
AUTOMATIC TEST DATA GENERATION USING
DATA FLOW INFORMATION

Abdelaziz Khamis
Dept o f Comp. & Inf. Sciences, Cairo University

Reem Bahgat
Dept of Computer Science, Cairo University

Rana Abdelaziz
Dept o f Comp. & Inf. Sciences, Cairo University

Abstract: This paper presents a tool for automatically generating test data for Pascal
programs that satisfy the data flow criteria. Unlike existing tools, our tool is not
limited to Pascal programs whose program flow graph contains read statements in
only one node but rather deals with read statements appearing in any node in the
program flow graph. Moreover, our tool handles loops and arrays, these two
features are traditionally difficult to handle in test data generation systems. This
allows us to generate tests for larger programs than those previously reported in the
literature.

Keywords: Software testing, Automated test generation, Test adequacy criteria,
Dataflow criteria

Özet: Bu makalede veri akış kriterini sağlayan Pascal programları için otomatik test
verisi üreten bir yazılım programı sunulmuştur. Mevcut programların aksine, bizim
programımız Pascal programında tek bir düğümdeki okuma komutuna bağlı kalma
makta, bunun yerine herhangi bir düğümde bulunan okuma komutuyla ilgilenmek
tedir. Ayrıca test veri üretim sistemlerinde incelenmesi zor olan çevrim ve dizileri de
ele almaktadır. Bu metod, literatürde mevcut programlardan daha kapsamlı prog
ramlar için test üretimini mümkün kılmaktadır.

Anahtar Kelimeler: Yazılım testi, Otomatik test üretimi, Test uygunluk kriteri, Veri
akış kriteri

140

1. INTRODUCTION

Program testing is the most commonly used method for demonstrating that a
program accomplishes its intended purpose. It involves selecting elements from the
program’s input domain, executing the program on these test cases, and comparing
the actual output with the expected output. Since the input domain is usually too
large for exhaustive testing to be practical, the usual procedure is to select a
relatively small subset, which is in some sense representative of the entire input
domain.

An important problem in software testing is deciding whether or not a program has
been tested enough. Test adequacy criteria were developed to address this problem. A
test data adequacy criterion is a set of rules that is used to determine whether or not
sufficient testing has been performed. In section 2, we illustrate the basic notions
underlying adequacy criteria, overview the major categories of these criteria, and
conclude section 2, with selecting a test adequacy criterion to be used in our approach.

Once a test adequacy criterion has been selected, the question that arises next is how
to go about creating a test data that is good with respect to that criterion. Since this
can be difficult to do by hand, there is a need for automatic test data generation. In
section 3, we overview the most recent procedure for structural-oriented test data
generators namely, dynamic domain reduction procedure (DDR). This paper
presents a new procedure for use in structural-oriented generators. In section 4, we
present our new procedure which addresses the shortcomings of the DDR procedure.

2. Test Data Adequacy Criteria

The software testing literature contains two different, but closely related, notions
associated with the term test data adequacy criteria [1]. First, an adequacy criterion
is considered to be a stopping rule that determines whether sufficient testing has
been done so that it can be stopped. As a stopping rule, an adequacy criterion can be
formalized as a function C that takes a program p, a specification s, and a test data
t and gives a truth value true or false. C(p,s,t) = true means that t is adequate for
testing p against specification s according to the criterion C, otherwise t is
inadequate.

Second, test data adequacy criteria provide a measure of test quality. As
measurement, an adequacy criterion can be formalized as a function C that takes a
program p , a specification s, and a test data t and gives a degree of adequacy which
is a real number in the interval [0,1]. C(p,s,t) = r means that the adequacy of testing
the program p by the test t with respect to the specification s is of degree r
according the criterion C. The greater the real number r, the more adequate the
testing.

There are various ways to classify adequacy criteria. One of the most common is by
the source o f information used in the adequacy criteria. Hence, an adequacy

141

criterion can be either specification-based or program-based adequacy criteria. A
specification-based adequacy criterion specifies the required testing in terms of
identified features of the specification of the program under test, so that a test set is
adequate if all the identified features have been fully exercised.

A program-based adequacy criterion specifies the required testing in terms of the
program under test and decides if a test set is adequate according to whether the
program has been thoroughly exercised. An example of a program-based adequacy
criterion is path adequacy [2]: If a program P is represented by a flowchart, then a
path in P is a finite sequence of nodes <ni, ..., nk> k > 2 such that there is an edge
from ni to n ^ for i = 1 ,2 ,.,k -1 in the flowchart representing P . Test set T is path
adequate for P, if for every path p in P, there is some t in T which causes p to be
traversed.

