
AUTOMATIC TEST DATA GENERATION USING 
DATA FLOW INFORMATION

Abdelaziz Khamis
Dept o f Comp. & Inf. Sciences, Cairo University

Reem Bahgat
Dept of Computer Science, Cairo University

Rana Abdelaziz
Dept o f Comp. & Inf. Sciences, Cairo University

Abstract: This paper presents a tool for automatically generating test data for Pascal 
programs that satisfy the data flow criteria. Unlike existing tools, our tool is not 
limited to Pascal programs whose program flow graph contains read statements in 
only one node but rather deals with read statements appearing in any node in the 
program flow graph. Moreover, our tool handles loops and arrays, these two 
features are traditionally difficult to handle in test data generation systems. This 
allows us to generate tests for larger programs than those previously reported in the 
literature.

Keywords: Software testing, Automated test generation, Test adequacy criteria, 
Dataflow criteria

Özet: Bu makalede veri akış kriterini sağlayan Pascal programları için otomatik test 
verisi üreten bir yazılım programı sunulmuştur. Mevcut programların aksine, bizim 
programımız Pascal programında tek bir düğümdeki okuma komutuna bağlı kalma­
makta, bunun yerine herhangi bir düğümde bulunan okuma komutuyla ilgilenmek­
tedir. Ayrıca test veri üretim sistemlerinde incelenmesi zor olan çevrim ve dizileri de 
ele almaktadır. Bu metod, literatürde mevcut programlardan daha kapsamlı prog­
ramlar için test üretimini mümkün kılmaktadır.

Anahtar Kelimeler: Yazılım testi, Otomatik test üretimi, Test uygunluk kriteri, Veri 
akış kriteri
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1. INTRODUCTION

Program testing is the most commonly used method for demonstrating that a 
program accomplishes its intended purpose. It involves selecting elements from the 
program’s input domain, executing the program on these test cases, and comparing 
the actual output with the expected output. Since the input domain is usually too 
large for exhaustive testing to be practical, the usual procedure is to select a 
relatively small subset, which is in some sense representative of the entire input 
domain.

An important problem in software testing is deciding whether or not a program has 
been tested enough. Test adequacy criteria were developed to address this problem. A 
test data adequacy criterion is a set of rules that is used to determine whether or not 
sufficient testing has been performed. In section 2, we illustrate the basic notions 
underlying adequacy criteria, overview the major categories of these criteria, and 
conclude section 2, with selecting a test adequacy criterion to be used in our approach.

Once a test adequacy criterion has been selected, the question that arises next is how 
to go about creating a test data that is good with respect to that criterion. Since this 
can be difficult to do by hand, there is a need for automatic test data generation. In 
section 3, we overview the most recent procedure for structural-oriented test data 
generators namely, dynamic domain reduction procedure (DDR). This paper 
presents a new procedure for use in structural-oriented generators. In section 4, we 
present our new procedure which addresses the shortcomings of the DDR procedure.

2. Test Data Adequacy Criteria

The software testing literature contains two different, but closely related, notions 
associated with the term test data adequacy criteria [1]. First, an adequacy criterion 
is considered to be a stopping rule that determines whether sufficient testing has 
been done so that it can be stopped. As a stopping rule, an adequacy criterion can be 
formalized as a function C that takes a program p, a specification s, and a test data 
t and gives a truth value true or false. C(p,s,t) = true means that t is adequate for 
testing p  against specification s according to the criterion C, otherwise t is 
inadequate.

Second, test data adequacy criteria provide a measure of test quality. As 
measurement, an adequacy criterion can be formalized as a function C that takes a 
program p , a specification s, and a test data t and gives a degree of adequacy which 
is a real number in the interval [0,1]. C(p,s,t) = r means that the adequacy of testing 
the program p  by the test t with respect to the specification s is of degree r 
according the criterion C. The greater the real number r, the more adequate the 
testing.

There are various ways to classify adequacy criteria. One of the most common is by 
the source o f information used in the adequacy criteria. Hence, an adequacy
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criterion can be either specification-based or program-based adequacy criteria. A 
specification-based adequacy criterion specifies the required testing in terms of 
identified features of the specification of the program under test, so that a test set is 
adequate if all the identified features have been fully exercised.

