<\infty$ and an element γ of G_w such that G_w is the direct sum of G_1 and the cyclic group $Z\gamma$ generated by γ .

Proof: Assume that G_w/G_v is not a torsion group. Let H denote the value group of the valuation w restricted to the subfield K(x) of F. Then $\left[G_w:H\right] < \left[F:K(x)\right] \le 2$, and H/G_v is not a torsion group. It is known that there exists an (explicitly constructible) subgroup H_1 of H containing G_v with $\left[H_1:G_v\right] < \infty$ and an element of θ of H such that H is the direct sum of H_1 and H and H is the direct sum of H is the direct sum of H and H is the direct sum of H

Two cases are distinguished:

If $(\lambda + \theta)/2 = \theta_1$ belongs to G_w for some λ in H, then

$$H=H_1\oplus Z\theta\subset H_1\oplus Z\theta_1\subseteq G_w$$

and hence $G_w = H_1 \oplus Z\theta_1$ in this case. Suppose that $(h_1 + \theta_1)/2 \notin G_w$ for any h_1 in H_1 . It will be shown that $G_w = (G_w \cap \frac{1}{2}H_1) \oplus Z\theta$ in this case. Let g be an element of G_w . Since $2g \in H$, we can write

$$g = \frac{h_1}{2} + \frac{n\theta}{2}$$

for some h_1 in H_1 and some integer n. The claim is that n must be even. If n were odd, then on writing g as

$$g = \frac{h_1 + \theta}{2} + \frac{n-1}{2}\theta,$$

we derive that $\frac{h_1 + \theta}{2} \in G_w$, contrar to the assumption.

Lemma 4: Let K be a field of char $\neq 2$ and let F be a function field of a conic over K_v . Then there exist explicitly constructible elements $c-d \in K$ such that the K irreducible polynomial x^2-y^2-d is a defining polynomial for F/K_v . [3]

Theorem 5: Let F be a function field of a conic over a field K Let v be a valuation of K and w be an extension of v to F. Assume that $chark_v \neq 2$. Then the residue field k_w of w is either an algebraic extension of k_v or k_w is a regular function field of a conic over a finite extension of k_v .

Proof: We may assume that k_w/k_v is not an algebraic extension. In view of Lemma 4, we may write F=K(x,y) where (x,y) satisfies an irreducible polynomial X^2-cY^2-d over K. Observe that y is transcendental over K and that $[F:K(y)] \le 2$. We denote by v_1 , the valuation w restricted to K(y) and by k_1 , G_1 the residue field and the value group of v_1 . Then $[k_w:k_1] \le 2$ and k_w/k_1 is not an algebraic extension.

When $k_w = k_1$, the desired result follows from the Theorem 2 applied to the simple transcendental extension K(y)/K and the observation that a simple transcendental extension L(t) of a field L is the regular function field of a conic over L which can be visualized by writing L(t) as L(t,1/t) where (t,1/t) satisfies XY-1=0.

Assume now that $\left[k_w:k_1\right]=2$. Let Δ' , Δ denote the algebraic closures of k_v in k_1 and k_w respectively. By the Theorem 2; k_1 is a simple transcendental extension of Δ' and Δ' is a finite extension of k_v . If $\Delta'\subseteq\Delta$, then

$$k_1 = \Delta'(t) \subseteq \Delta(t) \subseteq k_w$$
.

In view of te assumption that $[k_w : k_1] = 2$, it is now clear that in the present case

$$[\Delta : \Delta'] = 2$$
 and $k_w = \Delta(t)$.