Another classification is by the underlying testing approach. There are two basic
approaches to program testing namely, structural testing and fault-based testing.
Structural testing focuses on the coverage of a particular set of elements in the
structure of the program or the specification.

Fault-based testing focuses on detecting faults in the program. An adequacy
criterion of this approach is some measurement of the fault detecting ability of test
sets. Mutation is an example of the fault-based testing approach. Mutation testing is
based on the assumption that a program will be tested if all simple faults are
detected and removed. Simple faults are introduced into the program by mutation
operators [3].

The source of information used in the adequacy measurements and the underlying
approach to testing can be considered as two dimensions of the space of test
adequacy criteria. A test adequacy criterion can be classified by these two aspects. In
this paper we consider only one group of the program-based structural adequacy
criteria namely, data-flow criteria. Our selection is based on experimental comparisons
of the fault-detecting ability of several test data adequacy criteria [4], [5], [6].

2.1 Data-Flow Criteria

Before we define data flow criteria we give a brief introduction to the flow-graph
model of a program. A flow graph is a directed graph that consists of a set N of
nodes and a set E c N x N of directed edges between nodes. Each node is either a
statement node, representing a linear sequence of computations, or a condition node,
representing the predicate that controls the conditional or the repetitive statements.
Each edge is represented by an ordered pair <n1,n2> of nodes and represent flow of
control from node n1 to node n2. If n1 is a condition node, and n2 is a statement node
then the corresponding edge is labelled by either ‘t ’ or ‘f’, denoting the values true
and false respectively. In a flow graph there is a begin node and an end node where
the computation starts and finishes, respectively. Every node in a flow graph must
be on a path from the begin node to the end node.

142

Example 1. The following Pascal program computes the number of odd and even
numbers in a list of input numbers ending with the value zero.

program test;
var x , e , o : integer ;
begin

e := 0 ;
o := 0 ;
re a d (x) ;
while x <> 0 do

begin
if (x mod 2) = 0

then e := e + 1
else o := o +1 ;

read(x)
end ;

write(e , o)
end .

Figure 1. Flow graph for program in Example 1.

Figure 1 is an example of flow graph. It should be noted that in the literature there
are a number of slight differences in presenting such graphs. However, adequacy
criteria can be defined independently of such differences.

Now, we introduce the way that data flow information is added into the flow graph
model of the program under test. Data flow test adequacy analysis focuses on the
occurrences of variables within the program. Each variable is classified as either a
definition occurrence or a use occurrence. A definition occurrence of a variable is
where a value is associated with the variable. A use occurrence of a variable is where
the value of the variable is referred. Each use occurrence is further classified as a
computational use (c-use) or a predicate use (p-use). If the value of the variable is
used to decide whether a predicate is true for selecting execution paths, the
occurrence is called a predicate use. Otherwise, the occurrence is called a
computational use.

143

Rapps and Weyuker have proposed a family of testing adequacy criteria based on
data-flow information [7]. Frankl and Weyuker later extended the definitions of
these criteria [8]. Their criteria require that test data be included which cause the
traversal of sub-paths from a variable definition to either some or all of the p-uses,
c-uses, or their combination. However, empirical evidences show that the all-uses
criterion is the most effective criterion compared to the other data flow criteria [9],
[10]. All-uses criterion requires that test data be included which causes the
traversal of at least one sub-path from each variable definition to every p-use and
every c-use of that definition.

A definition-use association is a triple <d, u, v>, where d is a node in the program’s
flow graph in which a variable v is defined, and u is an edge or a node in which v is
used, and there is a path from d to u on which v is not redefined. If we apply the
all-uses criterion on example 1, the definition-use associations will be:

<1, (2,3), x>
<1, (2,4), x>
<1, (5,6), x>
<1, (5,7), x>
<8, (2,3), x>
<8, (2,4), x>
<8, (5,6), x>
<8, (5,7), x>

3. Automatic Test Data Generation

Test data generation is the process of creating program inputs that satisfy some t
esting criterion. The problem of automatic test data generation has been examined
by a number of researchers [11], [12], [13], [14]. As pointed out in [11], test data
generators can be categorised into three groups: structural-oriented test data
generators attempt to cover certain structural elements in the program,
specification-oriented test data generators generate test data from a formal
description of the input domain, and random test data generators create test data
according to some distribution of the input domain without satisfying any test
criterion.

