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ABSTRACT
The main objective of this study is destined to combine the Analytical Hierarchy Process (AHP), 
Weight of Evidence (WOE), Logistic Regression (LR) methods and geographic information system 
(GIS) to predict landslide susceptibility of the Echorfa region (northwestern of Algeria). Nine 
factors such as slope, aspect, lithology, distance to faults, lineaments density, distance to the streams, 
precipitations, land use and altitude are included in landslide susceptibility evaluation process. A 
detailed landslide inventory map was established by satellite images and filed surveys. Three 
landslide susceptibility maps are established using the different statistical models. Five landslide 
susceptibility categories are generated by the GSI classification nil, low, moderate, high and very high 
susceptibility. The performance of the different models in landslide susceptibility is calculated based 
in the area under curve of the Receiver Operating Characteristic (ROC) which give a satisfactory 
result. The results showed that the WOE is more performance than the two other techniques. The 
produced landslide susceptibility maps provide important spatial information about landslide prone 
area, where the constructed map’s content will help the decision makers in land use planning.
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1. Introduction 

Landslides are geodynamic phenomena that occur 
in many part of the world and often the most severe on 
the earth surface. They cause changes to the landscape 
and can destroy building, structures and sometimes 
it reaches catastrophic levels and cause a death. 
These slope movements occur during earthquake, 
and /or during intense rainy periods with prolonged 
precipitation and the combined action of various geo-
morphological factors (Roukh, 2020). 

This problem is currently one of the major 
concerns of the scientists responsible for the 
geological risks management. Nowadays, landslide 

susceptibility mapping become a consistent method 
used in landslide prone area zoning. This technique 
is based in the application of quantitative, semi 
quantitative and qualitative models to calculate spatial 
distribution of the landslide susceptibility index 
(LSI). Several guidelines are developed in the term 
of landslide susceptibility, hazard and risk zoning for 
land use planning destined to local, state and national 
government officials, land use planners, geotechnical 
professionals and project managers (Flentje et al., 
2007; Fell et al., 2008)  

In the practice, several models based on 
geographic information system are used in the 
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Batuğhan YIKMAZ, Sami Aytaç ÖZDEMİR, Sermet GÜNDÜZ, Tuğçe CAN, İmam ÇELİK, Abdullah GÜRER, Sinem AYKAÇ,
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landslide susceptibility mapping. The bivariate 
statistical methods is largely used for evaluate 
landslide susceptibility versus authors (Süzen and 
Doyuran, 2004; Mohammady et al., 2012; Zine El 
Abidine and Abdelmansour, 2019). The multivariate 
statistical models are also integrated in several works 
related to landslide susceptibility zoning, (Baeza and 
Corominas, 2001; Santacana et al., 2003; Ercanoğlu 
et al., 2004), machine learning ensemble (Micheletti 
et al., 2014;  Pham et al., 2017; Chen et al., 2018). 
Artificial neural network (ANN) models are applied 
in calculation weights for landslide susceptibility (Lee 
et al., 2004; Yılmaz, 2009; Zare et al., 2013). Others 
researches are compared several models to selected 
the adopted landslide susceptibility model (Xu et 
al., 2012; Bourenane et al., 2016;  Chen et al., 2017; 
Merghadi et al., 2018; Mahdadi et al., 2018; Karim et 
al., 2019).

The favorable geological, geomorphological and 
climatic conditions make certain regions located 
in northern part of Algeria prone to landslides 
phenomena; these phenomena cause annual few 
human losses and considerable damage in term of 
basic infrastructure such as highways, private and state 
property (Guemache et al., 2011; Djerbal et al., 2017; 
Achour et al., 2017; Hallal et al., 2019) . Attempts have 
been made to the landslide susceptibility mapping 
(Bourenane et al., 2015; Hadji et al., 2017; Dahoua et 
al., 2017; El Mekki et al., 2017; Mahdadi et al., 2018; 
Zine El Abidine and Abdelmansour, 2019; Karim et 
al., 2019; Roukh, 2020). However, these studies are 
insufficient in relation to the large area of this part of 
the country.    

The objective of this study is to establish 
a comprehensive methodology based on the 
exploitation of multi - source data in order to the 
landslide susceptibility mapping of the Echorfa 
sector sited in Oran region (north western of Algeria). 
Therefore, an integrated analytical approach consists 
of: i) the establishment of database contains the 
landslide causative factors and landslide inventory, 
ii) the estimation of the weighting of each parameter 
by integration of the AHP, WOE and LR methods 
coupled with GIS functionalities, iii) the evaluation 
and the mapping of the landslide susceptibility and iv) 
validation and interpretation of the obtained results.  

2. General Characteristic of the Study Area

The study area is part of the Beni Chougrane 
Mountains sited in northwestern of Algeria 
(Figure 1a). It’s located at the intersection of eight 
municipalities: Sig, Zahana, Echorfa, El Gaada, Ogaz 
(Wilaya of Mascara), Makedra (W. Sidi Bel Abbes) 
and Oued Tlelat and Tafraoui municipality (W. Oran) 
(Figure 1b). This zone covers an area of 408 km² and 
a total perimeter of 89.761 km². It is located exactly 
between the longitude (727595.762, 760285.913) and 
latitude (3923356.604, 3937796.033 according to 
(WGS_1984_UTM_Zone 30N) coordinate projection 
system. 

