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Abstract 

In this work, we investigate two finite difference schemes to solve nonlinear Burgers’ type 

equations. In the first stage, we define the numerical methods to solve the equations. Secondly, 

numerical solutions are obtained and compared with the exact solutions. In comparison with other 

defined results in the literature, it is deduced in a conclusive way that the methods are reliable and 

convenient alternative methods for solving nonlinear Burgers’ type equations.     

Keywords: The Burgers’ type equations; The generalized Burgers-Huxley equation; Finite 

difference method; Logarithmic finite difference method. 

Lineer Olmayan Burgers Tip Denklemler İçin Etkili İki Nümerik Yöntem Üzerine 

Öz 

Bu çalışmada, iki sonlu fark yöntemi kullanarak lineer olmayan Burgers tipi denklemlerin 

çözümleri incelenmiştir. İlk aşamada, denklemleri çözmek için nümerik yöntemler 

tanımlanmıştır. Daha sonra, nümerik çözümler elde edilmiş ve tam çözümlerle karşılaştırılmıştır. 

Literatürde tanımlanmış diğer sonuçlarla karşılaştırıldığında, yöntemlerin lineer olmayan Burgers 

tipi denklemlerin çözümü için güvenilir ve uygun alternatif yöntemler olduğu sonucu kesin bir 

şekilde elde edilmiştir.  
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Anahtar Kelimeler: Burgers tip denklem; Genelleştirilmiş Burgers-Huxley denklemi; 

Sonlu fark yöntemi; Logaritmik sonlu fark yöntemi. 

1. Introduction 

In this manuscript, we consider the following initial-boundary-value problem: 

!"
!#
+ 𝛼𝑢' !"

!(
− !*"

!(*
= 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾 , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0                                     (1) 

with the following initial condition  

𝑢 𝑥, 0 = 𝑓 𝑥                                                                                                                                                        (2) 

and the boundary conditions 

𝑢 0, 𝑡 = 𝑔7 𝑡  and 𝑢 1, 𝑡 = 𝑔8 𝑡                                                                                                          (3)   

where 𝛼, 𝛽, 𝛾 and 𝛿 are parameters that 𝛽 ≥ 0, 𝛿 > 0, 𝛾𝜖 0,1 . The equation is called the 

generalized Burgers-Huxley equation. 

Nonlinear partial differential equations are generally obtained while modeling the problems 

in various fields like physics, chemistry, biology, mathematics and engineering. The generalized 

Burgers-Huxley equation which is a study in this paper is one of the nonlinear partial differential 

equations. 

In the literature, many numerical methods have been defined for numerical solutions to the 

generalized Burgers-Huxley equation. Hashim et al. [1] used the Adomian decomposition method 

for solving the equation. Javidi [2, 3] applied the collocation method to solve the generalized 

Burgers-Huxley equation. Spectral collocation method for solving the equation was applied by 

Darvishi et al. [4]. Batiha et al. [5] presented the variational iteration method for the generalized 

Burgers-Huxley equation. Numerical solution of the equation was obtained by Sari and Gürarslan 

[6] using a polynomial differential quadrature method. A numerical method called Kansa's 

approach based on the collocation method using Radial basis functions was presented by Khattak 

[7] for the solution of the equation. The spectral collocation method uses Chebyshev polynomials 

for spatial derivatives and fourth order Runge-Kutta method for time integration to solve the 

equation applied by Javidi and Golbabai [8]. The differential transform method was used for the 

solution of the generalized Burgers-Huxley equation by Biazar and Mohammadi [9]. Bratsos [10] 

defined a fourth order finite-difference method in a two-time level recurrence relation for the 

generalized Burgers-Huxley equation. Çelik [11] solved the equation. El-Kady et al. [12] applied 
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cardinal Legendre and Chebyshev basis functions with the Galerkin method for the solution of 

the equation. Al-Rozbayani [13] used the discrete Adomian decomposition method for the 

solution of the generalized Burgers-Huxley equation. 

When 𝛼 = 0,  Eqn. (1) is reduced to the generalized Huxley equation. The generalized 

Huxley equation describes nerve pulse propagation in nerve fibers and wall motion in liquid 

crystals. 

In literature, various numerical methods have been proposed by researchers for the 

numerical solutions of the generalized Huxley equation. The Adomian decomposition method for 

the numerical solution of the equation proposed by Hashim et al. [14]. The equation was solved 

numerically using the variational iteration method by Batiha and coworkers [15]. Hashemi et al. 