In this paper we focus on structural-oriented test data generators. For this category
of generators, the test data generation problem is defined as follows. Let ng be a node
in the flow graph of a program P with input domain D, ng is called the goal node.
The test data generation problem is: find a program input t E. D such that when P is
executed on t, ng will be reached. To extend this problem to include the all-uses data
flow criterion, the goal ng becomes the node that contains a definition of a
variable x, and the requirement is added that after ng is reached, the node
containing the use of x (nu) must be reached, with the further restriction that the
sub-path from ng to nu must not contain another definition of x.

144

As far as we know, Offutt, Jin, and Pan in [14], present the most recent procedure,
called dynamic domain reduction procedure (DDR), which addresses most of the
problems in the existing structural-oriented test data generators. In this section we
give an overview the DDR procedure and define some of its weaknesses.

3.1 Overview the dynamic domain reduction procedur e

The DDR procedure starts with several pieces of information: a flow graph, the
initial domains for all input variables, and two nodes representing the initial and goal
nodes. The first step is that a finite set of paths from the initial to the goal node is
determined. Then each path is analyzed in turn. The path is traversed, and symbolic
execution is used to progressively reduce the domains of values for the input
variables. When choices for how to reduce the domain must be made, a search
process is used to split the domain of some variable in an attempt to find a set of
values that allow the constraints to be satisfied. Finally, a test case is chosen
arbitrarily from within the reduced input domains.

The DDR procedure suffers from several shortcomings that prevent it from working
in some situations and hamper its applicability in practical situations. These include
three main problems. First, The DDR procedure deals with programs whose flow
graphs have only one node containing read statements. Second, it assumes that the
domains of input variables have only discrete values. A third problem is that the
DDR procedure has partially solved the problems of arrays and loops.

4. OurApproach for Test Data Generation

This paper presents a novel procedure for automated test data generation, which
overcomes the weaknesses of the DDR procedure that are stated above. Our
procedure is based on the idea of dividing the input domain of the program under
test into subsets, called sub-domains, then requiring the test cases to include
elements from each sub-domain. The following concepts and assumptions are used
in our procedure.

The domain o f a variable is the set of all possible values the variable can have. The
domain is either continuous or discrete, depending on the variable’s type
declaration. Our procedure assumes that the intersection between the variables’
domains is not empty. The domain of the program consists of all the domains of its
variables.

The Sub-domains o f a program are subsets produced by dividing the domain of the
program. When the all-uses data flow criterion is used to divide the domain of the
program, each sub-domain would consist of all the inputs that execute any path
from a particular definition of a variable v to a particular use of v without any
intervening redefinition of v.

The sub-domain o f a path is a predicate that restricts the space of the program
variables to certain domains. If input data that satisfy the sub-domain of a path exist,

145

the path is said to be an execution path, and that data can be used to test the program.
If the sub-domain of the path cannot be satisfied, the path is said to be infeasible.

The start nodes in the program flow graph are the begin node and any other node
that contains a read statement. For the program flow graph in figure 1, the start
nodes are node-1 and node-8.

An independent variable in a program is an input variable that doesn’t depend on
the value of another input variable, while a dependent variable is an input variable
that depends on the value of another input variable. A dependent path is a path from
a node containing a read statement for an independent variable to a node containing
read statements for a dependent variable.

4.1 Overview of our new procedur e

Our procedure is quite difficult to clearly describe. We proceed by first giving a high
level overview of the procedure, followed by an illustrative example, then a detailed
description of the procedure.

The main steps o f our procedure are:

1- Produce the table of definition-use associations for the input variables.
2- Identify two types of paths, namely: paths from the start nodes to the definition

nodes and paths from the definition nodes to the use nodes.
3- For each path identified in step 2, determine its sub-domain, and randomly select

an element from each input variable’s domain such that they satisfy the
sub-domain of the path.