The theorem remains to be proved when $\,\Delta' = \Delta\,\,$ and $\,\left[k_{_W}:k_{_1}\right] = 2$. Since

$$[F:K(y)] = [k_w:k_1] = 2,$$
 (7)

it follows from the fundamental inequality (cf. [1, Chapter 6, §8.3, Theorem 1(b)]) relating the degree of extension with the ramification indices and residual degrees that the value group of w is G_1 ; in particular $w(x) \in G_1$. By [3,Lemma 2.2], there exists a non-zero polynomial $R(y) \in K[y]$ of degree less than $E = E(v_1/v)$ such that $w(x) = v_1(R(y))$. Set

$$T = x/R(y)$$
 and $\eta = (cy^2 + d)/R(y)^2$

Since $x^2-cy^2-d=0$, the v-residue T^* of T satisfies the polynomial $X^*-\eta^*$ over k_1 . In view of (7) and the fundamental inequality referred to above, w is the only extension to F=(y,T) of the valuation v' defined on K(y). Recall that char $k_1 \neq 2$; it now follows from [3,Lemma 2.4] applied to the extension F/K(y) that $T^*=\sqrt{\eta^*}$ is not in k_1 . Since k_1 contains Δ' which equals the algebraic closure of Δ' in k_w , we conclude that T^* and hence η^* is transcendental over Δ' . Therefore $k_w=k_1=(\sqrt{\eta^*})$ is proved to be a function field and hence a regular function field of a conic over $\Delta'=\Delta$, as soon as we show that there exists a generator u of the simple transcendental extension k_1/Δ' such that η^* is a polynomial in u of degree ≤ 2 with coefficients from Δ' . By [3,Lemma 2.3], η^* is itself a generator, say u, of the simple transcendental extension k_1/Δ' . if $\deg(cy^2+d)\leq E$; in fact in this situation $k_w=\Delta'(\sqrt{\eta^*})$ is a simple transcendental extension of Δ' . The remaining case is when E=1, i.e., when there exist $a,b\in K$ such that $((y-a)/b)^*=u$ (say) is transcendental over k_v . In this case the polynomial R(y) being of degree less than E=1, must be a constant say R. Therefore on writing $\eta=(cy^2+d)/R^2$ as a polynomial in (y-a)/b, we conclude that η^* is a polynomial of degree ≤ 2 in u over k_v . Then the theorem is completely proved.

Theorem 6: Let v be a valuation of a field K with residue field k_v of char $\neq 2$ and let w be an extension of v to an overfield $F = K(x, \sqrt{P(x)})$, P(x) being a non-constant poylnomial in an indeterminate x over K. Assume that the residue field k_w of w is not algebraic over. Let's denote by D the henselian defect of the finite extension $(F, w)/(K(\xi), v^{\xi})$ where v^{ξ} is the restriction of w to $K(\xi)$, ξ is a element of the valuation ring of w such that ξ^* $trans/k_v$.

Then one can determine (by an explicit algorithm) an element u transcendental over k_v and a polynomial A(u) over the algebraic closure Δ of k_v in k_w with $\deg A(u) \leq \delta + (\deg P(x)) / IRD$ such that $k_w = \Delta(u, \sqrt{A(u)})$ where $\delta = 0$ or 2; indeed δ can be chosen to be 0 when I = 1.

Proof: We write F = K(x,y), where $y^2 = P(x) \in K[x] \setminus K$. We denote by v' the valuation w restricted to K(x) and by $k_{v'}$, $G_{v'}$ the residue field and the value group of v'. Then $[k_w:k_{v'}] \leq [F:K(x)] \leq 2$, and $k_{v'}/k_v$ is a non-algebraic extension as k_w/k_v is given to be so. By the Theorem 2, $k_{v'}$ is a simple tr. extension of a finite extension Δ' of k_0 . Throughout the proof, t will stand for the particular generator of $k_{v'}/\Delta'$ described in the opening lines of the proof of [4 Lemma 3.2.]. If $k_w = k_{v'}$,

the theorem needs no proof. From now on, it is assumed that $[k_w:k_{v'}]=2$ and that $\Delta'=\Delta$, for $\Delta'\subseteq\Delta$ yields $k_w=\Delta(t)$.

