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Abstract 

Achieving air superiority is one of the key steps to success in warfare. It is necessary for a combat aircraft to have the survivability it 

needs in an aggressive combat environment. Unmanned aerial vehicles (UAVs) suffer from maintaining the maneuverability and 

navigational ability in the event of a disconnection from the control station. In this paper, an escape path prediction algorithm 

developed by fusing multi-sensor data is presented to facilitate the escape of engagement of UAVs. Data from radars are evaluated in 

the Extended Kalman Filter and used to make estimations. The estimations made are used in constraint optimization to generate an 

instantaneous optimal escape route. Since the constraints and objective function are not linear, nonlinear programming is used as a 

method of constraint optimization. According to the simulation results, the proposed method shows a promising result for escaping 

from engagement in the selected scenario. 
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İnsansız Hava Araçlarında Angajmandan Kaçış Yolu Kestirimi İçin 

Çok Sensörlü Veri Füzyonu 

Öz 

Savaşta başarı elde etmenin en önemli koşullarından birisi, hava üstünlüğünü sağlamaktır. Saldırgan muharebe ortamında bulunan bir 

savaş uçağının, gereken hayatta kalma özelliklerine sahip olması gerekmektedir. İnsansız hava araçlarında (İHA), kontrol istasyonuyla 

olan bağlantının kesilmesi durumunda, İHA’nın hareket ve seyrüsefer kabiliyetlerini koruması zorlaşır. Bu bildiride, insansız hava 

araçlarının angajmandan kaçışını sağlamak için çok sensörlü veri füzyonu yöntemiyle geliştirilen bir kaçış yolu kestirimi algoritması 

sunulmaktadır. Gelen radar verileri, tahmin yapmak üzere Genişletilmiş Kalman Filtresine sokularak değerlendirilir. Yapılan 

tahminler, doğrusal olmayan programlama yönteminde kullanılır ve anlık optimal kaçış yolu belirlenir. Sahip olunan kısıtlamalar ve 

amaç fonksiyonu lineer olmadığı için kısıtlı optimizasyon yöntemi olarak doğrusal olmayan programlama kullanılır. Simülasyon 

sonuçlarına göre, önerilen yöntem seçilen senaryoda angajmandan kaçış için umut verici sonuçlar sunmuştur.  

 

 

Anahtar Kelimeler: İnsansız Hava Aracı, Genişletilmiş Kalman Filtresi, Doğrusal Olmayan Programlama, Sensör Füzyonu, Veri 

Füzyonu, Angajman, Kaçış Yolu Kestirimi. 
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1. Introduction 

One of the most important conditions for success in warfare 

is to achieve air superiority. It is of great importance for an 

aircraft to be able to use the survivability features hidden in the 

aircraft when it is in a man-made hostile environment, in order 

to provide air dominance. This research is focused on a decision-

making algorithm to develop maneuverability of the combat 

aircraft in engagement conditions. The term “engagement”, 

which is often used in military matters, refers to a combat 

between two sides. Engagement is initiated by the attacking 

force to perform a task. Engagement ends when the attacker 

completes the mission or quits the mission (Dupuy, 1987). For 

an aircraft to successfully exit the engagement, it is important to 

make quick decisions based on the aircraft's maneuverability and 

its opponent's position. This research is based on a dogfight 

engagement with an attacking aircraft. The aim is to ensure that 

the attacked aircraft escape from engagement in the most 

optimized way by making fast and accurate decisions. In this 

scenario, the attacking party may also be Air-to-Air Missile 

(AAM) or Surface-to-Air Missile (SAM), rather than a combat 

aircraft.  

This study aims to develop a path planning algorithm for the 

unmanned aerial vehicle (UAV) to survive the engagement on its 

own in case the unmanned aerial vehicle (UAV) which is 

disconnected from the ground control station during an 

engagement. It is important that the UAV is able to use its 

autopilot features when disconnected from the control station. 

These features include optimal escape route estimation to avoid 

engagement. For these reasons, in this paper, it is aimed to 

combine data from different sensors by processing them under 

the influence of noise, and to come up with an optimal escape 

path prediction estimation algorithm. 

There are other studies with various approaches on this 

subject. Capello et al. (2015), proposed a Particle Filter based 

navigation and guidance system based on Remotely Piloted 

Aircraft Systems (RPAS). López & Żbikowski (2018), proposed 

an autonomous decision-making algorithm for unmanned 

combat aircraft (UCAV) with 14 different maneuvering options. 