In example 1, assume the domain of x is [-50-50]. Using the criterion all-uses, our
procedure would produce the following:

Definition-use association Sub-domains Test cases

(1,(2,3),x) x<>0 x = 40
(1,(2,4),x) x=0 x = 0
(1,(5,6),x) (x<>0)and((x mod 2)=0) x = -44
(1,(5,7),x) (x<>0)and((x mod 2)<>0) x = 19
(8,(2,3),x) (x<>0)and((x mod 2)=0) x = -28

(x<>0)and((x mod 2)<>0) x = 21
(x<>0) and((x mod 2)=0) x = 14
(x<>0)and((x mod 2)<>0) x = 33
(x<>0) x = -27

(8,(2,4),x) (x<>0)and((x mod 2)<>0) x = 29
(x<>0)and((x mod 2)=0) x = 38
(x<>0)and((x mod 2)<>0) x = 31

146

(x<>0)and((x mod 2)=0)
(x=0)

x = 32
x = 0
x = 26
x = -17
x = -18
x = 39
x = -40
x = 41
x = -48
x = 9
x = 44
x = 23

(8,(5,6),x) (x<>0)and((x mod 2)=0)
(x<>0)and((x mod 2)<>0)
(x<>0)and((x mod 2)=0)
(x<>0)and((x mod 2)<>0)
(x<>0)and((x mod 2)=0)
(x<>0)and((x mod 2)<>0)
(x<>0)and((x mod 2)=0)
(x<>0)and((x mod 2)<>0)
(x<>0)and((x mod 2)=0)
(x<>0)and((x mod 2)<>0)

(8,(5,7),x)

This example has one input variable and there are no dependent variables. At triple
(1, (2,4), x), node-1 (def-node) contains readln(x) and it is the start node, the path
from node-1 (def-node) to edge(2,4) (use edge) is 1-2-4 has the sub-domain (x=0),
i.e. this triple is associated with the sub-domain (x=0). 0 is an element from [-50,50]
which satisfies the sub-domain (x=0).

At triple (8, (2,3), x), node-8 (def node) contains readln(x), and the start nodes are
node-1 and node-8. Paths from the start nodes to the def-node, node-8, are: (1) The
1-2-3-5-6-8, with sub-domain ((x<>0) and ((x mod 2)=0)) and -28 is an element
selected from [-50,50] that satisfies the sub-domain, (2) The path 1-2-3-5-7-8 with
sub-domain ((x<>0) and ((x mod 2)<>0)), and 21 is an element selected from
[-50,50] which satisfies the sub-domain, (3) The path 8-2-3-5-6-8 with sub-domain
((x<>0) and ((x mod 2)=0)) and 14 is an element selected to satisfy the sub-domain,
and (4) The path 8-2-3-5-7-8 with sub-domain ((x<>0)and((x mod 2)<>0)) and 33
is an element satisfying the sub-domain. Finally, the path from the def-node,
node-8, to the use-edge (2,3) is 8-2-3, with sub-domain (x<>0), and -27 satisfies the
sub-domain. Hence, the triple (8, (2,3), x) is associated with the test case -28,
21,14,33, -27. Note that this test case may not lead to loop termination, we will
continue this example in section 4.3.

4.2 Detailed description of the procedur e

Figure 2 shows an abstract algorithm of our procedure. The algorithm uses modules
for producing the definition-use association table, finding all the dependent paths in
the control flow graph, generating the sub-domain of a given path, and randomly
selecting elements from the program domain to satisfy a given sub-domain.

In figure 3, we overview the algorithm for handling loops that contain read
statements. The algorithm is based on the idea of identifying the progress variables
in the considered loop, finding their initial values, and finally updating their values
using the progress statements. Figure 3 can be simplified to Figure 4, when the
progress variables are variables in the read statements.

147

Find the table of definition-use association for the input variables.
dep-paths := all the dependent paths in the control flow graph;
dep-sdi := sub-domain-of (dep-pathSi);
T := empty set of test cases;

For each triple (d, u,v) in the table Do
Begin

If the node d contains read (v) Then
Begin

t := empty test case;
For each start node i Do

For each path from the start node i to the node d, namely p id Do
Begin

sdid := sub-domain-of (pid);
tid := rand-select (sdid);
Add tid to t;

End
Pdu := paths from the node d to the node u;
sddu := sub-domains-of (Pdu);
tdu := rand-select (sddu);
Add tdu to t;

End
Else If the node d contains v : = A Then

Begin
Pid := paths from every start node i to node d;
Pdu := paths from node d to node u;
sdd := sub-domains-of (Pid);
sdu := sub-domains-of (Pdu) after replacing v by A;
sd := sdd and sdu;
t := rand-select(sd)

End;
Add t to T

End
Function rand-select (sd)

Begin
el := randomly selected element from each input variable’s domain to satisfy sd;
IF sd is a sub-domain fo r a path o f the second type Then

For each dependent sub-domain dep-sdt Do
IF el satisfies dep-sdi Then
Add to el randomly selected elements from dependent variables’domains;

rand-select := el;
End

Figure 2. The Test Data Generation Procedure

148

Figure 5, shows our strategy for handling sub-domains that contain non-input
variables. The strategy is based on the idea of applying the all-uses data flow
criterion on these non-input variables, to identify the nodes that contain their
definitions.