[16] applied the homotopy perturbation method and the Adomian decomposition method to solve 

the generalized Huxley equation. Tenth-order finite difference methods to obtain approximation 

solution of the generalized Huxley equation proposed by Sari et al. [17]. Hemida and Mohamed 

[18, 19] used the homotopy analysis method for solving the generalized Huxley equation. İnan 

[20] used an implicit exponential finite difference method for the numerical solution of the 

equation. Also, numerical solutions of the generalized Huxley and generalized Burgers Huxley 

equations were obtained by using explicit exponential finite difference methods by İnan [21]. 

Also, there are various numerical methods for the solutions of the Burgers type equations in the 

literature [32, 33]. 

On the other hand, the logarithmic finite difference method has been used by some authors. 

This method was obtained by getting inspired by the exponential finite difference method and 

used by El Morsy and El-Azab for the first time [22] in 2012 and they used the logarithmic finite 

difference method for the solution of the KdVB equation. Srivastava and coworkers [23, 24] 

proposed an implicit logarithmic finite difference method for numerical solutions of the one and 

two-dimensional coupled viscous Burgers' equations. Also, Srivastava et al. [25] used the method 

for the numerical solution of the two-dimensional unsteady nonlinear coupled viscous generalized 

Burgers’ equation. Çelikten et al. [26] solved Burgers’ equation with explicit logarithmic finite 

difference method. İnan, defined an explicit logarithmic method to the solutions of generalized 

Huxley equation and generalized Burgers-Huxley equation and these works were presented orally 

at congresses and published in the congresses’ abstract books [27, 28]. Macías-Díaz and İnan 

presented a structural and numerical analysis of an implicit logarithmic method for diffusion 

equation [29].  Macías-Díaz solved the classical Fisher' s equation and the Hodgkin-Huxley model 

using the explicit logarithmic finite difference method. Also, Macías-Díaz showed the existence 
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and the uniqueness of the numerical solutions obtained by the explicit logarithmic method and 

proved that the numerical model preserves the positivity, the boundedness, and the monotonicity 

of the solutions under suitable conditions and presented that the logarithmic scheme is stable and 

convergent [30]. Macías-Díaz and Hendy investigated stability and convergence of implicit 

logarithmic finite difference method for diffusion equations [31]. 

In this paper, the generalized Huxley and generalized Burgers-Huxley equations are solved 

by two different logarithmic finite difference methods which are explicit and implicit logarithmic 

finite difference methods. These methods are abbreviated as E-LOGFDM and I-LOGFDM and 

used respectively in the next part of the paper. To examine the effectiveness of the methods while 

solving the equations, we consider some examples. Additionally, obtained numerical solutions 

compared with the exact solutions and other numerical results. So, it concluded that the methods 

ensure high accuracy for the solution of the nonlinear generalized Huxley and Burgers-Huxley 

equations. In this paper, MATLAB R2015a was used for obtaining graphs and Fortran was used 

for computing. 

2. Implementation of Logarithmic Finite Difference Methods 

2. 1. Explicit Logarithmic Finite Difference Method 

If we rearrange Eqn. (1); 

!"
!#
= !*"

!(*
− 𝛼𝑢' !"

!(
+ 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾  ,                                                                   (4) 

𝐹(𝑢) denote any continuous and differentiable function, multiplying equation Eqn. (1) by a 

derivative of 𝐹, we have 

 !?
!"

!"
!#
= 	𝐹′(𝑢) !*"

!(*
− 𝛼𝑢' !"

!(
+ 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾                                                          (5) 

and 

!?
!#
= 	𝐹′(𝑢) !*"

!(*
− 𝛼𝑢' !"

!(
+ 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾                                                                       (6) 

If we use forward difference approximation for  !?
!#

  then the following equation is obtained 

? BC
DEF G? BC

D

H
= 	𝐹I 𝑢 !*"

!(*
− 𝛼𝑢' !"