The Bas Chelif basin is part of the western 
Algerian sublittoral Neogene basins. The significant 
Neogene sedimentation covers the western part of this 
intra-mountainous basin, of which the Miocene covers 
the vast majority of the deposits. It is surrounded by 
the northern foothills of the Dahra and the Arzew 
mountains, and by the mountains of Tessala and Beni 
Chougrane and the secondary-age Ouarsenis massif 
to the south, which provides it with material through 
erosion. The study area is part of the Lower Chelif 
Cenozoic sedimentary complex. According to the 
geological map (Figure 2), three regions are distinct: 
i) a mountainous area corresponds to an anterogenic 
period occupying the southwestern half of the map, 
ii) a plateau area visible on the northwestern part of 
the map occupied by the plain of M’Léta. From the 
litho - stratigraphic point of view: i) The secondary 
represented by shales and marl of Cretaceous age 
constitutes the substratum of a Cenozoic cover. This 
substratum is visible in the valley of Oued Mekedra 
and in the depression west of the lauriers roses, these 
are black - grey marly limestones intercalated with 
hard fine - paste limestone banks, ii) the Cenozoic is 
mainly located in the southern part of the map, and 
it is represented by the Neogene formations. The 
Miocene: it is typically transgressive deposits on 
secondary terrain such as the following formations; 
Middle Miocene: a sequence of detritus, siltstones, 
sandstones and gray argillite conglomerates (200 m 
thick). The Upper Miocene: the base levels of the 
Miocene series are generally detrital and represented 
by silts and red conglomerates resting on a thin 
lithological formation of cinerite, these formations 
are particularly well developed in Djebel Touakes, 
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Figure 1- a) Geographic position of the study area versus the Chelif basin northwestern of Algeria, b) geographic location versus municipalities 
division of the NW of Algeria.  
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above which plastic blue marls have been found 
containing a microfauna characteristic of the upper 
Miocene and finally the series ends with gypsum and 
gypsum - marly, iii) The Pliocene: discordant with 
previous formations appears: Lower / Middle Pliocene 
(Calabrien): represented by reddish sandstones well 
cemented down to tender limestones and sandy marls 
of which the latter are part of marine formations. Upper 
Pliocene: it is a heterogeneous alternation of marl, 
sand silts and conglomerates (continental formations); 
iv) the Quaternary: the Quaternary formations 
occupies all northwest and northeast of the map, they 
are represented by: Early Quaternary corresponding 
to a calcareous carapace hiding the subjacent terrain. 
Recent Quaternary represented by non - rudoinous 
argilo - limoneous alluvial named recent alluvial.  The 
current forms the major bed rivers.

The study area is defined by four morphological 
units: i) a mountainous area in the south of the plain 
represented by the Tessala Mountains and those 
of Beni Chougrane; ii) a depression zone in the 

northwest represented by the M’Leta plain; iii) another 
depression zone located in the NE represented by the 
El Habra Plain, iv) an area of the plateaus located in 
the center represented by the Zahana and Sig plateaus.

The study area is located in the intersection of 
three sub-watersheds (Figure 3), the Sebkha of Oran 
watershed code 04 - 04, El Habra watershed code 
11 - 06 and the Echorfa watershed code 11 - 04. The 
hydrographic network characterized by a high density 
where the main rivers in this area that of Oued El 
Mebtouh which feeds the Mactaa swamps and the 
second river that of Oued Tlelat whose runoff reaches 
at Dayat Oum Ghezal.

The climate of the study area compared to the 
country’s climate is characterized by a contrasting 
climate, a Mediterranean climate on the coast and 
desert climate in the south. The Mascara region 
is located in the Oran high plains; addressed as 
intermediate, hot and dry in summer, cold and rainy 
in winter. The average monthly precipitation during 

Figure 2- Geological map of the study area (digitized by 1/50000 scale geological map of the St Denis-Du- Sig, Sheet N°182, B10 C7).
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the reference period (1982 - 2012) of the Echorfa 
Dam station (ANRH), was taken as reference. The 
average monthly precipitation study has shown that 
the rainy period begins in the October and split ends 
in April. During this period, it was noted maximum 
precipitation appears in November (56.0 mm) and for 
the minimum in July (1.4 mm). The average annual 
precipitation study allows us to note that: the rainiest 
year is recorded 514.9 mm; however, the driest year 
with a rainfall of 153.0 mm. The temperature together 
with precipitation is a major parameter that defines the 
climate of region; it is also one of the essential terms 
in the definition of the flow deficit. For our study area, 
the Mascara station is the only one where we were 
able to have a measurements series of this parameter 
during 2003 and 2012. Maximum temperatures in 
summer according to the exploitation of the ONM 
data, a maximum of 27.98 °C in July and the cold 
winter season with a minimum of 9.04 °C in January.  
The climatic regime of the study area is semi - arid.

The study area is part of the Algeria’s Tellian Atlas 
belt belonging to the limit of the Africa - Eurasia 
tectonic plate which forms a deformed plug about 
100 km wide. The North western of Algeria has an 
experienced several earthquakes and is among the 
09/10/1790 Oran earthquake with an macro intensity 
of I = X (Bouhadad and Laouami, 2002; Marinas 
and Salord, 1991). The 1819 Mascara events with 
an intensity of I = X and that of 1851 with an macro 
intensity of I =  VIII (Guessoum et al., 2018). Recently, 
significant earthquakes are recorded at the Echorfa 
surroundings region, the Hassine (Mascara) earthquake 
of August 1994 with a magnitude of moment Mw = 
5.7 ( Benouar et al., 1994; Ayadi et al., 2002) and those 
of Ain Temouchent (December 1999, Mw = 5.7) and 
Oran (Juan 2008, Mw = 5.5) (Belayadi et al., 2017). 
According to Thomas (1985), the study area is located 
in the Beni Chougrane zone characterized by NE - 
SW reverse fault, where in the El Habra and M’Lata 
plains the direction of the reverse faults is NW - SE. 
Therefore, the study area characterized by significant 

Figure 3- Hydrographic characteristics of the study area (watershed boundaries digitized by the 1/500.000 scale hydro - climatogical network 
and water quality monitoring of the north Algerian).
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seismicity due to several active faults (Figure 4). The 
spatiotemporal distribution of these events plays a 
very important role in slope movements triggering or 
reactivating.

3. Landslide Susceptibility Mapping

In this work, an adopted methodology is 
established for the purpose of the landslide prone 
areas zoning. This approach consists firstly to 
establishing a set of thematic maps (data collection of 
the landslide causative factors and landslide inventory 
map). Secondly, an assessment of the landslide 
susceptibility index using AHP, WOE and LR models 
and GIS environment. Thirdly, mapping the LS by 
the classification of the GSI and validating of the 
obtained results. The following flowchart represents 
the methodology used in this work (Figure 5).

3.1. Landslide Inventory Mapping

Landslide inventory map present the essential 
parameter in the landslide susceptibility mapping (Fell 
et al., 2008; Corominas et al., 2014). In this study, an 
inventory map is established by the interpretation of 
the Google Earth satellite images as well as the field 
surveys and the positioning via Global Positioning 
System (GPS) area (Figure 6). It is mentioned that no 
landslide inventory maps are established in the study 
area. The objective of this inventory is to identify, 
localized and describe the main slope movements that 
occurred in the study area as well as to build and to 
calculate the performance of landslide susceptibility 
models. 