Since

$$[F:K(x)] = [k_w:k_{v'}]$$
(8)

it follows from the fundamental inequality [1 The 1 b] that the value group of w is G_v ; in particular $w(y) \in G_v$. By [4 Lemma 3.1] we can choose a non-zero polynomial $h(x) \in F[x]$ of degree $< E' = E'(v'/v_0)$ such that w(y) = v'(h(x)); in the case $G_v = G_v$, we choose h(x) of degree 0. Set

$$z = y/h(x), \ \eta = P(x)/h(x)^2$$

Then $z^2=\eta$ and $v'(\eta)=0$. In view of (1) and the fundamental inequality [3,§ 8.3,Theo. 2(b)], w is the only extension to F=K(x,z) of the valuation v' defined on K(x). It follows from [4,Lemma 3.4] applied to the extension F/K(x) that $z^*=\sqrt{\eta^*}$ is not in $k_{v'}$. Keeping in view the assumptions $[k_{w'}:k_{v'}]=2$ and $\Delta=\Delta'$, it is now clear that

$$k_w = k_{v'}(\sqrt{\eta^*}) = \Delta(t, \sqrt{\eta^*}).$$

Recall that $\eta = P(x)/h(x)^2$, where $\deg h(x)^2 \le 2E'-2$; in fact $\deg h(x)^2 = 0$ if $G_w = G_v$. By [4,Lemma 3.2]. $\eta^* = B(t)/C(t)$ with B(t), C(t) in $\Delta[t]$ satisfying $\deg B(t) \le (\deg P)/E'$ and $\deg C(t) \le 1$. Further by [4,Remark 3.3], the polynomial C(t) may be chosen to be of degree 0 when $G = G_0$.

Let us assume the inequality $E' \ge IRD$ to be proved below.

If $\deg C(t) = 1$, on taking u = C(t) and writing the polynomial B(t) as $B_1(u)$, we see that

$$k_w = \Delta(u, \sqrt{B_1(u)/u}) = \Delta(u, \sqrt{uB(u)})$$

as desired, for $\deg B_1(u) = \deg B(t) \le (\deg P) / IRD$.

In case $\deg C(t)=0$, say $C(t)=C\in\Delta$, then the theorem is proved on taking u=t and A(u)=B(t)/C.

It only remains to verify the inequality $E' \geq IRD$ with the assumptions $\Delta = \Delta'$ and $[F:K(x)] = [k_w:k_{v'}]$. The latter implies that $G_w = G_{v'}$ and that the henselian defect of the extension (F,w)/(K(x),v') is 1. Fix any element ξ of K(x) with $v'(\xi)=0$ and ξ^* tr. over k_v . Since the henselian defect is multuplicative, it follows that

$$D = def^{h}(F/K(x))def^{h}(K(x)/K(\xi)) = def^{h}(K(x)/K(\xi)).$$

Thus D equals the number $D'=def^h(K(x)/K(\xi))$ and $E'\geq [G_{v'}:G_v][\Delta':k_v]D'$, as $G_{v'}=G_w$ and $\Delta=\Delta'$.

References

- 1 BOURBAKI N., Commutative Algebra, Hermann, 1972
- 2 KHANDUJA S.K., Value groups and simple transcendental extensions, Mathematika 38: 357-385, 1991
- 3 KHANDUJA S.K. and Garg U., Residue fields of valued function fields of conics, Proceedings of the Edinburgh Math. Soc. 36: 469-478, 1993
- 4 KHANDUJA S.K., On value groups and residue fields of some valued function fields, Proceedings of the Edinburgh Math. Soc. 37: 445-454, 1994
- 5 OHM J., The ruled residue theorem for simple transcendental extensions of valued fields, Proc. Amer. Math. Soc. 89: 16-18, 1983
- 6 OHM J., The Henselian defect for valued function field, Proc. Amer. Math. Soc. 107: 299-307, 1989
- 7 MATIGNON M. and OHM J., Simple transcendental extensions of valued fields III: The uniqueness property, J. Math., Kyoto Univ. 30: 347-365, 1990