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Abstract 

Boron Nitride Nanotube (BNNT) is a promising nano sized structure with superior electrical, physical, and 

mechanical properties comparing to Carbon nanotube. Higher Young’s modulus, oxidation resistance, hardness, 

corrosion resistance, durability in high temperature, piezoelectric and pyroelectric characteristics are some 

featured characteristics of BNNT. In this paper the critical buckling load of Boron Nitride Nanotube is 

investigated. Two different method is used. First Eringen’s nonlocal elasticity theory is employed to obtain size-

dependent critical buckling loads. Then, LAMMPS software is used to simulate molecular dynamics and obtain 

critical buckling loads. Zigzag (5,5) BNNT with 400 atoms is examined into MD simulation analyzes. 

Keywords: BNNT, Nonlocal Elasticity Theory, LAMMPS, MD Simulation. 

1. Introduction 

Since more than a decade, nanoscience has gained much popularity parallel to advances in 

technology and shrink in size of electronic devices. Starting from 1991 by Iijima’s discovery 

of carbon nanotube (CNT) [1], the interest to nanotubes and nano sized structures increased 

substantially. CNT was the first discovered nanotube and attracted great attention [2], but this 

outstanding nano sized material had some weak properties comparing to discovered and 

developed nanotubes and nano sized materials latterly. The main reason to the substantial 

increase in the interest and usage of nanomaterials was the extreme mechanical, electrical, and 

thermal properties of materials comparing to conventional materials used while these materials 

emerged around thirty years ago. Boron Nitride Nanotube (BNNT), Silicon Carbide Nanotube 

(SiCNT) are some newer types of nanotube with some advantages and disadvantages compared 

to CNT [3]. Comparing the mechanical properties of these three types of nanotube by checking 

its Young’s modulus BNNT become prominent with 1.8 TPa while CNT perform 1 TPa, and 

SiCNT around 0.62 TPa [4, 5]. BNNT has a wide usage area since their superior electrical and 

mechanical properties and physical properties. Ferreira et al. investigated the BNNT’s drug 

delivery capacity as nanovectors to kill cancer cells using magnetohyperthermia therapy by 

targeting nanbotubes to tumor areas. Results demonstrated that magnetite nanoparticles are 

linked to the nanotubes while coercivity and magnetization were stable after fusion to nanotube 

[6]. Khaleghian and Azarakhshi studied (9,9) BNNT’s quantum mechanical investigation of 
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geometrical structure and dynamic behavior [7]. Vedaei and Nadimi studied the gas sensing 

properties of BNNT toward NO2, O2 and H2O  [8]. Ashraf et al.  demonstrated the catalytic 

capabilities Cr-BNNT to oxidation of CN molecule [9]. Li et al.  analized the stability of MoS2 

sheet under uniaxial compression using MD simulation [10]. Yang et al.  studied the critical 

fracture properties of arsene using MD simulation [11]. Jiang et al.  studied the stability of blue 

phosphorus nanotube using MD simulation [12]. Also, Ajori et al. used MD simulation 

technique to study the buckling behavior x-graphyne based single- and multi-walled nanotubes 

[13]. More recently, Zhang and Zhou studied the buckling behavior of boron nanotube which 

compose only from boron atoms[14]. To analyze nanotubes by taking the size effect into 

consideration, many methods have been used such as couple stress theory [15, 16], strain 

gradient theory, nonlocal elasticity theory [17-22], surface elasticity theory, nonlocal surface 

elasticity theory [23], DSC method [24-29]. Furthermore, many research have been done 

studying vibration behavior of nanostructures [30-33]. 

2. Boron Nitride Nanotube (BNNT) 

Boron Nitride Nanotube (BNNT) is not the first nanotube discovered but it is one of the most 

promising with superior electrical, mechanical and physical properties compared to CNT. The 

structure of Boron Nitride sheet is demonstrated in Figure 1. In Figure 1, blue spheres represent 

Boron atoms while anthracite spheres represent Nitrogen atoms. Boron and Nitrogen atoms are 

bonded each other in hexagonal form.  

 

Fig. 1. Structure of Boron Nitride Sheet 

BNNTs can be obtained simply by rolling Boron Nitride sheets as it is demonstrated in Figure 

2. The rolling side of nanosheet determine the armchair, zigzag, and chiral structure of nanotube 

[34].  
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Fig. 2. Rolling Boron Nitride sheet to obtain Boron Nitride Nanotube 

 

 

Fig. 3. Armchair, zigzag, and chiral Boron Nitride Nanotube 

As it can be seen from Fig. (3) (m, n) represent the zigzag and armchair atom numbers. The 

rolling side of nanosheet determine the structure of nanotube. Armchair, zigzag, and chiral 

nanotubes have different physical, mechanical, and electrical properties which are neglected in 

continuum mechanic. On the other hand, these different properties are taken into consideration 

in MD simulation methods. 