3.1.1. Example of Some Remarkable Landslide

The expertise in - situ present a fundamental step in 

Figure 4- Main tectonic structure (Thomas, 1985) and relevant earthquakes that took place in Norwest Algeria (Belayadi et al., 2017). 
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the landslide inventory, of which the geologist expert is 
able to identify, localized measure the affected site and 
to verify the landslides inventoried by the interpreting 
of the aerial photos, satellite images, archive, press or 
the previous documents. In this work, the extensive 
field surveys allowed us to identify several landslides 
(Figure 7).

Some examples are discussed in the following 
paragraph:

A rotational landslide is located using the Google 
Earth satellite images (Figure 7a) it occupies an area 
of 8.2 Ha. Among the instability index observed are 
those deviations of the river trajectory and remarkable 
degradation in the topography.

A second rotational landside is identified from the 
Google Earth images (Figure 7b); it’s characterized by 
main and minor scrap, a sliding surface and an ablation 
zone. The area of this landslide is approximately 9 Ha.

A third translational landslide type is identified via 
the GPS during the field surveys (Figure 7c).

A rotational landslide is identified near the road 
(towards the Echorfa town) whose the observed 
coordinates are (X_UTM = 752259.7, Y_UTM = 
3931563.93) (Figure 7d).

A toppling affected the limestone formations 
are observed near El Gaada town. The coordinates 
of the site are (X_UTM = 751309.02, Y_UTM = 
3930215.64) (Figure 7e).

An old complex landslide affected the marl-
limestone formation is identified from the Google 
Earth images and verified on the field (Figure 7f). The 
area of the landslide is 6.4 Ha. 

A rock fall of limestone formations are observed 
next to the road leading from Sig to Echorfa town 
(Figure 7g). The observe coordinats of the slope 

Figure 5- Methodology flowchart for the process work.
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movement are (X_UTM = 752312.21, Y_UTM = 
3931540.77).   

According to Cruden and Varne (1996) 
classification, the slope movements concerned by this 
inventory are exclusively those which relate to the 
following phenomena: toppling, landslide (rotational 
translational and complex) and rock falls. In this 
research, landslides are used to construct landslide 
susceptibility maps which sampling in 70% of the 
total for models building and 30% for validation.  

3.2. The Landslide Causative Factors 

The processes behind landslides are very complex 
and diverse; geology, the relief and the slope exposure 
are more or less constant fundamental parameters over 
long period. Several factors can have a destabilizing 
influence on a slope such as slope, slope aspect, 
stratigraphy, distance to faults, the lineaments density, 
the altitude levels, and distance from the streams and 
other triggering factors related to the precipitation and 

the groundwater circulation as well as earthquakes 
which trigger or reactivate ground movements. 

In this study nine parameters are integrated into 
a GIS environment such as, slope, aspect, lithology, 
lineaments density, and distance to faults, precipitation 
and distance to the streams, land use and altitude in 
order to assess the landslide susceptibility index. 

3.2.1. Slope Degree

 Presents a fundamental parameter in the landslide 
susceptibility evaluation, the variation of the slope 
directly influence in the landslide process, in this 
context the slope map (Figure 5a) is derived from the 
digital elevation model (DEM) of the study area and it 
reclassified into five classes (0 - 10°), (10 - 20°), (20 - 
30°), (30 - 40°) and > 40° using the ArcGIS software 
modules (Figure 8a).

3.2.2. Slope Aspect 

This factors influences in the slope instability by 
the soil concentration moisture changes according to 

Figure 6- Landslide inventory map. 
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Figure 7- Example of some remarkable landslide inventoried in the study area; a) Active rotational landslide, b) rotational landslide identified 
by Google Earth, c) translational landslide, d) rotational landslide, e) topples, f) complex landslide and g) rock fall.
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the slope exposure in relation to precipitation and wind 
in one hand, in other hand by the fractures orientation. 
The slope aspect direction measured from 0 to 360°. 
Using DEM and GIS allowed extracting the slope 
direction value, which classified into eight directions 
(Flat, N, NE, E, SE, S, SW and NW) (Figure 8b).

3.2.3. Lithology

 The type of the terrain is one of the most causative 
parameters for landslide process; the mechanical 
characteristics of the soil represent the basic data 
imposed by their type and their history. The significant 
lithological variation, in the same geological formation 
can be influenced on the slope movements’ distribution. 
The lithological map of the study area is established 
by the digitization of the lithological formations of 
the Saint Denis de sig 1:50,000 scale geological map. 
According to the lithological characteristics (Table 1), 
the lithological map is established by the classification 
of the outcropped lithological formations into five 
units (Figure 8c). 

3.2.4. Distance To Faults 

Areas located proximity to faults zones are heavily 
fractured and present zone of weakness, which provide 
a geological condition for landslides to occur. In this 
study, the Euclidian distance was applied to generate 
the fault buffer zone map and then reclassified into six 
classes with 500 m of interval < 500, 500-1000, 1000- 
1500, 1500-2000, 2000-2500 and > 2500 m (Figure 
8d).   

3.2.5. Lineaments Density

The density map represents the number of 
lineaments by the area (number / km²). The lineament 
density indicates the rock fracturing degree. In this 
study, the lineaments are extracted by the treatment 
of the Hillshade images produced by the DEM. As a 
result, the lineament density varies from 0 and 6, their 
classification into five classes allowed us to produce 
the lineament density map of the study area (Figure 
8e).

3.2.6. Precipitation

Represent all the meteoric water which fall on the 
earth’ surface in liquid or solid form, the precipitation 
volume participates in the landslides triggering. 

Areas with heavy rainfall are more susceptible to the 
landslides. The average annual precipitation map of 
the study area is generated from the North Algeria 
precipitation map (ANRH, 2007). They classified into 
four zones 250, 300, 350, 400 mm / year (Figure 8f).

3.2.7. Distance to Streams

 The proximity to the streams increases the degree 
of the susceptibility due to erosion caused by the 
water current in the foot of the talus. The distance 
to the streams map realized by the buffer zone of the 
hydrographic network which is classified into five 
classes (0 - 100, 100 - 200, 200 - 300, 300 - 400, 400 
– 500 and >500m) (Figure 8g).