A program-based adequacy criterion specifies the required testing in terms of the 
program under test and decides if a test set is adequate according to whether the 
program has been thoroughly exercised. An example of a program-based adequacy 
criterion is path adequacy [2]: If a program P is represented by a flowchart, then a 
path in P is a finite sequence of nodes <ni, ..., nk> k > 2 such that there is an edge 
from ni to n ^  for i = 1 ,2 ,.,k -1  in the flowchart representing P . Test set T  is path 
adequate for P, if for every path p  in P, there is some t in T  which causes p to be 
traversed.

Another classification is by the underlying testing approach. There are two basic 
approaches to program testing namely, structural testing and fault-based testing. 
Structural testing focuses on the coverage of a particular set of elements in the 
structure of the program or the specification.

Fault-based testing focuses on detecting faults in the program. An adequacy 
criterion of this approach is some measurement of the fault detecting ability of test 
sets. Mutation is an example of the fault-based testing approach. Mutation testing is 
based on the assumption that a program will be tested if all simple faults are 
detected and removed. Simple faults are introduced into the program by mutation 
operators [3].

The source of information used in the adequacy measurements and the underlying 
approach to testing can be considered as two dimensions of the space of test 
adequacy criteria. A test adequacy criterion can be classified by these two aspects. In 
this paper we consider only one group of the program-based structural adequacy 
criteria namely, data-flow criteria. Our selection is based on experimental comparisons 
of the fault-detecting ability of several test data adequacy criteria [4], [5], [6].

2.1 Data-Flow Criteria

Before we define data flow criteria we give a brief introduction to the flow-graph 
model of a program. A flow graph is a directed graph that consists of a set N  of 
nodes and a set E  c  N  x N  of directed edges between nodes. Each node is either a 
statement node, representing a linear sequence of computations, or a condition node, 
representing the predicate that controls the conditional or the repetitive statements. 
Each edge is represented by an ordered pair <n1,n2> of nodes and represent flow of 
control from node n1 to node n2. If n1 is a condition node, and n2 is a statement node 
then the corresponding edge is labelled by either ‘t ’ or ‘f’, denoting the values true 
and false respectively. In a flow graph there is a begin node and an end node where 
the computation starts and finishes, respectively. Every node in a flow graph must 
be on a path from the begin node to the end node.
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Example 1. The following Pascal program computes the number of odd and even 
numbers in a list of input numbers ending with the value zero.

program test; 
var x , e , o : integer ; 
begin 

e := 0 ; 
o := 0 ; 
re a d (x ) ; 
while x <> 0 do 

begin
if ( x mod 2 ) = 0 

then e := e + 1 
else o := o +1 ; 

read( x ) 
end ; 

write( e , o ) 
end .

Figure 1. Flow graph for program in Example 1.

Figure 1 is an example of flow graph. It should be noted that in the literature there 
are a number of slight differences in presenting such graphs. However, adequacy 
criteria can be defined independently of such differences.

Now, we introduce the way that data flow information is added into the flow graph 
model of the program under test. Data flow test adequacy analysis focuses on the 
occurrences of variables within the program. Each variable is classified as either a 
definition occurrence or a use occurrence. A definition occurrence of a variable is 
where a value is associated with the variable. A use occurrence of a variable is where 
the value of the variable is referred. Each use occurrence is further classified as a 
computational use (c-use) or a predicate use (p-use). If the value of the variable is 
used to decide whether a predicate is true for selecting execution paths, the 
occurrence is called a predicate use. Otherwise, the occurrence is called a 
computational use.
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Rapps and Weyuker have proposed a family of testing adequacy criteria based on 
data-flow information [7]. Frankl and Weyuker later extended the definitions of 
these criteria [8]. Their criteria require that test data be included which cause the 
traversal of sub-paths from a variable definition to either some or all of the p-uses, 
c-uses, or their combination. However, empirical evidences show that the all-uses 
criterion is the most effective criterion compared to the other data flow criteria [9],
[10]. All-uses criterion requires that test data be included which causes the 
traversal of at least one sub-path from each variable definition to every p-use and 
every c-use of that definition.