!(
+ 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾 .                                       (7) 
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Where if we let 𝐹 𝑢 = 𝐹I 𝑢 = 𝑒", then we get explicit logarithmic finite difference method 

𝐹 𝑈M
NO7 = 	𝐹 𝑈M

N 1 + 𝑘 !*"
!(*

− 𝛼𝑢' !"
!(
+ 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾                                   (8) 

and 

𝑈M
NO7 = 	𝑈M

N +logT 1 + 𝑘 !*"
!(*

− 𝛼𝑢' !"
!(
+ 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾 .                                 (9) 

If Eqn. (9) is arranged and the finite difference approximations are written in the equation, the 

following equations have been obtained; 

	
			𝑈M

NO7 = 	𝑈M
N + logT 1 + 𝑘ΦM

N 																																																																																								

							ΦM
N = BCEF

D G8BC
DOBCVF

D

W*
− 𝛼 𝑈M

N ' BCEF
D GBCVF

D

8W
+ 𝛽𝑈M

N 1 − 𝑈M
N ' 𝑈M

N ' − 𝛾 .			
	     (10) 

Eqn. (10) is the explicit logarithmic finite difference method for the solution of the generalized 

Burgers-Huxley equation. When  𝛼 = 0, the method (10) is the turned into to explicit logarithmic 

finite difference method for solution of the generalized Huxley equation. The explicit logarithmic 

finite difference method for Eqn. (1) takes linear form defined by Eqn. (10) were lying in the 

interval  1 ≤ 𝑁 ≤ 𝑁 − 1. 

2. 2. Implicit Logarithmic Finite Difference Method 

Eqn. (9) is rearranged and considered finite difference approximations for the equation, we 

obtain the following implicit logarithmic finite difference method to the solution of the 

generalized Burgers-Huxley equation; 

𝑈M
NO7 = 	𝑈M

N + logT 1 + 𝑘ΦM
NO7 																																																																																																								(11)			

																																																																																																				
ΦM
NO7 = BCEF

DEFG8BC
DEFOBCVF

DEF

W*
− 𝛼 𝑈M

NO7 ' BCEF
DEFGBCVF

DEF

8W
+ 𝛽𝑈M

NO7 1 − 𝑈M
NO7 '

𝑈M
NO7 '

− 𝛾 .						
	   

Eqn. (11) is the implicit logarithmic finite difference method for the solution of the 

generalized Burgers-Huxley equation. When  𝛼 = 0, the method (11) is turned into to implicit 

logarithmic finite difference method for the solution of the generalized Huxley equation. Eqn. 

(11) is a nonlinear difference equations system. Let us regard the nonlinear system of equations 

in the form 

F V = 0,                                                                                                                                                                 (12) 
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where F = 𝑓7, 𝑓8, … , 𝑓\G7 ] and V = 𝑈7NO7, 𝑈8NO7, … , 𝑈\G7NO7 ] . Newton's method is applied to 

Eqn. (10) results in the following iteration: 

1. Set V ^  , an initial guess. 

2. Solved V _O7 `V _ − 𝐽 V _ G7
F V _  for 𝑚 = 0,1,2, …   

where  𝐽 V _  is the Jacobian matrix and the matrix is evaluated analytically. According to the 

nature of iteration methods, the solution at the previous time-step is considered as the initial 

estimate. The stopped criteria for Newton's iteration at each time-step is taken as F V _
d ≤

10Ge.  The convergence is generally confirmed in two or three iterations. 

While solving the problems the solution domain is discretized into the nodes set 𝑥M, 𝑡N  

in which 𝑥M = 𝑎 + 𝑖ℎ, 𝑖 = 0,1,2, … , 𝑁  and 𝑡N = 𝑛𝑘, 𝑛 = 0,1,2, … , ℎ = ∆𝑥 = kGl
\

  is the 

spatial mesh size and  𝑘 = ∆𝑡 is the time step. Also, where  𝑈M
N denotes the logarithmic finite 

difference approximation and 𝑢(𝑥, 𝑡) denotes the exact solution. 