Table 1- Description of the lithological formations outcropped in 

the study area. 

Symbol Age Type of formation Classes  

a Actual Major rivers bed formation  Class 5

qa

Quaternary 

Clay-silt alluvium Class 1

qec Limestone Class 1

qp Accumulation glacis Class 4

qr Level of rivers rebufied terrace  Class 4

qs El Habra plain halipeds  Class 1

qv Oued Sig polygenic glacis Class 5

q1b Diversifying crusts  Class 5

q1f Scree slopes Class 4

q1t Limestone shell Class 1

qc Limestone shell Class 1

p
Pliocene

Sandstone and marine sandy marl Class 5

pc Sandy marl and red conglomerate Class 5

ma

Miocene

Gypsum and gypsum marl Class 4

mb Fine sand Class 5

mc Limestone (gypsum series) Class 1 

md Marly-limestone Class 4

mg Sand, sandstone and conglomerate Class 4

ml Lithothamniac limestone Class 2

mm Blue marl Class 4

mr Silt and red conglomerate Class 4

ms Sandy marls Class 5

mt Tripoli and tripoli marl Class 4

c5_4
Cretaceous

Marly-limestone Class 3 

c8_7 Marly-limestone Class 3
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Figure 8- Landslide conditioning factors included in the landslide susceptibility process; 
a) slope degree, b) aspect, c) lithology, d) distance to faults, e) lineaments 
density, f) precipitation, g) proximity to the streams, h) land use, i) altitude. 

Figure 8- (Continue).

Figure 8- (Continue).
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Figure 8- (Continue).
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Figure 8- (Continue).
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3.2.8. Land Use

The land use type plays a very important role in 
the slope stability, where the forested area are the 
least prone to landslide compared to region with 
no vegetation. In this context, the land use map is 
established by the digitalization of three 1/25000 scale 
land use maps (Beneder, 2011), the produced map 
contain eleven classes (Figure 8h).

3.2.9. Altitude

The altitude is the vertical elevation of a place 
from the sea level. It is a very important factor 
which effect land sliding by the fact that difference 
of several parameters between the different altitude 
levels as temperature, precipitation and the intensity 
of the gravity which varies according to the altitude. 
The altitude map of the study area generated by the 
classification of the DEM value into six classes: 
<100, 100-200, 200-300, 300,400, 400-500 and >500 
(Figure 8i).

3.3. Analytical Hierarchy Process Method

The AHP method is a multicriteria decision 
making approach. It is based in complex calculation 
using matrix algebra formulation. It was developed 
by Saaty, 1980. This model has been used in several 
domains, such concerning: The planning of the 
combined transportations, the rationing of the energy, 
the risks management, the comparative analysis of 
the logistic operations, flood hazard and landslide 
susceptibility. 

The AHP model consists to apply the following 
steps: i) establishment decision making problem 
into hierarchy, ii) establishment of comparative 

judgment, iii) synthesis of priorities and estimating of 
consistency. 

In literature,  several studies were based on 
AHP model  to evaluate the weight of  the landslide 
conditioning factors but not for the different classes 
of the landslide conditioning factors such as the of 
work of (Barredo et al., 2000; Akgün and Türk, 2010; 
Mondal and Maiti, 2012). Other researchers used AHP 
model to calculate the weight of landslide conditioning 
factors and their different classes, ( Intarawichian and 
Dasananda, 2010; Yalcin et al., 2011; Phukon et al., 
2012; Chen et al., 2016). In this research, the AHP 
technique was used to calculate the weights for each 
landslide conditioning factors.

In AHP model, to compute the weight of each factor 
a pair - wise comparison matrix should be established; 
this is done by comparing each factor against others 
factors using a value between 1 and 9 or 1/2 and 1/9 
according to the effectiveness degree (Table 2). 

These judgments are confirmed using consistency 
ratio, is defined as CR (Equation 1)  Saaty, 1977. 

CR= CI
RI 

(1)

Where RI is the average of the resulting consistency 
index depending on the order of the matrix given by 
Saaty, 1980  and CI is the consistency index expressed 
as:

CI=
λmax-n
(n-1)   

(2)

Where λ max is the largest or principal eigenvalue 
of the matrix and that can be easily calculated from 
the matrix and n is the order of the matrix. If CR is 
greater than 0.1, the comparison matrix is inconsistent 
and should be revised

Table 2- Scale of preference between two parameters in AHP (Saaty, 1977). 

Scales Degree of preferences Explanation

1 Equally Two activities contribute equally to the objective.

3 Moderately Experience and judgment slightly to moderately favor one activity over another.

5 Strongly Experience and judgment strongly or essentially favor one activity over another.

7 Very strongly An activity is strongly favored over another and its dominance is showed in practice.

9 Extremely The evidence of favoring one activity over another is of the highest degree possible of an affirmation.

2, 4, 6, 8 Intermediate values Used to represent compromises between the preferences in weights 1, 3, 5, 7 and 9.

Reciprocals Opposites Used for inverse comparison.
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Table 3 indicates that for the present case the 
CR value is less than 0.1, which demonstrate that 
the preferences used to elaborate the comparison 
matrix, are reasonable.  The weight values of each the 
conditioning factors are defined and calculated by the 
establishment of the AHP model (Table 3). 

Finally, the LSM was constructed using AHP 
model by the following equation:

 (3)

Where Wj is the weight value of each conditioning 
factors , (wij) is the weight value of class i of causative 
factor j, and n is the number of the conditioning factors 
included in the landslide susceptibility process.

For the weighting value of each class (wij) 
we attribute of each class a rank varies from 1 to 
9 according to the susceptibility degree, Table 4 
summarized the calculation results in this study.    

3.4. Weight of Evidence Method

The WOE method is one of the most bivariate 
Bayesian statistical methods used in earth sciences, 
this method was applied in several domains such 
as identification of mineral potential (Bonham-
Carter, 1989), landslide susceptibility (Regmi et al., 
2010)  and flood susceptibility (Tehrany et al., 2014; 
Khosravi et al., 2016). Weight of each landslide 
conditioning factors can be estimated by combining 
each conditioning factor with landslide inventory 

(presence or absence of landslide, following Equation 
4, 5and 6 (Bonham-Carter, 1994)):

 
(4)

 
(5)

Where, P is the probability, B and B are 
respectively the presence or absence of potential 
landslide predictive factor, L and  L are respectively 
the presence or absence of landslide. W+ and W- are 
the weight of presence or absence of landslide. 

