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Abstract 

The neutron transport equation for one-speed neutrons in a homogeneous slab was solved for the 

solution of the extrapolation distance problem. In the solution algorithm of the problem first the traditional 

P1 method in which the neutron angular flux was expanded in terms of the Legendre polynomials and then 

the U1 method in which the neutron angular flux was expanded in terms of the Chebyshev polynomials of 

second kind were used. While it is possible to find the solution of the problem obtained by P1 method in 

literature, U1 method was first applied to this problem and an analytical expression was obtained as the 

main goal of this study. Finally, numerical results for the extrapolation distances were calculated using both 

methods and they were given in the tables together with the exact results for comparison. Although the 

results obtained in this study could be evaluated as not to be in a very good accordance with the results 

already presented in the literature; this should be realised as these calculations were carried out using only 

the lowest order approximations of the polynomial expansion techniques. Then it is clear that more 

convenient results with the literature may be obtained in case applying higher-order aproximations. 

However, it is important to underline that the U1 method was first pplied to the problem and an analytical 

expression for the extrapolation distance was derived explicitly. 
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U1 Yöntemi Kullanılarak Uzatılmış Mesafe Probleminin Çözümü Üzerine 

Bir Çalışma 

Özet 

Homojen bir dilimde tek hızlı nötronlar için nötron transport denklemi, uzatılmış (ekstrapolasyon) 

mesafesi probleminin çözümü için çözülmüştür. Problemin çözüm algoritmasında önce nötron açısal 

akısının Legendre polinomları cinsinden seriye açıldığı geleneksel P1 yöntemi, ardından nötron açısal 
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akısının ikinci tür Chebyshev polinomları cinsinden seriye açıldığı U1 yöntemi kullanılmıştır. Literatürde 

P1 yöntemi ile elde edilen problemin çözümünü bulmak mümkün iken, bu probleme ilk olarak U1 yöntemi 

uygulanmış ve bu çalışmanın temel amacı olarak analitik bir ifade elde edilmiştir. Son olarak, her iki 

yöntem kullanılarak uzatılmış mesafeler için nümerik sonuçlar hesaplanmış ve karşılaştırma için tam 

sonuçlarla birlikte tablolarda verilmiştir. Bu çalışmada elde edilen sonuçların literatürde halihazırda 

sunulan sonuçlarla çok iyi bir uyum içinde olmadığı değerlendirilebilse de, bu hesaplamalar polinom açılım 

tekniklerinin sadece en düşük mertebeli yaklaşımları kullanılarak yapıldığından buna göre 

değerlendirilmesi gereklidir. O halde daha yüksek mertebeden yaklaşımların uygulanması durumunda 

literatürle daha uygun sonuçların elde edilebileceği açıktır. Ancak, probleme U1 yönteminin ilk defa 

uygulandığının ve uzatılmış mesafe için analitik bir ifadenin açıkça türetildiğinin altını çizmek önemlidir. 

Anahtar kelimeler: P1 yöntemi, U1 yöntemi, uzatılmış mesafe 

1. Introduction 

There are many problems which are in the interests of the scientists who deal with the solution 

of the neutron transport equation in standard geometries. Extrapolation distance (extrapolated end 

point) z0 or the linear extrapolation distance d is one of those problems and this concept describes 

the distance at which the neutron flux is thought to be extrapolated to zero at the boundary of the 

system. If the neutron flux calculated from the diffusion equation is assumed to vanish at a small 

distance d beyond the surface, then the flux determined from the diffusion equation is very nearly 

equal to the exact flux in the interior of the medium. The assumption that the flux vanishes a small 

distance d beyond the surface is clearly nonphysical. Rather, it is a convenient mathematical 

approximation that provides a high degree of accuracy for estimates of the flux inside the medium 

(Lamarsh and Baratta, 2001). 

 

Many methods have been used for the solution of this problem in neutron transport theory. 

Among them, the spherical harmonics (PN) method in which the neutron angular flux is expanded 

in terms of the Legendre polynomials is one of the powerful methods developed for the solutions 

of the problems in transport theory. Therefore, the results obtained by this traditional method are 

accepted as a benchmark in many studies (Bell and Glasstone, 1972; Lee and Dias, 1984). 