Each decision is evaluated based on a score equation considering 

external constraints (López & Żbikowski, 2018).  

In this paper, a UAV guidance and navigation method based 

on Extended Kalman Filter and Nonlinear Programming is 

presented. In the first step, to estimate the enemy aircraft, 

position the multiple-sensor values are fused using the Extended 

Kalman Filter. Two sensors are used: One of them is the range 

sensor and the other is the angle sensor. After the prediction of 

the enemy aircraft position and direction a constraint 

optimization was made with the help of nonlinear programming. 

In this step, the constraints are defined according to the 

coordinate axes of the escaping UAV. Hence, UAV 

maneuverability can change according to the pitch, the roll, and 

the yaw axes of the UAV. Thus, the nonlinear programing is 

applied on the coordinate axes of the escaping UAV. After the 

obtaining the solution according to the coordinate axes of the 

escaping UAV, the solution is converted to the original 

coordinate axes. In briefly, based on these two methods, an 

escape path prediction algorithm has been developed.  

The rest of the paper is outlined as follows: In the next 

section, the background information about the Extended Kalman 

Filter and nonlinear programing is briefly explained. In Section 

3, the proposed method is introduced. The simulation results of 

the proposed method are demonstrated in Section 4. Finally, in 

the last section conclusion remarks are put forward. 

2. Related Works 

2.1. The Extended Kalman Filter 

The Kalman filter method was proposed by Rudolf E. Kalman in 

1960. The Kalman filter is an algorithm which takes continuous 

measurements as inputs in order to estimate desired unknown 

variables. Some of the main areas where the Kalman filter is 

used are; tracking, navigation and guidance in aviation, vehicle 

control, position estimation applications with inertial 

measurement unit, statistics, and economics (Meinhold & 

Singpurwalla, 1983). Kalman filter is also very important in 

multi sensor data fusion.  

Kalman filters are used to predict new states of the system, 

taking into account of previous states of the system and current 

noise. The transition from the k-1 state to the k state is defined 

as: 

 𝑥𝑘 = 𝐹𝑥𝑘−1 + 𝐵uk−1 + wk−1 (Eq. 1) 

In the [Eq. 1], the state vector is denoted by x, the state transition 

matrix is denoted by F, control matrix of the input u is denoted 

by B and the zero mean Gaussian process noise is denoted by w 

(Kim & Bang, 2019). However, real-world problems are mostly 

nonlinear, including the problem in this paper. When a Gaussian 

distribution is applied to a nonlinear function, the output does 

not have a Gaussian distribution (Riberio, 2004). Thus, Extended 

Kalman Filter (EKF) is used when predicting nonlinear 

functions. In Extended Kalman Filter, system model is linearized 

around the estimation of the last state. This locally linearized 

model is used to give an approximation of the optimal prediction 

(Riberio, 2004).  

State transition and measurement models for EKF are: 

 𝑥𝑘 = 𝑓(𝑥𝑘−1, uk−1) + wk−1 (Eq. 2) 

 𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (Eq. 3) 

Where 𝑓 provides the current state 𝑥𝑘−1 and is the function 

of 𝑥𝑘−1 and uk−1. The measurement function is denoted by ℎ, 𝑧𝑘 

is the measurement and 𝑣𝑘 is the measurement noise. In the 

Extended Kalman Filter, there are two stages. The names of 

these stages are prediction and update. The output of the 

previous update stage becomes the input to the prediction state. 

With the outputs of the prediction stage, Kalman gain, and 

updated state estimates are calculated in the update stage. 

Prediction stage is modeled as: 

 �̂�𝑘
− = 𝑓(�̂�𝑘−1

+ , 𝑢𝑘−1) (Eq. 4) 

 𝑃𝑘
− = 𝐹𝑘−1𝑃𝑘−1

+ 𝐹𝑘−1
𝑇 + 𝑄 (Eq. 5) 

Where the hat operator ‘^’ means the estimate, ‘+’ signifies 

prior, ‘-’ signifies posterior, �̂�𝑘
− is predicted state estimate and 𝑃𝑘

− 

is predicted error covariance (Kim & Bang, 2019).  Update stage 

is modeled as: 

 𝑦𝑘 = 𝑧𝑘 − ℎ(�̂�𝑘
−) (Eq. 6) 

 𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝑅 +  𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇)−1 (Eq. 7) 
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 �̂�𝑘
+ = �̂�𝑘

− + 𝐾𝑘𝑦 (Eq. 8) 

 𝑃𝑘
+ = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘

− (Eq. 9) 

Where 𝑦𝑘  is measurement residual, 𝐾𝑘 is Kalman gain, �̂�𝑘
+ 

is updated state estimate and 𝑃𝑘
+ is updated error covariance 

(Kim & Bang, 2019). F and H are Jacobian matrices of 𝑓 and ℎ. 