 (6)

 Where, WC is the weight contrast; indicate the 
correlation between landslide occurrence and landslide 
conditioning factors. 

Positive and negative values of the weight contrast 
WC, which mean that the highest value, indicate a 
great correlation between predictable variable and 
landslide and vice versa. 

The intersection between different causative 
factors and landslide inventory map (training data) 
allowed us to extract a database contain landslide area 
in each class, stable area in each class, total of landslide 
area and total of stable area. Their statistical analysis 
allowed estimates W+, W- and WC using Equation 4, 5 
and 6, respectively (Table 5). Landslide susceptibility 
index were assigned by integrate equation in map 
algebra function in ArcGIS:

Table 3- The pair - wise comparison matrix, factor weights and consistency ratio, slope [1], aspect [2], lithology [3], distance to faults [4],  
lineaments density [5], precipitation [6], proximity to streams [7], land use [8], altitude [9]. 

Parameter [1] [2] [3] [4] [15 [6] [7] [8] [9] Weight

[1] 1 4 2 3 5 3 2 6 7 27.662

[2] 1/4 1 1/3 1/2 1 1/2 1/3 2 4 06.574

[3] 1/2 3 1 2 3 2 1 4 3 16.228

[4] 1/3 2 1/2 1 2 1 1/2 2 3 09.532

[5] 0,2 1 1/3 1/2 1 1/2 1/3 2 3 06.104

[6] 1/3 2 1/2 1 2 1 1/2 2 4 09.851

[7] 1/2 3 1 2 3 2 1 4 5 16.867

[8] 1/6 1/2 1/4 1/2 1/2 1/2 1/4 1 2 4.237

[9] 1/7 1/4 1/3 1/3 1/3 1/4 0,2 1/2 1 2.943

CR = 0.018 ∑(W) = 100
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Table 4- Rank, and normalized Rank of each class, AHP weighting of each parameter and general weighting of each class.  

Parameters Class Rank Normalized rank (Wi) W (AHP) Weighting

Slope (°)

<10 1 0.040 27.662 1.106
10-20 3 0.120 27.662 3.319
20-30 5 0.200 27.662 5.532
30-40 7 0.280 27.662 7.745
>40 9 0.360 27.662 9.958

Aspect

Flat 1 0.025 6.574 0.164
N 5 0.128 6.574 0.841
NE 3 0.076 6.574 0.500
E 2 0.051 6.574 0.335
SE 2 0.051 6.574 0.335
S 5 0.128 6.574 0.841
SW 6 0.153 6.574 1.006
W 7 0.179 6.574 1.177
NW 8 0.205 6.574 1.348

Lithology

Class 1 2 0.076 16.228 1.233
Class 2 3 0.115 16.228 1.866
Class 3 5 0.192 16.228 3.116
Class 4 7 0.269 16.228 4.365
Class 5 9 0.346 16.228 5.615

Distance to 
faults (m)

0-500 9 0.333 9.532 3.177
500-1000 7 0.259 9.532 2.471
1000-1500 5 0.185 9.532 1.765
1500-2000 3 0.111 9.532 1.059
2000-2500 2 0.074 9.532 0.706
>2500 1 0.037 9.532 0.353

Lineaments 
density (n/km²)

0 – 0.51 1 0.047 6.104 0.287
0.51 – 1.38 2 0.095 6.104 0.580
1.38 – 2.17 4 0.190 6.104 1.160
2.17 – 3.08 6 0.285 6.104 1.740
3.08 –5.49 8 0.380 6.104 2.320

Precipitation 
(mm/year)

<250 1 0.090 9.851 0.887
250-300 2 0.181 9.851 1.783
300-350 3 0.272 9.851 2.679
>350 5 0.454 9.851 4.472

Distance to 
streams (m)

<100 8 0.333 16.867 5.617
100  – 200 6 0.250 16.867 4.217
200  – 300 4 0.166 16.867 2.800
300  – 400 3 0.125 16.867 2.108
400  – 500 2 0.083 16.867 1.400
>500 1 0.041 16.867 0.692

Land use

Urban 4 0.108 4.237 0.458
Tree crops 1 0.027 4.237 0.114
Vegetable growing 3 0.081 4.237 0.343
Forest-maquis wooded- maquis 1 0.027 4.237 0.114
Big culture 4 0.108 4.237 0.458
Olive growing 1 0.027 4.237 0.114
Wine-growing 2 0.054 4.237 0.229
Bare soil 8 0.216 4.237 0.915
Rivers 7 0.189 4.237 0.801
Road network 6 0.162 4.237 0.686

Altitude (m)

<100 1 0.035 2.943 0.103
100  – 200 2 0.071 2.943 0.209
200  – 300 4 0.142 2.943 0.418
300  – 400 6 0.214 2.943 0.630
400  – 500 7 0.250 2.943 0.736
>500 8 0.285 2.943 0.839
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Table 5- Statistical analysis of the WOE parameters and weight of each conditioning factor. 

Parameter Class Pixels in Landslide 
pixels classes

W+ W- C
the classes

Slope (°)

0 – 10 1759734  2075 -0.9979085 0.8379506 -1.8358591
10-20 706082  4877 0.77546774 -0.56545143 1.34091918
20 – 30 132384  1103 0.96436012 -0.09014597 1.05450609
30 - 40 13289  245 1.76884112 -0.0248005 1.79364162
> 40 436  38 3.3948006 -0.00441496 3.39921556

Aspect

Plat 59886  6 -3.46458842 0.02254948 -3.48713791
N 448266  1468 0.02559732 -0.00538576 0.03098308
NE 365636  813 -0.36263845 0.04837752 -0.41101597
E 303316  1153 0.1752127 -0.02546451 0.20067721
SE 286127  1726 0.63927771 -0.11626756 0.75554527
S 218225  686 -0.01545604 0.00139737 -0.0168534
SW 200455  408 -1.50799814 0.06288188 -1.57088002
W 261235  1936 -0.7164873 0.05538602 -0.77187332
NW 468779  142 0.25847951 -0.0666118 0.32509131