A definition-use association is a triple <d, u, v>, where d is a node in the program’s 
flow graph in which a variable v is defined, and u is an edge or a node in which v is 
used, and there is a path from d to u on which v is not redefined. If we apply the 
all-uses criterion on example 1, the definition-use associations will be:

<1, (2,3), x>
<1, (2,4), x>
<1, (5,6), x>
<1, (5,7), x>
<8, (2,3), x>
<8, (2,4), x>
<8, (5,6), x>
<8, (5,7), x>

3. Automatic Test Data Generation

Test data generation is the process of creating program inputs that satisfy some t 
esting criterion. The problem of automatic test data generation has been examined 
by a number of researchers [11], [12], [13], [14]. As pointed out in [11], test data 
generators can be categorised into three groups: structural-oriented test data 
generators attempt to cover certain structural elements in the program, 
specification-oriented test data generators generate test data from a formal 
description of the input domain, and random test data generators create test data 
according to some distribution of the input domain without satisfying any test 
criterion.

In this paper we focus on structural-oriented test data generators. For this category 
of generators, the test data generation problem is defined as follows. Let ng be a node 
in the flow graph of a program P with input domain D, ng is called the goal node. 
The test data generation problem is: find  a program input t E. D such that when P is 
executed on t, ng will be reached. To extend this problem to include the all-uses data 
flow criterion, the goal ng becomes the node that contains a definition of a 
variable x, and the requirement is added that after ng is reached, the node 
containing the use of x (nu) must be reached, with the further restriction that the 
sub-path from ng to nu must not contain another definition of x.
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As far as we know, Offutt, Jin, and Pan in [14], present the most recent procedure, 
called dynamic domain reduction procedure (DDR), which addresses most of the 
problems in the existing structural-oriented test data generators. In this section we 
give an overview the DDR procedure and define some of its weaknesses.

3.1 Overview the dynamic domain reduction procedur e

The DDR procedure starts with several pieces of information: a flow graph, the 
initial domains for all input variables, and two nodes representing the initial and goal 
nodes. The first step is that a finite set of paths from the initial to the goal node is 
determined. Then each path is analyzed in turn. The path is traversed, and symbolic 
execution is used to progressively reduce the domains of values for the input 
variables. When choices for how to reduce the domain must be made, a search 
process is used to split the domain of some variable in an attempt to find a set of 
values that allow the constraints to be satisfied. Finally, a test case is chosen 
arbitrarily from within the reduced input domains.

The DDR procedure suffers from several shortcomings that prevent it from working 
in some situations and hamper its applicability in practical situations. These include 
three main problems. First, The DDR procedure deals with programs whose flow 
graphs have only one node containing read statements. Second, it assumes that the 
domains of input variables have only discrete values. A third problem is that the 
DDR procedure has partially solved the problems of arrays and loops.

4. OurApproach for Test Data Generation

This paper presents a novel procedure for automated test data generation, which 
overcomes the weaknesses of the DDR procedure that are stated above. Our 
procedure is based on the idea of dividing the input domain of the program under 
test into subsets, called sub-domains, then requiring the test cases to include 
elements from each sub-domain. The following concepts and assumptions are used 
in our procedure.

The domain o f a variable is the set of all possible values the variable can have. The 
domain is either continuous or discrete, depending on the variable’s type 
declaration. Our procedure assumes that the intersection between the variables’ 
domains is not empty. The domain of the program consists of all the domains of its 
variables.

The Sub-domains o f a program are subsets produced by dividing the domain of the 
program. When the all-uses data flow criterion is used to divide the domain of the 
program, each sub-domain would consist of all the inputs that execute any path 
from a particular definition of a variable v to a particular use of v without any 
intervening redefinition of v.

The sub-domain o f a path is a predicate that restricts the space of the program 
variables to certain domains. If input data that satisfy the sub-domain of a path exist,
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the path is said to be an execution path, and that data can be used to test the program. 
If the sub-domain of the path cannot be satisfied, the path is said to be infeasible.