The covariance matrix of process noise is represented by Q, and 

the covariance matrix of measurement noise is represented by R. 

In order to obtain detailed information about this topic, (Kim & 

Bang, 2019) can be studied. 

2.2. Nonlinear Programming 

Nonlinear Programming is an optimization problem solving 

method. It is used when constraints or objective function are 

nonlinear. In a nonlinear optimization problem, minimization or 

maximization of an objective function is made depending on a 

set of constraints, where these constraints can be equality or 

inequality constraints. The formulation for nonlinear 

programming used in this paper is defined as: 

min
𝑋

𝑓(𝑋) (Eq. 10) 

𝐿𝐵 ≤ 𝑋 ≤ 𝑈𝐵 (Eq. 11) 

𝐴𝑒𝑞 ∗ 𝑋 = 𝑏𝑒𝑞  (Eq. 12) 

𝐴 ∗ 𝑋 ≤ 𝑏 (Eq. 13) 

𝐶𝑒𝑞(𝑋) = 0 (Eq. 14) 

𝐶(𝑋) ≤ 0 (Eq. 15) 

In [Eq. 10], 𝑓(𝑋) is the objective function. In [Eq. 11], 

terms LB and UB, denotes the lower and upper boundaries of the 

input X. In [Eq. 12], 𝐴𝑒𝑞  and 𝑏𝑒𝑞  are linear equality constraints. 

In [Eq. 13], 𝐴 and  𝑏 are linear inequality constraints. In [Eq. 

14], 𝐶𝑒𝑞(𝑋) is nonlinear equality function. In [Eq. 15], 𝐶(𝑋) is 

nonlinear inequality function (MathWorks, 2021). 

3. The Proposed Method  

In this proposed method, The Extended Kalman Filter and 

nonlinear programming method are used together to develop the 

escape path estimation algorithm. MATLAB program 

(MathWorks, 2021) is used to develop this proposed algorithm 

and make the necessary simulations. A simple architecture of the 

proposed method is shown in the Figure 1 below: 

 

Figure 1: Overview of the proposed method 

Where p_ally represents the position data of the friendly 

aircraft, which the escape path prediction algorithm is applied 

on. The position data of the attacking enemy aircraft that has 

been evaded is represented by p_enemy. The system calculates 

p_est and p_NLP for each time point, working in a loop for each 

time interval. “p_est” is the prediction value of the p_enemy 

position data obtained from The Extended Kalman Filter. This 

p_est prediction value is given as an input to the fmincon 

function (MATLAB fmincon, 2021). Fmincon is a built-in 

MATLAB function for nonlinear constraint optimization. 

Fmincon outputs the optimal escape vector p_NLP. Adding 

p_NLP to the value p_ally had in the previous time interval 

gives the new value of p_ally at the current time. Thus, an 

optimal escape position for a time interval is assigned to the 

friendly aircraft based on the estimated position of the attacking 

aircraft. The coordinate axis of the ally UAV changes at each 

time step, as the ally UAV performs different maneuvers. For 

this reason, at each time step, the nonlinear programming 

constraints and solution must be relative to the ally UAV's 

coordinate system. The relative distance between the ally UAV 

and the attacking UAV undergoes a homogeneous transformation 

from the original coordinate system to the coordinate system of 

the ally UAV before entering the nonlinear programming method 

fmincon. Once an optimal solution is found, it must go through 

an inverse homogeneous transformation to be converted back to 

the original coordinate system. 

 The Extended Kalman Filter model used in this paper is 

a suitable model for the scenario in the paper. In this model, 

there are two sensors on the friendly aircraft: the range sensor 

and the angle sensor. The position of the attacking aircraft is 

estimated with the help of Extended Kalman Filter, using the 

distance and angle data detected from these sensors on the 

friendly aircraft under noise (Kim & Bang, 2019). Standard 

deviation of process noise (w_(k-1)) and standard deviation of 

measurement noise (v_k) are given to the Extended Kalman 

Filter as inputs. Thus, the EKF could be tested under different 

noise conditions as desired. A detailed diagram of the Extended 

Kalman Filter is shown in Figure 2.  
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Figure 2: Extended Kalman Filter Model 

Initial points of the friendly and enemy aircrafts are given in 

the initialization stage. In the prediction stage, predictions of 

state estimate and the error covariance are made as in equations 

4 & 5. In the update stage, measurement residual and Kalman 

gain are calculated [Eq. 6] & [Eq. 7]. State estimate and the error 

covariance are also updated [Eq. 8] & [Eq. 9]. 