Lithology

Class 1 998012  0 0 0 0
Class 2 504972  332 -1.57795563 0.1746274 -1.75258303
Class 3 15538  0 0 0 0
Class 4 751227  6541 1.01363738 -1.21505342 2.2286908
Class 5 342175  1426 0.27223717 -0.04826394 0.32050111

Distance to  0-500  282420 921  -2.3402519  0.51924938 -2.85950130
 Fault (m)  500-1000  303698 1967  0.30942590  -0.3997504 0.34940095
  1000-1500  330899 1936  0.70227021  -0.1532889 0.85555911
  1500-2000  320918 2061  0.60850033  -0.1291375 0.73763786
  2000-2500  255011 1108  0.71079527  -0.1458925 0.85668780
  >25000  1118978 345  -0.9965183  -0.0026253 -0.95789279
Lineaments 0 - 0.51 1185867  223 -2.83480325 0.58057402 -3.41537727
density 0.51 - 1.38 514074  2063 0.22963675 -0.06527754 0.29491429
(km/km²) 1.38 - 2.17 427344  2832 0.54645869 -0.23699526 0.78345395
 2.17 - 3.08 340810  2265 0.73673936 -0.1776738 0.91441316
 3.08 - 5.49 143829  955 0.73581456 -0.06520433 0.8010189
Distance 0 - 100 1187425  5344 0.34476434 -0.42279188 0.76755622
To 100 - 200 827835  2281 -0.14761911 -0.14103651 -0.00658259
 Streams (m) 200 - 300 426302  521 -0.96210874 0.11404971 -1.07615845
 300 - 400 141918  189 -0.87610342 0.03304562 -0.90914905
 400- 500 25403  3 -3.30007054 0.00944381 -3.30951435
Precipitation 250 409260 255 -1.63639749 0.1398383 -1.77623579
(mm/year) 300 1311790  169 -0.29222467 0.22800147 -0.52022613
 350 711342  4785 0.74890377 -0.5364303 1.28533409
 400 179532  3129 -1.22344662 0.05090179 -1.27434841

Land use

Urban 58744 0 0 0 0
Tree crops 2891 0 0 0
Vegetable growing 713 0 0 0 0
Forest-maquis wooded- maquis 309301 441 -0.80650041 0.07176416 -0.87826456
Big culture 1336674 2122 -0.69965686 0.42439734 -1.1240542
Olive growing 66130 0 0 0 0
Wine-growing 25103 0 0 0 0
Bare soil 632357 5493 1.00684737 -0.80267428 1.80952165
Rivers 13515 0 0 0 0
Road network 167799 282 -0.64290247 -0.03440622 -0.60849624

Altitude(m) < 100 81259  0 0 0 0

 

100 - 200 408742  474 -1.01479799 0.11206231 -1.1268603
200 - 300 687331  1993 -0.0960651 0.41126357 -0.50732867
300 - 400 544439  2612 0.40886173 -0.0629098 0.4717716
400 - 500 608334  2924 0.41099391 -0.1672183 0.57821221
>500 281820  334 -0.99234467 0.0734715 -1.06581618

Distance to
Fault (m)

Distance to
Streams (m)

Precipitation
(mm/year)

Lineaments 
density 
(km/km²)
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LSIWOE= Slope * WC + Aspect * WC + Lithology * 
WC + Distance to fault * WC + Annual precipitation 
* WC + Distance to spring * WC + Distance to spring 
* WC +  Distance to drainage * WC + Land use * WC 
+ NDVI * WC + STI * WC + SPI * WC + Plan of 
curvature * WC + Profil of curvature * WC + Altitude 
* WC (7)                                                                           

3.5. The Logistic Regression Method 

Logistic regression is one of the most widely 
used statistical methods in geosciences. The method 
is based on the relationships established between the 
values of certain quantitative or qualitative variables 
and the presence or absence of a certain phenomenon. 
For landslides, it allows to determine the relative 
contributions of the different causes, also benefiting 
from the graphical expression of the prediction 
model. One of the most important advantages of this 
method is that the independent variables can have 
both continuous and discrete values, occurring in 
any combination of the two types. Also, compared to 
other statistical methods, it does not require a normal 
distribution of values. The probability (P) of landslide 
occurrence, calculated for each elementary surface 
unit, can take values between 0 and 1, according to 
the Equation 8:

 (8)

Where, P(y) varies from 0 to 1, Y is expressed by 
the following linear equation

Y= bo+b1x1+b2x2+....+bnxn  (9)

Where, Y is the dependent variable presented by 
the absence (0) or presence (1) of a phenomenon, b0 
is the intercept, b1, b2, ..., bn are the partial regression 
coefficients, x1, x2, ..., xn are the independent variables 
(predisposing factors).

In this study, a data base contains the raster 
landslide and the conditioning factors maps created by 
the combine module in ArcGIS software and converted 
in dbf format. For the analysis process, the correlation 
between the landslide distribution and each causative 
factor are calculated using Xlstat package, in order to 
produce a LSM. For each conditioning factor class, 
the ratio between the landslide percentage and the 
percentage of the same class is used to estimate the 

weight of each class (Table 6). A quantitative value 
from 0 to 1 is given as weight factor for each class.

For this study, the logistic regression model 
established is given in following equation: 

P(y) = 1 / (1 + exp (- ( -8,18464 - 0,12674 * Fault 
+ 0,14324 * Precipitation + 0,25625 * Lineament 
Density -0,69206 * Distance to streams + 0,23182 * 
Land use + 0,22328 * Slope + 0,52545 * Lithology 
-0,00363 * Aspect + 0,13794 * Altitude))) (10)

4. Findings

The obtained pair wise comparison matrix (Table 
4) showed the most influenced parameters to the 
landslide is the slope with a weighting of 0.228 as 
well as the lithology and the distance to the streams. 
The least influenced parameters for the landslide 
occurrence are the land use and the Altitude.