However, it is not the unique one valid for all cases. Therefore in this study, we preferred to 

use UN method (Chebyshev polynomials of the second kind approximation) for the solution of the 

extrapolation distance for one-speed neutrons in a slab reactor. This method has been used 

successfully before and it can be applied to other problems of the transport theory (Conkie, 1959; 

Yabushita, 1961; Aspelund, 1958). In the following years, UN method was successfully applied to 

problems of the transport theory (Öztürk, 2008; 2012; Öztürk and Yapar, 2018). Therefore in this 

study, the first order approximation (U1 method) in which the neutron angular flux is expanded in 

terms of the Chebyshev polynomials of second kind was performed for the calculation of the 

extrapolated end-points z0 in a slab for various values of the c (the mean number of secondary 

neutrons per collision). Mark and Marshak boundary conditions were used for these calculations 

(Lee and Dias, 1984). The numerical results obtained by U1 and P1 methods were tabulated in the 

table and they were compared with the ones available in the literature. Mathematical progresses of 

the methods were given in section 2 and the numerical results obtained by the methods were given 

in section 3. A brief conclusion was also presented in section 4. 

2.  Material and Methods 

2.1 P1 approximation for extrapolation distance 
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The linear transport equation in one-dimensional (slab) geometry with no source and isotropic 

scattering can be written as (Case and Zweifel, 1967), 

 
1

1

( , )
( , ) ( , ) , , 1 1

2

T
T

cd x
x x d a x a

dx

 
       

−
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where  is the cosine of the scattering angle with x-axis between the neutron velocity vectors 

before and after a collision. (x, ) is the neutron angular flux or neutron flux density at position 

x traveling in direction  and T is the total differential cross section. 

In the first part of this study, the conventional PN method in which the neutron angular flux (x, 

) is expanded in terms of the Legendre polynomials is used for the solution of the problem (Bell 

and Glasstone, 1972), 
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where m(x) is the mth Legendre moment of the angular flux and Pm() is the Legendre 

polynomials; the orthogonality and recurrence relations of them which will be needed for future 

calculations are given by, respectively (Arfken, 1985); 
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Eq. (2) is inserted into Eq. (1), then the resulting equation is multiplied by Pm() and integrated 

over  in the interval [−1, 1] using Eqs. (3) and (4), one can obtain the PN moments of the angular 

flux as, 
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and in general, 
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where −1(x) = 0. Eqs. (5a) and (5b) are known as the P1 equations for transport equation and the 

condition for n = 1 stated in Eq. (5b) is equivalent to diffusion approximation or P1 approximation 

in general formalism of the PN method by setting 
1( ) 0Nd x dx + =  (Bell and Glasstone, 1972). 

Hence the condition for N = 1 corresponds to diffusion approximation, a familiar equation known 



 

 

 95 

as Fick’s law which is related with current 1(x) and the scalar flux 0(x) of the neutrons in the 

system can be obtained by setting 
2( ) 0d x dx =  in Eq. (5b). 

A general solution for Eqs. (5) is assumed as (Case and Zweifel, 1967), 

 

( ) ( )exp( )n n Tx G x   = − .               (6)  

 

When Eq. (6) was inserted into Eqs. (5), one could obtain analytical expressions for all An() as, 

 

1 0( ) (1 ) ( ) 0G c G  − − = ,              (7a) 

 

0 2 1( ) 2 ( ) 3 ( ) 0G G G   + − = ,             (7b) 

 

and in general, 
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where n,0 is the kronecker delta and  is a constant appearing as an eigenvalue associated with the 

eigenfunction Gn(). The discrete eigenvalues k, k = 1,2,…,N+1 can be calculated by setting 

GN+1() = 0 as the requirement of the method. Since we applied the first order approximation of 

the method (P1), we, therefore, set G2() = 0 in Eqs. (7) and obtained two linear equations with 

two unknowns; G0() and G1(). This set of equations (7a and 7b) can be solved either linearly or 

by constructing a matrix equation. Then, this set of the equation can be solved to obtain the 

eigenvalues as, 
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In order to investigate the extrapolation distance problem, it is remembered that the linear 

combination of the eigenfunctions is also a solution (Davison, 1958): 
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when Eq. (9) was put into Eq. (2) and by applying the P1 approximation, it is obtained, 
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where G0(j) = 1. Eq. (7a) and Eq. (8) are used in Eq. (10), then it is obtained, 
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As well known, it is necessary to know some boundaries or initial conditions to solve the problems. 