3. Stability Analysis 

In this section, to investigate the stability of the method, the Fourier method is used.  For 

the sake of examining the stability, the nonlinear term 𝑖𝑠 accepted constant. So, stability can be 

discussed in the linearized sense. The stability analysis is ground on the von Neumann theory in 

which the growth factor of typical Fourier mode is defined as: 

𝑈M
N = 𝜉N𝑒opMW, 𝐼8 = −1                                                                                                                              (13) 

where ℎ is the spatial mesh size and 𝑘 is the time step, is determined from a linearization of the 

numerical scheme, so all the 𝑈M
N are equal to local constant 𝑑, so that 𝑢' = 𝜖𝑑 ' . Substituting 

Eqn. (13)  in Eqn. (11) and 𝜉NO7 = 𝑔𝜉N gives 

𝑔 =
7G*s

t*
OuH 7G vw x vw xGy

7O*s
t*
z{|}t* O~ vw xs

tM|MNpW
≤ 1																																													                                      (14) 

where ℎ and 𝑘 are usually a small quantity, and 𝑑 represents the single speed and will usually be 

around unity. Hence, |𝑔| ≤ 1 will always be ensured for any problem. As a result, because |𝑔| ≤

1, implicit logarithmic finite difference method is unconditionally stable. Also, the explicit 

logarithmic finite difference method is stable for  H
W*
≤ 0.5. 
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4. Numerical Results 

In this section, numerical solutions are presented obtained by logarithmic finite difference 

methods of the generalized Huxley and generalized Burgers-Huxley equations. The absolute error 

which is defined by the following form to measure the accuracy of the present method is used: 

𝑢 𝑥M, 𝑡N − 𝑈 𝑥M, 𝑡N . 

Example 1. The generalized Huxley equation of the form; 

!"
!#
− !*"

!(*
= 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾 , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0                                                              (15) 

with the initial condition 

𝑢 𝑥, 0 = y
8
+ y

8
𝑡𝑎𝑛ℎ 𝜎𝛾𝑥

F
x.                                                                                                              (16)  

The exact solution of Eqn. (15) was derived by Wang [1] following for 

𝑢 𝑥, 𝑡 = y
8
+ y

8
𝑡𝑎𝑛ℎ 𝜎𝛾 𝑥 + 7O'Gy �

8 7O'
𝑡

F
x                                                                    (17) 

where 𝜎 = 𝛿𝜌/4 1 + 𝛿 ,  𝜌 = 4𝛽 1 + 𝛿   and 𝛽, 𝛾 and	𝛿are parameters that 𝛽 ≥ 0,			𝛾𝜖 0,1 .  

Case 1. Table 1 presents numerical and exact solutions for various values of 𝑥, 𝑡 and with 

𝛿 = 1, 𝛽 = 1, 𝛾 = 10G�. Also, numerical solutions were obtained by explicit and implicit 

logarithmic finite difference methods compared with exact solutions and those were obtained by 

another method in Table 1. 

Case 2. In Table 2, absolute errors for various values of 𝑥, 𝑡 and 𝛿 with 𝛽 = 10G8, 𝛾 =

10G� displayed. 

Case 3. Table 3 presents absolute errors for various values of 𝑥, 𝑡 and 𝛽  with 𝛿 = 1,	 𝛾 =

10Ge. 

Case 4. Table 4 shows absolute errors for various values of  𝑥, 𝑡 and 𝛾 with 𝛽 = 10, 𝛿 =

2.  
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Table 1: Comparison of the solutions for 𝛿 = 1 

𝑥 𝑡 [16] E-LOGFDM I- LOGFDM Exact 
0.1 0.05 5.00005184E-04 5.000199E-04 5.000192E-04 5.000302E-04 

 0.1 4.99992690E-04 5.000276E-04 5.000222E-04 5.000427E-04 
 1 4.99767803E-04 5.002451E-04 5.002274E-04 5.002676E-04 

0.5 0.05 5.00075895E-04 5.000777E-04 5.000586E-04 5.001009E-04 
 0.1 5.00063401E-04 5.000749E-04 5.000285E-04 5.001134E-04 
 1 4.99838513E-04 5.002758E-04 5.001874E-04 5.003383E-04 

0.9 0.05 5.00146605E-04 5.001613E-04 5.000284E-04 5.001716E-04 
 0.1 5.00134111E-04 5.001690E-04 5.000235E-04 5.001841E-04 
 1 4.99909224E-04 5.003864E-04 5.002273E-04 5.004090E-04 

 

Figure 1 displays absolute errors for 𝛿 = 1, 5, 10, 𝛽=1, 𝛾 = 10G� at 𝑡 = 5. Figure 2 shows 

absolute errors for 𝛽=1, 10, 100, 𝛿 = 2,		𝛾 = 10G�	at 𝑡 = 5. Figure 3 demonstrates absolute errors 

for, 𝛾 = 10G�, 10Ge, 10G� for 𝛽=1,  𝛿 = 2 at 𝑡 = 5 . 