The outcome of this analysis indicates that the 
LSI increase with the slope degree increasing. Aspect 
analysis indicates that north, south, western and north 
western slope directions of the reliefs are the most 
susceptible by the landslide. The major rivers bed 
formation, clay-silt alluvium, accumulation glacis, 
the river Sig polygenic glacis, sandy marls, fine sand, 
sandy marl and red conglomerate, sandstone and 
marine sandy marl, screed slopes and  diversifying 
crusts  present the most susceptible outcropping 
formations to landslides. Areas located near faulting 
zone present the most susceptible zone to the landslides. 
The outcropped lithological formations characterized 
by high lineaments density represent the weakness 
areas which are the most landslide prone areas. The 
landslides are directly related to the precipitations, in 
this area the landslide susceptibility increase with the 
precipitation increasing, the most prone areas that are 
characterized by heavy rainfall. We mentioned that 
areas located near the streams characterized by the high 
and very high susceptibility where the important flow 
velocity erodes the lower part of the talus. The areas 
that are characterized by high density of vegetation 
like forest lands, scrublands provide hydrological and 
mechanical effects that typically stabilize slopes witch 
considered as the less landslide susceptible areas, in 
this area the barren land, the rivers zone and road 
network areas considered as the most landslide prone 
areas where the slope stability effects are absents. In 

LSIwoe= Wc*Slope + Wc*Aspect + Wc*Lithology 
+ Wc*Distance to faults + Wc* Lineaments density 
+ Wc* Precipitaton + Wc*Distance to streams + 
Wc*Land use + Wc* Altitude            (7)

Logistic regression is one of the most widely 
used statistical methods in geosciences. The method 
is based on the relationships established between the 
values of certain quantitative or qualitative variables 
and the presence or absence of a certain phenomenon. 
For landslides, it allows to determine the relative 
contributions of the different causes, also benefiting 
from the graphical expression of the prediction 
model. One of the most important advantages of this 
method is that the independent variables can have 
both continuous and discrete values, occurring in 
any combination of the two types. Also, compared to 
other statistical methods, it does not require a normal 
distribution of values. The probability (P) of landslide 
occurrence, calculated for each elementary surface 
unit, can take values between 0 and 1, according to 
the Equation 8:

4. Results and Discution
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contributions of the different causes, also benefiting 
from the graphical expression of the prediction 
model. One of the most important advantages of this 
method is that the independent variables can have 
both continuous and discrete values, occurring in 
any combination of the two types. Also, compared to 
other statistical methods, it does not require a normal 
distribution of values. The probability (P) of landslide 
occurrence, calculated for each elementary surface 
unit, can take values between 0 and 1, according to 
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areas which are the most landslide prone areas. The 
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precipitation increasing, the most prone areas that are 
characterized by heavy rainfall. We mentioned that 
areas located near the streams characterized by the high 
and very high susceptibility where the important flow 
velocity erodes the lower part of the talus. The areas 
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like forest lands, scrublands provide hydrological and 
mechanical effects that typically stabilize slopes witch 
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Table 6- Statistical analysis of the LR model and weight of each conditioning factor. 

Parameters Class
Pixels

in
classes

Landslide 
pixels 
classes

% of total
area

% of 
landslide

area
Factor weight LR LR weighting

Slope (°)

<10 1759734 2075 67.373068 24.886064 0.42546648

0.22383

0.095232161
10-20 706082 4877 27.033012 58.491245 1 0.22383
20-30 132384 1103 5.068446 13.228592 0.22616363 0.050622204
30-40 13289 245 0.508782 02.938355 0.0502358 0.011244279
>40 436 38 0.016693 0.455745 0.00779168 0.001744011

Aspect

Flat 59886 6 2.292792 0.07196 0.00309917

-0.00363

-0.00001125
N 448266 1468 17.162285 17.606141 0.75826446 -0.0027525
NE 365636 813 13.998717 9.75054 0.41993802 -0.00152438
E 303316 1153 11.612738 13.828256 0.59555785 -0.00216188
SE 286127 1726 10.954641 20.700408 0.89152893 -0.00323625
S 218225 686 8.354949 8.227393 0.35433884 -0.00128625
SW 200455 142 7.674608 1.703046 0.07334711 -0.00026625
W 261235 408 10.001627 4.89326 0.2107438 -0.000765
NW 468779 1936 17.947644 23.218997 1 -0.00363

Lithology

Class 1 998012 0 38.209826 0 0

0.52545

0
Class 2 504972 332 19.333327 3.98177 0.05075677 0.026670142
Class 3 15538 0 0.594887 0 0 0
Class 4 751227 6541 28.761431 78.448069 1 0.52545
Class 5 342175 1460 13.100491 17.510194 0.22320746 0.11728436

Distance to 
faults (m)

0-500 1118633 921 42.827914 11.045814 0.44687045

-0.12674

-0.05663636
500-1000 253903 1967 9.720915 23.590789 0.95439107 -0.12095952
1000-1500 318857 1936 12.20774 23.218997 0.93934983 -0.1190532
1500-2000 328963 2061 12.594657 24.718158 1 -0.12674
2000-2500 301731 1108 11.552055 13.288558 0.53760311 -0.06813582
>25000 281499 345 10.777453 4.137683 0.16739447 -0.02121557

Lineaments 
density (n/km²)

0 – 0.51 1185867 223 45.402031 2.674502 0.07874294

0.25625

0.020177878
0.51 – 1.38 514074 2063 19.681806 24.742144 0.72846045 0.186667991
1.38 – 2.17 427344 2832 16.361266 33.96498 1 0.25625
2.17 – 3.08 340810 2265 13.048231 27.164788 0.79978814 0.20494571
3.08 –5.49 143829 955 5.506628 11.453586 0.33721751 0.086411988

Precipitation 
(mm/year)

<250 409260 255 15.668903 3.058287 0.05329154

0.14324

0.00763348
250-300 179532 169 6.873551 2.026865 0.0353187 0.005059051
300-350 711342 4785 27.234396 57.387863 1 0.14324
>350 1311790 3129 50.223111 37.526985 0.6539185 0.093667285

Distance to 
streams (m)

<100 1187425 5344 45.461681 64.092108 1

-0.69206

-0.69206
100  – 200 827835 2281 31.69444 27.35668 0.42683383 -0.29539462
200  – 300 426302 521 16.321372 6.248501 0.09749251 -0.06747067
300  – 400 141918 189 5.433464 2.266731 0.03536677 -0.02447592
400  – 500 25403 3 0.972578 0.03598 0.00056138 -0.00038851
>500 3041 0 0.116428 0 0 0