The start nodes in the program flow graph are the begin node and any other node 
that contains a read statement. For the program flow graph in figure 1, the start 
nodes are node-1 and node-8.

An independent variable in a program is an input variable that doesn’t depend on 
the value of another input variable, while a dependent variable is an input variable 
that depends on the value of another input variable. A dependent path is a path from 
a node containing a read statement for an independent variable to a node containing 
read statements for a dependent variable.

4.1 Overview of our new procedur e

Our procedure is quite difficult to clearly describe. We proceed by first giving a high 
level overview of the procedure, followed by an illustrative example, then a detailed 
description of the procedure.

The main steps o f our procedure are:

1- Produce the table of definition-use associations for the input variables.
2- Identify two types of paths, namely: paths from the start nodes to the definition 

nodes and paths from the definition nodes to the use nodes.
3- For each path identified in step 2, determine its sub-domain, and randomly select 

an element from each input variable’s domain such that they satisfy the 
sub-domain of the path.

In example 1, assume the domain of x is [-50-50]. Using the criterion all-uses, our 
procedure would produce the following:

Definition-use association Sub-domains Test cases

(1,(2,3),x) x<>0 x = 40
(1,(2,4),x) x=0 x = 0
(1,(5,6),x) (x<>0)and((x mod 2)=0) x = -44
(1,(5,7),x) (x<>0)and((x mod 2)<>0) x = 19
(8,(2,3),x) (x<>0)and((x mod 2)=0) x = -28

(x<>0)and((x mod 2)<>0) x = 21
(x<>0) and((x mod 2)=0) x = 14
(x<>0)and((x mod 2)<>0) x = 33
(x<>0) x = -27

(8,(2,4),x) (x<>0)and((x mod 2)<>0) x = 29
(x<>0)and((x mod 2)=0) x = 38
(x<>0)and((x mod 2)<>0) x = 31
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(x<>0)and((x mod 2)=0) 
(x=0)

x = 32 
x = 0 
x = 26 
x = -17 
x = -18 
x = 39 
x = -40 
x = 41 
x = -48 
x = 9 
x = 44 
x = 23

(8,(5,6),x) (x<>0)and((x mod 2)=0) 
(x<>0)and((x mod 2)<>0) 
(x<>0)and((x mod 2)=0) 
(x<>0)and((x mod 2)<>0) 
(x<>0)and((x mod 2)=0) 
(x<>0)and((x mod 2)<>0) 
(x<>0)and((x mod 2)=0) 
(x<>0)and((x mod 2)<>0) 
(x<>0)and((x mod 2)=0) 
(x<>0)and((x mod 2)<>0)

(8,(5,7),x)

This example has one input variable and there are no dependent variables. At triple 
(1, (2,4), x), node-1 (def-node) contains readln(x) and it is the start node, the path 
from node-1 (def-node) to edge(2,4) (use edge) is 1-2-4 has the sub-domain (x=0), 
i.e. this triple is associated with the sub-domain (x=0). 0 is an element from [-50,50] 
which satisfies the sub-domain (x=0).

At triple (8, (2,3), x), node-8 (def node) contains readln(x), and the start nodes are 
node-1 and node-8. Paths from the start nodes to the def-node, node-8, are: (1) The 
1-2-3-5-6-8, with sub-domain ((x<>0) and ((x mod 2)=0)) and -28 is an element 
selected from [-50,50] that satisfies the sub-domain, (2) The path 1-2-3-5-7-8 with 
sub-domain ((x<>0) and ((x mod 2)<>0)), and 21 is an element selected from 
[-50,50] which satisfies the sub-domain, (3) The path 8-2-3-5-6-8 with sub-domain 
((x<>0) and ((x mod 2)=0)) and 14 is an element selected to satisfy the sub-domain, 
and (4) The path 8-2-3-5-7-8 with sub-domain ((x<>0)and((x mod 2)<>0)) and 33 
is an element satisfying the sub-domain. Finally, the path from the def-node, 
node-8, to the use-edge (2,3) is 8-2-3, with sub-domain (x<>0), and -27 satisfies the 
sub-domain. Hence, the triple (8, (2,3), x) is associated with the test case -28, 
21,14,33, -27. Note that this test case may not lead to loop termination, we will 
continue this example in section 4.3.