 Table 2: Absolute errors for various values of x, t and δ 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛿 = 1 𝛿 = 2 𝛿 = 3 𝛿 = 1 𝛿 = 2 𝛿 = 3 

0.1 0.5 2.234E-10 9.995E-09 1.729E-07 1.966E-09 7.363E-08 8.082E-07 
 1 2.248E-10 1.006E-08 1.739E-07 1.992E-09 7.460E-08 8.183E-07 
 10 2.249E-10 1.006E-08 1.739E-07 1.993E-09 7.460E-08 8.182E-07 

0.5 0.5 6.198E-10 2.773E-08 4.797E-07 9.378E-09 3.475E-07 3.672E-06 
 1 6.246E-10 2.794E-08 4.832E-07 9.463E-09 3.507E-07 3.705E-06 
 10 6.247E-10 2.794E-08 4.831E-07 9.463E-09 3.507E-07 3.704E-06 

0.9 0.5 2.234E-10 9.994E-09 1.729E-07 1.611E-08 5.900E-07 5.963E-06 
 1 2.249E-10 1.006E-08 1.740E-07 1.613E-08 5.910E-07 5.973E-06 
 10 2.249E-10 1.006E-08 1.739E-07 1.613E-08 5.910E-07 5.972E-06 

Table 3: Absolute errors for various values of x, t and β 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛽 = 1 𝛽 = 10 𝛽 = 100 𝛽 = 1 𝛽 = 10 𝛽 = 100 

0.1 0.5 2.235E-10 2.235E-09 2.235E-08 3.978E-10 2.786E-09 2.410E-08 
 1 2.249E-10 2.250E-09 2.250E-08 4.017E-10 2.809E-09 2.426E-08 
 10 2.249E-10 2.249E-09 2.244E-08 4.017E-10 2.808E-09 2.421E-08 
0.5 0.5 6.201E-10 6.203E-09 6.203E-08 1.496E-09 8.972E-09 7.079E-08 
 1 6.248E-10 6.249E-09 6.249E-08 1.509E-09 9.044E-09 7.133E-08 
 10 6.248E-10 6.249E-09 6.235E-08 1.507E-09 9.044E-09 7.116E-08 
0.9 0.5 2.235E-10 2.235E-09 2.235E-08 1.812E-09 7.259E-09 3.824E-08 
 1 2.249E-10 2.250E-09 2.250E-08 1.816E-09 7.281E-09 3.841E-08 
 10 2.249E-10 2.250E-09 2.244E-08 1.816E-09 7.280E-09 3.831E-08 
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Figure 1: Absolute errors for different values of 𝛿	

Figure 2: Absolute errors for different values of 𝛽 

From Figs. 1, 2 and 3 and all of the computed results, it can be seen that the values of the 

errors are quite small. Also, it is observed that when δ, β and γ increase, the accuracy of the results 

decreases. From comparisons of the numerical solutions with the exact solutions and the others, 

it is concluded that the proposed method achieved highly accurate solutions. All of the 

computational works for Cases 1-4 and Figs. 1-3 are performed with ℎ = 10G8, 𝑘 = 10G� and 

ℎ = 2𝑥10G8, 𝑘 = 10Ge, respectively. 
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Table 4: Absolute errors for various values of x, t and γ 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛾 = 10G� 𝛾 = 10Ge 𝛾 = 10G� 𝛾 = 10G� 𝛾 = 10Ge 𝛾 = 10G� 

0.1 0.5 9.975E-06 3.160E-07 9.998E-09 1.198E-05 3.797E-07 1.201E-08 
 1 1.001E-05 3.180E-07 1.006E-08 1.205E-05 3.826E-07 1.210E-08 
 10 9.504E-06 3.166E-07 1.006E-08 1.143E-05 3.808E-07 1.210E-08 
0.5 0.5 2.768E-05 8.771E-07 2.774E-08 3.777E-09 1.197E-06 3.785E-08 
 1 2.781E-05 8.834E-07 2.795E-08 3.798E-09 1.206E-06 3.815E-08 
 10 2.640E-05 8.794E-07 2.793E-08 3.605E-09 1.200E-06 3.814E-08 
0.9 0.5 9.973E-06 3.161E-07 9.998E-09 2.827E-09 8.960E-07 2.834E-08 
 1 1.001E-05 3.180E-07 1.006E-08 2.829E-09 8.987E-07 2.843E-08 
 10 9.501E-06 3.166E-07 1.006E-08 2.684E-09 8.946E-07 2.842E-08 

 

 
Figure 3: Absolute errors for different values of 𝛾 

Example 2. In this example, we consider the following generalized Burgers-Huxley 

equation, 

 !"
!#
+ 𝛼𝑢' !"