Land use

Urban 66130 0 2.531849 0 0

0.23182

0
Tree crops 25103 0 0.961092 0 0 0
Vegetable growing 2891 0 0.110685 0 0 0
Forest-maquis wooded- maquis 309301 441 11.841879 5.289038 0.080284 0.018611436
Big culture 1336674 2122 51.175819 25.449748 2.58859566 0.600088247
Olive growing 13515 0 0.517434 0 0 0
Wine-growing 713 0 0.027298 0 0 0
Bare soil 632357 5493 24.210381 65.879108 1 0.23182
Rivers 167799 282 6.424342 3.382106 0.05133807 0.011901191
Road network 58744 0 2.249069 0 0 0

Altitude (m)

<100 81259 0 3.111077 0 0

0.13794

0
100  – 200 408742 474 15.649071 5.684817 0.1621067 0.022360999
200  – 300 687331 1994 26.315112 23.914608 0.68194254 0.094067155
300  – 400 544439 2612 20.844358 31.326457 0.89329685 0.123221368
400  – 500 608334 2924 23.290638 35.068362 1 0.13794
>500 281820 334 10.789743 4.005757 0.11422709 0.015756484
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this study, the susceptibility to the landslide is increase 
with the altitude of the reliefs increasing.  

The application of the AHP method shows that the 
global landslide susceptibility index varies between 
5.647 and 31.332, their classification into five landslide 
susceptibility classes using natural break (jenks) shows 
that 17.87% of the total area characterized by null  
susceptibility to the landslide, 29.82% of the study 
area characterized by low susceptibility, 21.24% of the 
total area characterized by a moderate susceptibility, 
20.69% characterized by high susceptibility, the rest 
of the study area (10.38%) characterized by very high 
landslide susceptibility (Figure 9a, b).

According to the obtained LSM (Figure 9), the 
most landslide susceptibility areas are located in the 
east and the center part of the study area, whereas the 
northern part of the map characterized by low and null 
landslide susceptibility. 

For the weight of evidence model, the resulting 
weight contrast, are shown in (Table 5), the 

interpretation of this results demonstrate than the 
more susceptible classes correspond to slope greater 
than 40°, SE and NW facing slopes, very susceptible 
lithological formation (class 4), (1000 - 1500) class 
fault proximity field, rocks characterized by high 
density of lineament, area with high precipitation (300 
- 400), area near streams, barren land, and altitude 
range between 400 and 500 meters.  The values less 
or equal to zero of C indicate that this class does not 
affect the distribution of landslide in the Echorfa 
region. 

The final LSI of study area for WOE approach 
range between -19.1243 and 10.7522. The LSM of 
the Echorfa region was established by classification of 
LSI values into five levels (Figure 10a) using natural 
break method: Null with (27.97%) of total area, Low 
with 19.08%, Moderate with 20.63%, the High level 
20.47%, and 11.85% falls in very high level (Figure 
10b).

Figure 9- a) The AHP -landslide susceptibility map, b) distribution pie - chart of the landslide susceptibility classes.
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For the LR model and according to the Table 6 
and Equation 10, slope, lithology, lineaments density, 
precipitation, land use and altitude give positive values 
which mean that these factors contribute to occurrence 
of  the landslide. On the other hand, Aspect, distance 
to fault and proximity to streams has a negative role 
in landslides occurrence. By using Equation 10, the 
landslide occurrence probability is estimated.  The 
produced LSM using LR model indicate that 37.64 
% of the total area characterized by no susceptibility, 
30.52% presented by low susceptibility, 19.15% 
characterized by moderate susceptibility, 8.75% of 
the total area  falls in high susceptibility and the rest 
of the study area 3.93% represented by very high 
susceptibility (Figure 11).   

5. Validation 

The validation of the obtained LSMs presents an 
essential step in order to calculate the performance of 
the used method in landslides prone area zoning. In 
this context, Roc Curve validation technique is used 

to calculate the performance of the statistical models 
integrated in the landslide susceptibility mapping.   

 ROC curve method is used to validate the obtained 
LSMs established by the AHP, WOE and LR methods. 
This statistic method is based in the comparison of 
the obtained LSM and the produced inventory map 
(validation data). The realization of the ROC curve 
consists first in classifying the LSI into 100 classes 
with an interval of 1%, then, the reclassified map is 
combined with the landslide events map, and finally, 
the production of the ROC curve is based in statistical 
analysis of the converted combination result file into 
compatible Excel software format. 

To calculate the performance of the used methods, 
it is generally based on the evaluation of the area 
under curve (AUC) the ROC curve obtained. The 
AUC result is 95.13% for the WOE model, 91.92% 
for the AHP method and 83.57% for the LR model 
(Figure 12).  

Figure 10–a) The WOE - landslide susceptibility map, b) distribution pie - chart of the landslide susceptibility classes.
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ROC curve obtained for WOE, AHP and LR 
indicate that the used models in this research give 
good results in LSM. By comparing the ROC curve 
results we mentioned that the LSM produced by WOE 
method is the successful one.

6. Results

The landslides presented one of the most common 
geological hazards in the world; they cause annually a 
considerable damages and human losses. In Algeria, a 
few attempts at landslide are applied in the northeastern 
part of the country. These contributions are generally 
focused on the application of the geophysical methods 
for landslide investigations on locale scale and the 
application of statistical methods based in GIS for the 
landslide susceptibility zoning on medium scale. 

The investigations in the Echorfa region (NW of 
Algeria) indicate the lake on information about slope 
movements occurred in this area that involved the 
production of the landslide prone areas maps.       

The LSMs produced by the categories the GSI 
into five classes according to the susceptibility degree. 
High and very high susceptibility characterizes 
the reliefs of the east and central part of the study 
area. Insignificant and low susceptibility classes 

Figure 11– a) The LR - landslide susceptibility map, b) distribution pie - chart of the landslide susceptibility classes.

Figure 12- Diagram of ROC curve representing the performance of 
the statistical models.

6. Conclusion
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characterizes the northern part of this region (plains 
and plateaus) constituting the slope movements 
sheltered zones.      

The validation process of the obtained results of 
the ROC curve model indicates the aptitude of the 
three models in the landslide susceptibility mapping. 
Hence, the WOE approach gives reasonable good 
accuracy in predicting landslide susceptibility of the 
Echorfa region.     

The obtained LMSs can be considered as a 
basic document for the concerned authorities to 
take preventive measurements in the high and very 
high landslide susceptibility zones. In other hand, it 
provides a useful tool for the land use planner to select 
suitable fields for the future projects.  
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