Our strategy for handling arrays is shown in Figure 6. The strategy is based on the
idea of checking the index of the array to see whether it is an input variable or not.

4.3 Handling Loops Containing Read Statements

The problem with analyzing loops is that some test cases may not lead to loop
termination. In example 1, the first test case , x = 44, does not terminate the loop.
This problem is not faced if the loop body does not contain read statements. Our
strategy for handling the loops which contain read statements is shown in Figure 3.

Identify the progress variables in the considered loop:
For every test case, t Do

Begin
T := t;
Find values of the progress variables for the considered test case, t:
While the loop condition Do

Begin
p:= path from the first node of the loop to

node containing the progress statement;
sd := sub-domain-of (p);
t := rand-select(sd);
Add t to T;
Update the values of the progress variables using progress statements:

End
End

Figure 3. The loop handling procedure

The procedure in Figure 3 can be simplified to be as in Figure 4, when the progress
variables are variables in the read statement. Applying the simplified procedure to
example 1, where the condition of the loop is (x<>0), the procedure adds x=0 to all
the test cases that do not have x=0.

For every test case, t Do
Begin

T := t;
If the loop condition Then t := rand-select(not condition of loop);

Add t to T;
End

Fig 4. Simplification of the loop handling procedure

149

Instead of walking through the program flow graph to determine the value of a non
input variable in a sub-domain, our procedure applies all-uses data flow criterion on
that variable to identify the nodes which contain its definitions. Then, depending on
whether the statement definition is a progress statement or not, our procedure finds
a new sub-domain by replacing the non-input variable by its assigned expression.
The strategy to find the new sub-domains is shown in Figure 5. If one of the new
sub-domains still depends on another non-input variable then the above process is
repeated until the new sub-domain is free from any non-input variables.

4.4 Handling sub-domains depending on non-input variables

sd := sub-domain with non-input variables;
Find the table of definition-use association for non-input variables in sd:
NEW-SD := empty new-sub-domains;
For each triple (d, u,v) in the table Do

Begin
If the assignment statement o f v a t node d is not a progress statement Then

Begin
exp := right-hand side of the assignment statement;
new-sd := sd after replacing v by exp;

End
Else If the assignment statement of v depends on input variables Then

Begin
pl:= path from the begin node to the node d;
p2:= path from node d to the node u;
n-sd := sub-domain-of (pi) and sub-domain-of (p2);
new-sd := n-sd after replacing v by exp;

End;
Add new-sd to NEW-SD;

End

Figure 5. Handling sub-domains with non-input variables

Example 2. The following program calculates the average of an array of numbers.

Program simple;
Var n , c :integer;

sum , average :real;
x :array[1..100] of real;

Begin
read(n);
sum := 0;
for c :=1 to n do
begin

read(x[c]);
sum := sum + x[c]

end;
average := sum/n;
write(average)

End.

150

The program flow graph is:

read (x[c])
sum:=sum+x[c]
c:=c+1

(1) read(n) sum:=0 c:=1

c<=n
t f

average:=sum/n
writeln (average)

Definition-use association
(1, (2,3), n)
(1,(2,4),n)
(1,4,n)

Subdomain
c<=n
c>n
c>n

The sub-domain (c<=n) depends on c (a non-input variable), hence requires
applying all-uses criterion on c itself.
Definition-use association of c

At node 1, the assignment c:=1 is not progress statement of the loop. Hence, the
new sub-domain is (1<=n), also the sub-domain (c>n) becomes (1>n). The next
subsection will complete this example.

4.5 Handling Arrays

The existing data flow analysis treats arrays as scalar variables, that is, a reference
to any element is treated as a reference to all elements. In order to overcome this
problem, our new procedure analyses the index of the array to check whether it is an
input variable or a non-input variable. Then, for each sub-domain, our procedure
determines the initial value of the index and how the index changes its value in the
program. The strategy for handling arrays is shown in Figure 6.