!(
− !*"

!(*
= 𝛽𝑢 1 − 𝑢' 𝑢' − 𝛾 , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0                                         (18) 

with the following initial condition taken from 

𝑢 𝑥, 0 = y
8
+ y

8
𝑡𝑎𝑛ℎ 𝐴7𝑥

F
x                                                                                                           (19) 

and the boundary conditions 



İnan	(2022)		ADYU	J	SCI,	12(1),	70-87	

 
	

	

80 

𝑢 0, 𝑡 = y
8
+ y

8
𝑡𝑎𝑛ℎ −𝐴7𝐴8𝑡

F
x                                                                                                          (20) 

and 

𝑢 1, 𝑡 = y
8
+ y

8
𝑡𝑎𝑛ℎ 𝐴7 1 − 𝐴8𝑡

F
x.                                                                                         (21) 

The exact solution of Eqn. (18) is 

𝑢 𝑥, 𝑡 = y
8
+ y

8
𝑡𝑎𝑛ℎ 𝐴7 𝑥 − 𝐴8𝑡

F
x,                                                                                           (22) 

where 

 𝐴7 =
G~'O' ~*Oeu 7O'

e 7O'
𝛾, 𝐴8 =

y~
7O'

−
7O'Gy G~O ~*Oeu 7O'

8 7O'
.                                      (23) 

Case 5. Table 5 presents numerical and exact solutions for various values of 𝑥, 𝑡 and with 

𝛿 = 1, 𝛼 = 1, 𝛽 = 1 , 𝛾 = 10G�. 

Case 6. Absolute errors for various values of 𝑥, 𝑡 and 𝛿 with 𝛼 = 0.1,	𝛽 = 10G�, 𝛾 =

10Ge shown in Table 6. 

Case 7. Table 7 shows absolute errors for various values of 𝑥, 𝑡 and 𝛽 with 𝛼 = 𝛿 = 1, 

𝛾 = 10Ge.  

Case 8. Absolute errors for various values of 𝑥, 𝑡 and 𝛾 with 𝛼 = 1, 𝛽 = 10, 𝛿 = 2 

presented in Table 8. 

Case 9. Table 9 displays absolute errors for various values of 𝑥, 𝑡 and 𝛼 with 𝛽 = 𝛿 = 1, 

𝛾 = 10Ge. 

Case 10. Table 10 shows comparisons of the present method with Batiha et al. [5], 

Biazar&Mohammadi [7] and Al-Rozbayani [11] for 𝛼 = 𝛽 = 𝛿 = 1 and 	𝛾 = 10G� . 

Table 5: Comparison of the solutions for 𝛿 = 1  

   E-LOGFDM I-LOGFDM 
 
𝑥 

 
𝑡 

Exact 
Solution 

Numerical 
Solution 

Absolute 
Error 

Numerical 
Solution 

Absolute 
Error 

0.1 0.05 0.000500037 0.000500022 1.545E-08 0.000500022 1.545E-08 
 0.1 0.000500062 0.000500040 2.259E-08 0.000500040 2.259E-08 
 1 0.000500512 0.000500478 3.373E-08 0.000500478 3.373E-08 

0.5 0.05 0.000500087 0.000500053 3.470E-08 0.000500053 3.470E-08 
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 0.1 0.000500112 0.000500055 5.766E-08 0.000500055 5.766E-08 
 1 0.000500562 0.000500468 9.370E-08 0.000500471 9.370E-08 

0.9 0.05 0.000500137 0.000500122 1.545E-08 0.000500122 1.545E-08 
 0.1 0.000500162 0.000500140 2.259E-08 0.000500140 2.259E-08 
 1 0.000500612 0.000500578 3.373E-08 0.000500578 3.373E-08 

Table 6: Absolute errors for various values of 𝑥, 𝑡 and	𝛿 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛿 = 1 𝛿 = 4 𝛿 = 8 𝛿 = 1 𝛿 = 4 𝛿 = 8 