In this paper, the built-in MATLAB function fmincon is 

used as a nonlinear programming method. Fmincon finds the 

minimum of a multivariable function with constraints. The 

constraints of the mentioned function and the objective function 

are specified for fmincon as stated in equations 10, 11, 12, 13, 14 

and 15. Fmincon starts from a starting point x0 and tries to reach 

the value x that will bring the function with defined constraints 

to its minimum value (MathWorks, 2021).  The purpose of 

fmincon is to find a minimizer x value. The objective function 

used in this proposed method is an essential score function used 

in aviation to evaluate the relative distance and collision between 

two aircrafts (Burgin & Owens, 1975), (McGrew et al, 2010). 

The objective score function is defined as (López & Żbikowski, 

2018): 

 
Sc = (1 −

|ϵ + λ|

π
)(e−

d−dopt

Kπ ) 
(Eq. 16) 

In [Eq. 16], Sc denotes score resulting from the positions 

and angles of the two aircrafts relative to each other. The ϵ & λ 

represents the angles formed between the movement vectors of 

two aircraft and the LOS (Line of Sight) line. The relative ϵ & λ 

angles of the two aircrafts are shown in Figure 3. The distance 

between two aircrafts is denoted by d. Desired optimal distance 

is denoted by d_opt. Finally, the constant K is used to create a 

proportional adjustment between the angle and the distance. In 

this proposed method, d_opt value is 700 and K value of 600 is 

used based on an effective K value used in relative study (López 

& Żbikowski, 2018). 

 

Figure 3: Relative angles of the two aircrafts (adapted from 

(López & Żbikowski, 2018)) 

After the prediction of the enemy aircraft position and 

direction, a constraint optimization was made. The constraints 

must be defined according to the coordinate axes of the escaping 

UAV. Since, UAV maneuverability can change according to the 

pitch, the roll, and the yaw axes of the UAV. Therefore, the 

nonlinear programing is applied on the coordinate axes of the 

escaping UAV. On the other hand, each time step the UAV can 

make a different maneuver, so the coordinate axes of the 

escaping UAV are changed for each time step. The coordinate 

axes of the escaping UAV and the original coordinate axes can 

be managed in the algorithm in carefully. Therefore, the solution 

UAV position and direction found in nonlinear programing 

according to the coordinate axes of the escaping UAV must be 

translated and rotated with respect to the original coordinate 

axes. To achieve this coordinate axes translation, a similar 

approach like the one given in (Neff, 2021) is used in this paper.  

To find the direction of the UAV, the flight mechanism must 

be determined. In this paper, the following approach is used for 

UAV maneuverability.  The UAV has 3 axes: the pitch, the roll 

and the yaw.  To change the altitude (the pitch control) the 

elevator is used. After the coming the desired altitude position, 

the UAV is updated its position as the flat position according to 

the ground.  Thus, z axis in the UAV coordinate axes and z axis 

in the original coordinate axes are the same all nonlinear 

solution process. On the other hand, to arrive some points in 3-

dimensional space, in addition to z axis movement, x and y axes 

movements are needed. It is assumed that the UAV has a high 

maneuverability capacity, and thus, to turn left or right the 

following the flight mechanism is used: Instead of the use of 

rudder for yaw control, the firstly the roll control is used by 

ailerons or flaperons and then using elevator the desired 

direction is aligned with the nose of the UAV. After the coming 

the desired direction position in x-y plane, the UAV is updated 

its position as the flat position according to the ground.   

To further explain this mechanism, one scenario is 

explained. Let’s the UAV only changes its direction to the left 

side according to the nose in x-y plane without changing the 

altitude position. In this case, the 1st command is the right 

aileron up and the left aileron down. The 2nd command is the 

right aileron flat and the left aileron flat. The 3rd command is the 

elevator up. The 4th command is the elevator flat. The 5th 

command is the right aileron down and the left aileron up. The 

6th command is the right aileron flat and left aileron flat. At the 

end of these commands, the UAV is flat position according to the 

ground and the direction of the UAV is changed an angle in x-y 

plane. 