4.2 Detailed description of the procedur e

Figure 2 shows an abstract algorithm of our procedure. The algorithm uses modules 
for producing the definition-use association table, finding all the dependent paths in 
the control flow graph, generating the sub-domain of a given path, and randomly 
selecting elements from the program domain to satisfy a given sub-domain.

In figure 3, we overview the algorithm for handling loops that contain read 
statements. The algorithm is based on the idea of identifying the progress variables 
in the considered loop, finding their initial values, and finally updating their values 
using the progress statements. Figure 3 can be simplified to Figure 4, when the 
progress variables are variables in the read statements.
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Find the table of definition-use association for the input variables. 
dep-paths := all the dependent paths in the control flow graph; 
dep-sdi := sub-domain-of (dep-pathSi);
T := empty set of test cases;

For each triple (d, u,v)  in the table Do 
Begin

If the node d contains read (v) Then 
Begin

t := empty test case;
For each start node i Do

For each path from the start node i to the node d, namely p id Do 
Begin

sdid := sub-domain-of (pid); 
tid := rand-select ( sdid);
Add tid to t;

End
Pdu := paths from the node d to the node u; 
sddu := sub-domains-of (Pdu); 
tdu := rand-select (sddu);
Add tdu to t;

End
Else If the node d contains v : = A Then 

Begin
Pid := paths from every start node i to node d;
Pdu := paths from node d to node u;
sdd := sub-domains-of (Pid);
sdu := sub-domains-of (Pdu) after replacing v by A;
sd := sdd and sdu;
t := rand-select(sd)

End;
Add t to T

End
Function rand-select (sd)

Begin
el := randomly selected element from each input variable’s domain to satisfy sd; 
IF sd is a sub-domain fo r  a path o f the second type Then 

For each dependent sub-domain dep-sdt Do 
IF el satisfies dep-sdi Then
Add to el randomly selected elements from dependent variables’domains; 

rand-select := el;
End

Figure 2. The Test Data Generation Procedure

148



Figure 5, shows our strategy for handling sub-domains that contain non-input 
variables. The strategy is based on the idea of applying the all-uses data flow 
criterion on these non-input variables, to identify the nodes that contain their 
definitions.

Our strategy for handling arrays is shown in Figure 6. The strategy is based on the 
idea of checking the index of the array to see whether it is an input variable or not.

4.3 Handling Loops Containing Read Statements

The problem with analyzing loops is that some test cases may not lead to loop 
termination. In example 1, the first test case , x = 44, does not terminate the loop. 
This problem is not faced if the loop body does not contain read statements. Our 
strategy for handling the loops which contain read statements is shown in Figure 3.

Identify the progress variables in the considered loop:
For every test case, t Do 

Begin 
T := t;
Find values of the progress variables for the considered test case, t:
While the loop condition Do 

Begin
p:= path from the first node of the loop to 

node containing the progress statement; 
sd := sub-domain-of (p); 
t := rand-select(sd);
Add t to T;
Update the values of the progress variables using progress statements: 

End
End

Figure 3. The loop handling procedure

The procedure in Figure 3 can be simplified to be as in Figure 4, when the progress 
variables are variables in the read statement. Applying the simplified procedure to 
example 1, where the condition of the loop is (x<>0), the procedure adds x=0 to all 
the test cases that do not have x=0.

For every test case, t Do 
Begin

T := t;
If the loop condition Then t := rand-select(not condition of loop); 

Add t to T;
End

Fig 4. Simplification of the loop handling procedure
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Instead of walking through the program flow graph to determine the value of a non­
input variable in a sub-domain, our procedure applies all-uses data flow criterion on 
that variable to identify the nodes which contain its definitions. Then, depending on 
whether the statement definition is a progress statement or not, our procedure finds 
a new sub-domain by replacing the non-input variable by its assigned expression. 
The strategy to find the new sub-domains is shown in Figure 5. If one of the new 
sub-domains still depends on another non-input variable then the above process is 
repeated until the new sub-domain is free from any non-input variables.