3. Nonlocal Elasticity Theory for Nanotubes 

Due to the size in nanometer scale in nanotubes, classical continuum mechanic theories perform 

insufficient in very small sized analyzes. In this paper, Eringen’s nonlocal theory is used to take 

the size effect into consideration [35]. The nonlocal constitutive formulation is [36] 
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Where 
ij

σ represent the nonlocal stress tensor, )(xC
ijkl

 is the classical (Cauchy) or local stress 

tensor at any x  point in the body. 𝑒0𝑎 is the nonlocal parameter constant which depends on the 

material used in a range. Displacement components of a Euler-Bernoulli beam theory can be 

represented as  

𝑢1(𝑥, 𝑧) = −𝑧
d𝑤(𝑥)

d𝑥
       (2) 

𝑢2(𝑥, 𝑧) = 0      (3) 

𝑢3(𝑥, 𝑧) = 𝑤(𝑥)               (4) 

 

In above equations  𝑢1,  𝑢2, 𝑢3 are the 𝑥−, 𝑦 − and 𝑧 − of the displacement vector components 

for x,y,z axes respectively. 𝑤 is the transverse displacements. The strain-displacement 

equations can be stated as [37] 
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In Eq.(5) 11
ε  represent the axial strain. The stress-strain equations can be expressed as 
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According to Eqs. (2-4), the nonlocal stress-strain equations  
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Minimum total potential energy principle is used to derive governing equations.  
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Where 𝛿𝑈 is strain energy. The work can expressed as follows: 
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Where 𝑃 is axial force. The buckling equation and boundary conditions can be expressed as 
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Substituting  Eq. (12) into Eq. (14), the moment resultant can be obtained as follows 
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Nonlocal boundary conditions are as follows [23] 
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For a nanobeam resting on double parameter Pasternak foundation  
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In Eq. (19) 𝑘𝑤 and 𝑘𝑝 stand for double parameter foundation constants [38]. Subscript w and p 

represent Winkler and Pasternak respectively. By taking these two constant zero, the foundation 

effect would be neglected [39]. 𝜇 is the nonlocal parameter. 
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The critical buckling load for a nanobeam resting on two parameter foundation including 

nonlocal size effect can be stated as follows:  
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The real view and its continuum model of BNNT is demonstrated in Fig. 4. As it can be seen 

from the bottom of Fig. 4 the continuum model of BNNT have no structural details. Modeled 

structure can be seen as a standard tube. The effect of armchair, zigzag, or chiral structure can 

be defined to the model only by determining the material properties differently.  

 
Fig. 4. Real view (top) and continuum model (bottom) of BNNT 

4. Molecular Dynamics for Nanotubes 

Zigzag, armchair, and chiral structures details of nanotube have key role on molecular dynamic 

simulation. The chiral indices of nanotube are represented as (m, n). In this paper the chiral 

structure of BNNT is analyzed. Modeling the structure for MD simulation was done using 

Visual Molecular Dynamics (VMD). After modeling the structure, obtained data is 

implemented to LAMMPS software [40]. LAMMPS is commonly used to simulate the 

molecular dynamics and perform interactions between objects. Hence Tersoff potential is used 

to model the intercommunication between atoms of BNNT structure [41-44].    

 

2𝐸 = ∑𝑖 ∑ 𝑓𝑐(𝑟𝑖𝑗) (𝑓𝑇(𝑟𝑖𝑗) + 𝑏𝑖𝑗𝑓𝐸(𝑟𝑖𝑗))𝑗≠1    (22) 

Where 

𝑓𝑇(𝑟 ) = 𝐴𝑒(−𝜆1𝑟)     (23) 

𝑓𝐸(𝑟 ) = −𝐵𝑒(−𝜆2𝑟)     (24) 
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In above equations i,j and k represent the atom numbers, 𝜃 is the angle between atoms, 𝑟  is 
the distance between Boron and Nitrogen atoms. Moreover, 𝑓𝑇 act in place of a two-body term,  

𝑓𝐶 represent cutoff term while 𝑓𝐸 stand for three-body interactions.  

4. Numerical Results 

In this section the comparative buckling analysis of BNNT using Eringen’s nonlocal elasticity 

theory and MD simulation is presented. Zigzag (5,5) BNNT is examined with 400 atoms. The 

length and diameter of nanotube is variable with ratio from 0 to 0.1. Size dependent continuum 

mechanic results in harmony with our previous studies [45-56] and MD simulation results.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Critical buckling load of BNNT 



K. Mercan, Ö. Civalek 

 196 

As it is seen from Figure 5, the critical buckling load of BNNT rise with increase in diameter 

to length ratio. The buckled form of BNNT is demonstrated in Fig. (5). As the critical buckling 

load is investigated, mode number n is equal to 1. 

5. Conclusions 

Boron Nitride Nanotube (BNNT) come forward in the great variety of nanotubes with higher 

mechanical resistance, oxidation resistance, hardness, corrosion resistance, durability in high 

temperature, piezoelectric and pyroelectric. The critical buckling load of Boron Nitride 

Nanotube is investigated using two different methods. Eringen’s nonlocal elasticity theory is 

employed to obtain size-dependent critical buckling loads. LAMMPS software is used to 

simulate molecular dynamics. The length and diameter of nanotube is selected with ratio from 

0 to 0.1. For lower D/L ratio, the critical buckling load stay low while the critical buckling load 

get dramatically higher for high D/L ratio. To conclude, MD simulation perform better in case 

of stability comparing to size-effective continuum mechanic as MD simulation has the 

opportunity to model and simulate imperfect nanotubes with different properties.   
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