0.1 1 5.551E-13 1.456E-09 1.989E-08 4.470E-13 1.456E-9 1.989E-8 
 5 5.996E-13 1.457E-09 1.989E-08 4.431E-13 1.456E-9 1.989E-8 
 10 5.996E-13 1.457E-09 1.989E-08 4.419E-13 1.456E-9 1.989E-8 

0.5 1 1.459E-12 4.046E-09 5.525E-08 1.235E-12 4.045E-9 5.525E-8 
 5 1.666E-12 4.046E-09 5.525E-08 1.232E-12 4.045E-9 5.524E-8 
 10 1.666E-12 4.046E-09 5.524E-08 1.226E-12 4.045E-9 5.525E-8 

0.9 1 5.551E-13 1.457E-09 1.989E-08 4.421E-13 1.456E-9 1.989E-8 
 5 5.996E-13 1.457E-09 1.989E-08 4.421E-13 1.456E-9 1.989E-8 
 10 5.996E-13 1.457E-09 1.989E-08 4.430E-13 1.456E-9 1.989E-8 

Absolute errors displayed by Fig. 4 for 𝛿 = 1, 2, 3, 𝛼 = 𝛽 = 1, 𝛾 = 10G�, ℎ = 0.02 and 

𝑘 = 10Ge at 𝑡 = 5.  Figure 5 displays absolute errors for 𝛽 = 1, 5, 10, 𝛼 = 1,  𝛿 = 2, , 𝛾 = 10G�.  

Figure 6 presents absolute errors for 𝛾 = 10G�, 10Ge, 10G� , 𝛼 = 𝛽 = 1 , 𝛿 = 2. Figure 7 shows 

absolute errors for  𝛼 = 0.1, 1,10,  𝛿 = 2, 𝛽 = 1 , 𝛾 = 10G�. 

Table 7: Absolute errors for various values of 𝑥, 𝑡 and	𝛽 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛽 = 1 𝛽 = 10 𝛽 = 100 𝛽 = 1 𝛽 = 10 𝛽 = 100 

0.1 0.05 1.546E-10 2.165E-09 2.436E-08 1.546E-10 2.165E-09 2.436E-08 
 0.1 2.260E-10 3.165E-09 3.562E-08 2.261E-10 3.165E-09 3.562E-08 
 1 3.375E-10 4.724E-09 5.316E-08 3.379E-10 4.725E-09 5.316E-08 

0.5 0.05 3.471E-10 4.861E-09 5.471E-08 3.470E-10 4.861E-09 5.470E-08 
 0.1 5.766E-10 8.076E-09 9.089E-08 5.770E-10 8.076E-09 9.089E-08 
 1 9.370E-10 1.312E-08 1.477E-07 9.382E-10 1.312E-08 1.477E-07 

0.9 0.05 1.546E-10 2.165E-09 2.436E-08 1.546E-10 2.165E-09 2.436E-08 
 0.1 2.260E-10 3.165E-09 3.562E-08 2.261E-10 3.165E-09 3.562E-08 
 1 3.375E-10 4.724E-09 5.316E-08 3.379E-10 4.725E-09 5.316E-08 

 



İnan	(2022)		ADYU	J	SCI,	12(1),	70-87	

 
	

	

82 

 
Figure 4: Absolute errors for different values of 𝛿 

As it can be observed from Tables 5-10 that the obtained results have excellent conform 

with the exact solutions. All numerical results for Cases 5-10 are obtained with the space step 

ℎ = 10G8 and the time step 𝑘 = 10G� . All numerical results shown in Figs. 5-7 are obtained for  

ℎ = 0.02 and 𝑘 = 10G� at 𝑡 = 5 . From all of the computed results and figures can be observed 

that the values of the errors are very small. Also, it is observed from all computations that the 

accuracy of the numerical results decreases when 𝛿, 𝛽 and 𝛾 increase. However, the accuracy of 

the results increases when 𝛼  increased. 
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Figure 5: Absolute errors for different values of 𝛽 

Table 8: Absolute errors for various values of 𝑥, 𝑡 and	𝛾 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛾 = 10G� 𝛾 = 	10Ge 𝛾 = 10G� 𝛾 = 10G� 𝛾 = 	10Ge 𝛾 = 10G� 