4.4 Handling sub-domains depending on non-input variables

sd := sub-domain with non-input variables;
Find the table of definition-use association for non-input variables in sd: 
NEW-SD := empty new-sub-domains;
For each triple (d, u,v)  in the table Do 

Begin
If the assignment statement o f v a t  node d is not a progress statement Then 

Begin
exp := right-hand side of the assignment statement; 
new-sd := sd after replacing v by exp;

End
Else If the assignment statement of v depends on input variables Then 

Begin
pl:= path from the begin node to the node d; 
p2:= path from node d to the node u; 
n-sd := sub-domain-of (pi) and sub-domain-of (p2); 
new-sd := n-sd after replacing v by exp;

End;
Add new-sd to NEW-SD;

End

Figure 5. Handling sub-domains with non-input variables

Example 2. The following program calculates the average of an array of numbers.

Program simple;
Var n , c :integer;

sum , average :real; 
x :array[1..100] of real;

Begin
read(n); 
sum := 0; 
for c :=1 to n do 
begin

read( x[c]); 
sum := sum + x[c]

end;
average := sum/n; 
write(average)

End.
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The program flow graph is:

read (x[c])
sum:=sum+x[c]
c:=c+1

( 1) read(n) sum:=0 c:=1

c<=n 
t f

average:=sum/n 
writeln (average)

Definition-use association 
(1, (2,3), n)
(1,(2,4),n)
(1,4,n)

Subdomain
c<=n
c>n
c>n

The sub-domain (c<=n) depends on c (a non-input variable), hence requires 
applying all-uses criterion on c itself.
Definition-use association of c

At node 1, the assignment c:=1 is not progress statement of the loop. Hence, the 
new sub-domain is (1<=n), also the sub-domain (c>n) becomes (1>n). The next 
subsection will complete this example.

4.5 Handling Arrays

The existing data flow analysis treats arrays as scalar variables, that is, a reference 
to any element is treated as a reference to all elements. In order to overcome this 
problem, our new procedure analyses the index of the array to check whether it is an 
input variable or a non-input variable. Then, for each sub-domain, our procedure 
determines the initial value of the index and how the index changes its value in the 
program. The strategy for handling arrays is shown in Figure 6.

For each test case Do 
Begin

Let X be a variable of type array;
If the index o fX  is an input variable

Then index := the value of the index variable in the test case 
Else index := initial value of index;

Replace X by X[index]
Step := the value used to modify the index value;
If Step is defined by an input variable

Then index := the value of the Step variable in the test case 
Else index := index + Step;

(1,(2,3),c)
(1,(2,4),c)

End

Figure 6. Handling Arrays
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In example 2, assume that the domain of n is [-3--10], the domain of x is [-50-50], 
and the criterion is all-uses. Applying our procedure we get:

Definition-use association 
(l,(2,3),n)

Test cases 
n = 5, x[1] = 30.34, x[2] = 4.56 
x[3] = -34.78, x[4] = 7.89, x[5]=9

(l,(2,4),n) n = -1

(1,4,n) n = -2

In the first case, 30.34 is an element from the domain of x, the index c is a non-input 
variable whose initial value is 1, then the case x = 30.34 is replaced by x[1] = 30.34. 
Since Step = 1, then index value becomes 2 using the ‘handling loop’procedure, and 
x = 4.56 is replaced by x[2] = 4.56. Similarly, x[3] = -34.78, x[4] = 7.89 and x[5]=9 
replace the corresponding cases. The other test cases don’t need to apply the 
strategy in Figure 6.

5. Conclusions

In this paper, we proposed a new method for automatically generating test data for 
Pascal programs. Our method addresses the weak points of the most recent test data 
generator, namely the Dynamic Domain Reduction (DDR) procedure. This allows 
us to generate tests for larger class of problems than those previously reported in the 
literature.
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