For each test case Do
Begin

Let X be a variable of type array;
If the index o fX is an input variable

Then index := the value of the index variable in the test case
Else index := initial value of index;

Replace X by X[index]
Step := the value used to modify the index value;
If Step is defined by an input variable

Then index := the value of the Step variable in the test case
Else index := index + Step;

(1,(2,3),c)
(1,(2,4),c)

End

Figure 6. Handling Arrays

151

In example 2, assume that the domain of n is [-3--10], the domain of x is [-50-50],
and the criterion is all-uses. Applying our procedure we get:

Definition-use association
(l,(2,3),n)

Test cases
n = 5, x[1] = 30.34, x[2] = 4.56
x[3] = -34.78, x[4] = 7.89, x[5]=9

(l,(2,4),n) n = -1

(1,4,n) n = -2

In the first case, 30.34 is an element from the domain of x, the index c is a non-input
variable whose initial value is 1, then the case x = 30.34 is replaced by x[1] = 30.34.
Since Step = 1, then index value becomes 2 using the ‘handling loop’procedure, and
x = 4.56 is replaced by x[2] = 4.56. Similarly, x[3] = -34.78, x[4] = 7.89 and x[5]=9
replace the corresponding cases. The other test cases don’t need to apply the
strategy in Figure 6.

5. Conclusions

In this paper, we proposed a new method for automatically generating test data for
Pascal programs. Our method addresses the weak points of the most recent test data
generator, namely the Dynamic Domain Reduction (DDR) procedure. This allows
us to generate tests for larger class of problems than those previously reported in the
literature.

REFERENCES

[1] ZHU, H., HALL, P. and MAY J. (1999), "Software Unit Test Coverage and
Adequacy", ACM Computing Surveys, Vol. 29, No. 4.

[2] WEYUKER, E. J. (1986), "Axiomatizing Software Test Data Adequacy". IEEE
Trans. On Software Eng., Vol. 12, NO. 12, pp. 1128-1138.

[3] DEMILLO, R. and OFFUTT, A. J. (1991), "Constraint-Based Automatic Test
Data Generation", IEEE Trans. On Software Eng., Vol. 17, NO. 9, pp. 900-

[4] FRANKL, P. G. and WEYUKER, E. J. (1993), "An Experimental Comparison
of the Effectiveness of Branch Testing and Data Flow Testing ". IEEE Trans.
On Software Eng., Vol. 19, NO. 8, pp. 774-787.

[5] FRANKL, P. G. and WEYUKER, E. J. (1993), "Provable Improvements on
Branch Testing". IEEE Trans. On Software Eng., Vol. 19, NO. 10, pp. 962-

910.

975.

152

[6] OFFUTT, A. J., PAN, J., TEWARY K. and ZHANG, T. (1996), "An
Experimental Evaluation of Data Flow and Mutation Testing". Software-
practice and Experience, Vol. 26, No. 2, pp. 165-176.

[7] RAPPS, S. and WEYUKER, E. J. (1985), "Selecting Software Test Data using
Data Flow Information". IEEE Trans. On Software Eng., Vol. 14, NO.4, pp.
367-375.

[8] FRANKL, P.G. and WEYUKER, E. J. (1988), "An Applicable Family of Data
Flow Testing Criteria". IEEE Trans. On Software Eng., Vol. 14, N0.10, pp.
1483-1498.

[9] WEYUKER, E. J. (1993), "More Experience with Data Flow Testing". IEEE
Trans. On Software Eng., Vol. 19, NO. 9, pp. 912-919.

[10] FRANKL, P. G. and WEYUKER, E. J. (1993), "AFormal Analysis of the Fault-
Detecting Ability of Testing Methods". IEEE Trans. On Software Eng., Vol.
19, NO. 3, pp. 202-213.

[11] INCE, D. C. (1987), "The Automatic Generation of Test Data". The Computer
Journal, Vol. 30, NO. 1, pp 63-69.

[12] KOREL, B. (1990), "Automated Software Test Data Generation". IEEE Trans.
Software Eng. Vol. 16, NO. 8, pp. 870-879.

[13] FERGUSON, R. and KOREL, B. (1996), "The Chaining Approach for
Software Test Data Generation", ACM Trans. On Software Eng. And
Methodology, Vol. 5, NO. 1, pp. 63-86.

[14] OFFUTT, A. J. and PAN, J. "The Dynamic Domain Reduction Procedure for
Test Data Generation", http://www.isse.gmu.edu/faculty/ofut/index.html.

153

http://www.isse.gmu.edu/faculty/ofut/index.html