It is also needed free surface boundary and symmetry conditions: 

 

( , ) 0a  = ,                   (12a) 

 

( , ) ( , ), 0x x    = −  .               (12b) 

 

Mark and Marshak boundary conditions are widely used in the solution of the problems of the 

neutron transport theory. Mark used the concept of continuity of the angular flux, which implies 

the continuity of all the angular moments of the neutron flux across the boundaries surrounded by 

the vacuum, and showed that is condition is equivalent to zero incoming angular flux at the 

boundaries for the specific values of  (Bell and Glasstone, 1972). Then, the Mark boundary 

condition can be described as; 

 

(0, ) 0, ( 1) 2 ( 1)k N k N  = +   + ,           (13) 

 

where k is the kth negative root of PN+1() = 0. When Eq. (11) is inserted in Eq. (13), it is obtained, 
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.           (14) 

 

The scalar flux density n(x) in slab geometry can be written as, 

 

( ) ( , ) ( ) Ωn nx x P d   =  ,             (15) 

 

where d = sindd and  = cos; 0 ≤  ≤  and 0 ≤  ≤ 2. When Eq. (15) is written for n = 0 

in which the neutron angular flux given by Eq. (11) is used, we obtained, 
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The extrapolated end-point is defined as the distance from a vacuum boundary at which the 

asymptotic flux i.e. the flux extended by its natural curvature with distance will vanish. This is the 

problem for a half-space x  0 with a source infinitely far into the interior. Mathematically, z0 is 

defined in plane geometry by the condition        0(−z0) = 0, where 0(x) is the asymptotic scalar 

flux at a distance x into the medium. The extrapolated end-point z0 for both boundary conditions 

can be stated as (Davison, 1958), 

 

0 0( ) 0z − =                 (17) 

 

Therefore, the condition for extrapolated end-point given in Eq. (17) is applied to Eq. (16); 
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Then, a new relation between A1 and A2 could be obtained from Eq. (18), 

 

0 03(1 ) 3(1 )

2 1
T Tz c z c

A e Ae
 − − −

= −               (19) 



 

 

 97 

 

Eq. (14) and Eq. (19) were solved together to find an expression for the extrapolated end point z0 

for P1 approximation, 
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The same problem was also investigated using Marshak boundary condition. The Marshak 

boundary condition is based on the condition of zero incoming current at the vacuum boundary 

(Bell and Glasstone, 1972). Therefore, it is defined as, 
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It is seen in Eq. (21) that the state for only k = 1 satisfies the condition of zero incoming current. 

The other values of k give the additional conditions necessary to solve the problem. When Eq. (11) 

is replaced to Eq. (21) one can get, 
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In the case of Marshak boundary condition, Eq. (19) and Eq. (22) were solved together and an 

analytical expression was obtained for the extrapolated end point z0 for P1 approximation, 
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2.2 U1 approximation for extrapolation distance 

 

In the second part of this study, the first order approximation of the Chebyshev polynomials of 

second kind, i.e. U1 method was applied to the problem of the extrapolated end-point for one-speed 

neutrons. The same procedure carried out in the previous section was followed since Legendre and 

Chebyshev polynomials are in the same polynomials family, i.e. Jacobi polynomials. Therefore, 

their applications to the problems are in the same manner. In this method, neutron angular flux is 

expanded in terms of the Chebyshev polynomials of second kind which was applied successfully 

in previous studies (Öztürk, 2008; 2012), 
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In order to obtain the UN moments of the angular flux, one should replace Eq. (24) into Eq. (1) and 

then multiply the resultant equation by Um() and integrate over  in the interval [−1, 1]. During 

these derivations, the orthogonality and the recurrence relations of the Chebyshev polynomials of 

second kind are needed, 

 
1

2

1

2,
( ) ( ) 1

0,
n m

n m
U U d

n m


   

−

=
− = 


           (25a) 



 

 

 98 

 

1 12 ( ) ( ) ( ), 1 1n n nU U U    + −= + −   .         (25b) 

 

Under these circumstances, the UN moments of the angular flux can be obtained for n = 0 and n = 