0.1 0.05 1.956E-05 6.195E-07 1.959E-08 1.956E-05 6.194E-07 1.959E-08 
 0.1 2.856E-05 9.055E-07 2.864E-08 2.856E-05 9.055E-07 2.864E-08 
 1 4.118E-05 1.348E-06 4.275E-08 4.118E-05 1.348E-06 4.275E-08 

0.5 0.05 4.393E-05 1.391E-06 4.400E-08 4.392E-05 1.391E-06 4.399E-08 
 0.1 7.290E-05 2.311E-06 7.309E-08 7.290E-05 2.311E-06 7.309E-08 
 1 1.144E-04 3.743E-06 1.187E-07 1.144E-04 3.743E-06 1.187E-07 

0.9 0.05 1.955E-05 6.194E-07 1.959E-08 1.955E-05 6.194E-07 1.959E-08 
 0.1 2.856E-05 9.055E-07 2.864E-08 2.855E-05 9.055E-07 2.864E-08 
 1 4.117E-05 1.347E-06 4.275E-08 4.117E-05 1.348E-06 4.275E-08 
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Figure 6: Absolute errors for different values of 𝛾 

Table 9: Absolute errors for various values of 𝑥, 𝑡 and	𝛼 

  E-LOGFDM I-LOGFDM 
𝑥 𝑡 𝛼 = 0.1 𝛼 = 1 𝛼 = 5 𝛼 = 0.1 𝛼 = 1 𝛼 = 5 

0.1 0.05 2.436E-10 1.546E-10 6.579E-11 2.437E-10 1.547E-10 6.576E-11 
 0.1 3.561E-10 2.260E-10 9.618E-11 3.563E-10 2.261E-10 9.618E-11 
 1 5.317E-10 3.375E-10 1.438E-10 5.321E-10 3.379E-10 1.442E-10 

0.5 0.05 5.470E-10 3.471E-10 1.477E-10 5.470E-10 3.470E-10 1.476E-10 
 0.1 9.087E-10 5.766E-10 2.454E-10 9.092E-10 5.770E-10 2.453E-10 
 1 1.4769E-9 9.370E-10 3.993E-10 1.478E-09 9.382E-10 4.005E-10 

0.9 0.05 2.436E-10 1.546E-10 6.579E-11 2.437E-10 1.546E-10 6.576E-11 
 0.1 3.561E-10 2.260E-10 9.618E-11 3.563E-10 2.261E-10 9.618E-11 
 1 5.317E-10 3.375E-10 1.438E-10 5.321E-10 3.379E-10 1.442E-10 

 
Table 10: Comparisons of the absolute errors for 𝛿 = 1 

𝑥 𝑡 E-LOGFDM I-LOGFDM [5] [9] [13] 
0.1 0.05 1.545E-08 1.545E-08 1.87405E-08 1.87406E-08 1.87406E-08 

 0.1 2.259E-08 2.259E-08 3.74813E-08 3.74813E-08 3.74812E-08 
 1 3.373E-08 3.373E-08 3.74812E-07 3.74813E-07 3.74812E-07 

0.5 0.05 3.470E-08 3.470E-08 1.87405E-08 1.87406E-08 1.87406E-08 
 0.1 5.766E-08 5.766E-08 1.37481E-08 3.74813E-08 3.74812E-08 
 1 9.370E-08 9.370E-08 3.74813E-07 3.74813E-07 3.74812E-07 

0.9 0.05 1.545E-08 1.545E-08 1.87405E-08 1.87406E-08 1.87406E-08 
 0.1 2.259E-08 2.259E-08 3.74813E-08 3.74813E-08 3.74812E-08 
 1 3.373E-08 3.373E-08 3.74813E-07 3.74813E-07 3.74812E-07 



İnan	(2022)		ADYU	J	SCI,	12(1),	70-87	

 
	

	

85 

 

 
Figure 7: Absolute errors for different values of 𝛼 

5. Conclusion 

In this manuscript, we have designed explicit and implicit logarithmic finite difference 

methods has been proposed the generalized Huxley and Burgers-Huxley equations. The numerical 

solutions for different two test problems are presented through tables. The numerical results show 

that the solution using methods gives high accuracy and to obtain high accuracy results no 

restrictions for parameters are needed. As can be seen from comparisons and obtained results that 

the logarithmic finite difference methods are effective and reliable methods for solving a wide 

range of engineering problems. 
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