After the obtaining the solution according to the coordinate 

axes of the escaping UAV, the solution is converted to the 
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original coordinate axes. In briefly, based on these two methods, 

an escape path prediction algorithm has been developed. 

4. The Experimental Results  

The simulation results are realized using MATLAB 

(MathWorks website, 2021).  It has been assisted from 

Introduction to Kalman Filter and Its Applications website 

(2021) in the implementation of extended Kalman Filter for the 

selected scenario.  

The selected scenarios are defined as follows: In the 

selected scenario, there are two UAVs traveling in open space, 

one ally and one hostile enemy. The Enemy UAV's starting point 

is assumed to be the point (0,0,0) in meters and moves at 

1000km/h in the x-axis only. The initial point of the ally UAV is 

the point (500,0,0) in meters. Main input of the ally UAV for the 

target tracking is a radar system with range and angle 

measurements. The standard deviation of the process noise used 

in the Extended Kalman Filter is 0.5m/s for velocity in all three 

axes. Since we have the target position data of the hostile enemy 

UAV when this escape path prediction system is activated on the 

UAV, the EKF’s initial guess of target position is the measured 

position of the enemy UAV. Simulations were made for a period 

of 30 seconds. In nonlinear programming, the lower and upper 

boundaries for input X are given as follows for x, y, and z: LB = 

[-69.4445, -69.4445, -69.4445], UB = [277.7778, 69.4445, 

69.4445] in meters. These values are the maximum and 

minimum meters the solution of the fmincon can be for each 

second. LB and UB were determined based on the mobility of 

the ally UAV and were obtained by converting 1000 km/h and 

250 km/h to m/s. There are no linear equality or inequality 

constraints. The nonlinear inequality function 𝐶(𝑋) is the 

maximum resultant value that fmincon's solution in x, y and z 

combined. 𝐶(𝑋) is equal to the expression in [Eq. 17] where 

1000 is the maximum value of velocity in km/h and 0.277778 is 

the constant value to convert km/h to m/s. 

 𝑋(1)2 + 𝑋(2)2 + 𝑋(3)2 − (1000 ∗ 0.2777778 )2 (Eq. 17) 

First, the scenario where the user input of standard deviation 

of measurement noise is given [0.5, 0.5, 10] for two angles and 

distance respectively is run on MATLAB. The measurement 

covariance matrix is constructed by the same noise characteristic 

[0.5, 0.5, 10]. The xy-axis trajectories of enemy and Ally UAVs 

are shown in Figure 4. Figure 5 shows the trajectories of UAVs 

in three dimensions. The values on the axes in the figures are in 

meters. As can be seen in Figure 4 and Figure 5, the ally UAV 

made its escape by making deviations in the y and z axes in the 

escape route. As the enemy UAV's position estimation sways in 

the z axis over time, the Ally UAV slopes to the z direction and 

escapes. 

 

Figure 4: xy-axis trajectory of the UAVs in the first scenario 

 

Figure 5: 3D trajectory of the UAVs in the first scenario 

After the first scenario, the scenario where the user input of 

standard deviation of measurement noise is given [2, 2, 50] for 

two angles and distance respectively is run on MATLAB. The 

measurement covariance matrix is constructed by the previous 

scenario noise characteristic [0.5, 0.5, 10]. Figure 6 and Figure 7 

show the trajectories of UAVs in the xy-axis and three-

dimensional axis. If we compare the two scenarios, the standard 

deviation of measurement noise values in the second scenario 

are higher than the values in the first scenario. Therefore, in the 

second scenario, the estimation of the location of the enemy 

UAV with the EKF is more deviated. Thus, a greater deviation in 

the z direction is seen in the trajectory of the ally UAV. 
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Figure 6: xy-axis trajectory of the UAVs in the second scenario 

 

Figure 7: 3D trajectory of the UAVs in the second scenario 

5. Conclusions 

In this study, an escape path prediction algorithm that 

combines Extended Kalman Filter and Nonlinear Programming 

is presented. The algorithm was implemented on MATLAB and 

the simulations of the scenarios were made on MATLAB. As a 

result of the simulations, it has been observed that different 

standard deviation of measurement noise values cause different 

results in EKF and accordingly nonlinear programming finds 

different solutions. Thus, the quality of radars in aircrafts can be 

an important factor for an artificial intelligence based algorithms 

like the given in thispaper. 
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