1, respectively; 
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and in general, 
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Eqs. (26a) and (26b) are known as the U1 equations for the transport equation and the condition 

for n = 1 stated in Eq. (26b) is equivalent to diffusion approximation or U1 approximation in the 

general formalism of the UN method by setting 
1( ) 0Nd x dx + =  (Bell and Glasstone, 1972). A 

general solution for Eqs. (26) is assumed as (Bell and Glasstone, 1972), 
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When Eq. (27) is replaced into Eqs. (26), analytical expressions for all An() could be obtained 

as, 
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The discrete eigenvalues k, k = 1,2,…,N+1 can be calculated by setting GN+1() = 0 as the 

requirement of the method. In the first order approximation of the method (U1), A2() = 0 is set in 

Eqs. (28a) and two linear equations with two unknowns A0() and A1() are obtained. This set of 

equations (28a and 28b) can be solved either linearly or by constructing a matrix equation. When 

this set of the equation is solved, the eigenvalues can be obtained as, 
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By following the same procedure with the PN method mentioned in the previous section, the 

solution for the eigenvectors can be written as (Davison, 1958): 
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When Eq. (30) was put into Eq. (24) and by applying the U1 approximation, 
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where A0(j) = 1. An explicit form of Eq. (31) can be obtained by using Eq. (28a) and Eq. (29) in 

Eq. (31), 
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The transport equation should satisfy certain physical properties of the system at vacuum 

boundaries, that is, free surface boundary and symmetry conditions: 
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As in the first part of this study, first the Mark boundary condition is applied; 
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where k is the kth negative root of UN+1() = 0. When Eq. (32) is applied to the Mark boundary 

condition given in Eq. (34), it is obtained, 
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The scalar flux density n(x) can be written similar to Eq. (15), 
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After Eq. (32) is inserted into Eq. (36), it is written for 0(x), 
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From the definition of extrapolated end-point given in Eq. (17), Eq. (37) can be rearranged as; 

 

 0 02 1 2 1

0 0 1 2( ) 2 0T Tz c z c
z Ae A e

   − − −
− = + = .           (38) 

 

A relation between A1 and A2 can be written from Eq. (38) as, 
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At the end of the implementation of Mark boundary condition for U1 approximation, Eq. (35) and 

Eq. (39) are solved together an analytical expression for the extrapolated end point z0 can be 

obtained as, 
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In case of Marshak boundary condition, 
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Eq. (32) is replaced to Eq. (41), it is obtained as, 
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Eq. (39) and Eq. (42) are solved together and an expression for the extrapolated end point z0 can 

be obtained as, 
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3.  Results and Discussion 

In this study, the extrapolation distance problem was investigated for one-speed neutrons in a 

slab reactor using both P1 and U1 approximations. The extrapolation distances were calculated for 

isotropic scattering for various values of the collision parameter c near to unity which is reported 

as to be important for the calculation of diffusion approximations. Mark and Marshak boundary 

conditions were used for all calculations and numerical results obtained by both methods are 

tabulated in Table 1. In this table, the numerical results obtained from the present U1 method 

together with the ones obtained from the traditional P1 method and exact results quoted from Case 

et al (1953) were given side by side for comparison. In this study, this problem has been solved 

for the first time using U1 approximations. All computations were carried out using Maple software 

and the total differential cross-section is assumed to have its normalized values, T = 1 cm−1. 
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Table 1: Extrapolated end points calculated for 0.00  c  2.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.  Conclusion 

Extrapolated end-point problem for one-speed neutrons in a finite slab with isotropic scattering 

was investigated using traditional P1 approximation and U1 approximation. The numerical results 

given in Table 1 obtained for the extrapolation distance using U1 approximation approaches to the 

exact results better in the case of Marshak than Mark boundary conditions, especially in case c is 

very near to unity. Although the numerical results obtained by the P1 approximation look etter than 

the results obtained by U1 approximation, this does not mean that the present UN method could not 

be applied to the problems of transport theory. Very good results are not expected in the first order 

approximations anyway. We hope to eliminate this handicap by applying higher order 

approximations in our future works. In addition, it is very important to eliminate an analytical 

expression firstly by applying the UN method to this problem. This inference could lead to new 

applications. Finally, we indicated that deriving an analytical expression for the solution of the 

problem given in Eqs. (40) and (43) is very important for future studies. 
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