
Doğuş Üniversitesi Dergisi, 2002, (5), 109-122 

THE UNIFIED SOFTWARE DEVELOPMENT PROCESS AND 
FRAMEWORK DEVELOPMENT 

Abdelaziz Khamis & Ashraf Abdelmonem 
Department of Computer Science, Institute of Statistics, Cairo University 

ABSTRACT: Application frameworks are a very promising software reuse 
technology. The development of application frameworks is a complex process. 
Many methodologies and approaches have been proposed with the purpose of 
minimizing the complexities. The Unified Software Development Process directly 
addresses the complexity challenge of today's software applications. in this paper, 
we explore the role of the Unified Software Development Process together with a 
popular CASE tool: Rational Rose, in managing the complexity of developing 
application frameworks. 

Keywords: Application Frameworks, The Unified Software Development Process, 
Model Tracing Tutors, Rational Rose. 

ÖZET: Uygulama iskelet yapıları çok umut vaadeden bir yeniden kullanım yazılım 
teknolojisidir. Uygulama iskelet yapılarının geliştirilmesi karmaşık bir süreci 
gerektirir. Bu karmaşık süreci minimize etmek amacıyla birçok yöntem ve yaklaşım 
önerilmiştir. Birleşik Yazılım Geliştirme Süreci bugünkü yazılım uygulamalarındaki 
karmaşıklık engelini direkt olarak hedefleyen bir yöntemdir. Bu yazıda uygulama 
iskelet yapılarındaki karmaşıklığın yönetimi konusunda Birleşik Yazılım Geliştirme 
Süreci'nin rolü yaygın olarak kullanılan bir CASE (Bilgisayar Destekli Yazılım 
Mühendisliği) aracı olan "Rational Rose" ile birlikte araştırılmaya çalışılmıştır. 

Anahtar Kelimeler: Uygulama Geliştirme Yapıları, Birleşik Yazılım Geliştirme 
Süreci, Model İzleme Öğretmeni, Rational Rose. 

1. Introduction 

The reuse of software components is recognized as an important way to increase 
productivity in software development (Jacobson, Griss and Jonsson, 1997). 
Application frameworks are a very promising softvvare reuse technology. The 
concept of framevvorks makes it possible to reuse not just code, but also analysis and 
design (Fayad, Schmidt and Johnson, 1999; Fayad and Schmidt, 1997). 

Developing application frameworks is a complex process. Many methodologies and 
approaches have been proposed with the purpose of minimizing the complexities of 
framework development (Fayad, Schmidt and Johnson, 1999; Framework..., 1997). 
in this paper we have focused on a very promising approach namely, the framework 
layering approach. 

The Unified Software Development Process directly addresses the complexity 
challenge of today's softvvare applications (Jacobson, Booch and Rumbaugh, 1999). 
The Unified Process is the end product of three decades of development and 
practical use. Its development has been guided by three leading figures in softvvare 
development: Jacobson, Booch, and Rumbaugh. in this paper, we explore the role of 



110 Abdelaziz Khamis, Ashraf Abdelmonem 

the Unified Software Development Process together with a popular CASE tool: 
Rational Rose, in managing the complexity of developing frameworks. 

The paper is organized as follows. The next section overviews the framework 
layering approach. in section 3, we give a briefly describe the lifecycle of the 
Unified Software Development Process. The chosen domain for our case study: 
Intelligent Tutoring Systems (ITS) is defined in section 4. The CASE tool: Rational 
Rose is introduced in section 5. Section 6 contains the case study: a vvorking 
example of framework development using the Unified Software Development 
Process and Rational Rose. Finally, section 7 includes the conclusion and the lessons 
learned. 

2. Framework Development Approaches 

There are many different approaches for framework development. These include: 
systematic generalization, hot-spot-driven development, and framework layering. 
The details of these approaches exist in part five of (Fayad, Schmidt and Johnson, 
1999). However for the purpose of this paper we overview the framevvork layering 
approach. 

2.1 Framework Layering Approach 

Framework layering must be rooted in the application domain in order to meet 
business needs (Framework..., 1997). Therefore, before discussing framework 
layering, we identify some application domain concepts. 

• Business sections. The services offered by any business enterprise can be 
divided into different areas of responsibility. These areas are called 
business sections. in a bank, teller, loan, and investment are examples of 
business sections. 

• Workplace contexts. The division into business sections is of ten 
supplemented by so-called service centers. Service centers can perform 
most of the common tasks encountered in the various business sections. 
These centers are referred to as vvorkplace contexts. in a bank, customer 
service center, teller service, and automatic teller machines are examples 
of workplace contexts. 

• Business domain. The core or common parts of the concepts and terms, that 
is essential to running the business as a whole, is called the business 
domain. in a bank, account, customer, and interest rate are examples of 
business domain concepts. 

Thus, frameworks should be organized along business-domain, business-section, 
and workplace-context layers. We now go on to look at the basic functionality of 
each layer and the relations between them. 

The Business Domain Laver 

This layer contains the core concepts for the business as a whole. it thus forms the 
basis for every application system in this domain. it is crucial to make an 



The Unified Software Development Process And Framevvork Development 111 

appropriate division or separation between the part of a core concept that belongs to 
the business domain and the parts belonging to the business sections. 

The Business Section Layers 

These layers consist of framevvorks with specific classes for each business section. 
The frameworks in these sections are based on the Business Domain Layer. To 
relate the core concepts of the Business Domain Layer to their extensions in the 
Business Section Layers the Role Object Pattern has been developed. 

The Role Object Pattern is applied to make one logical object span one or more 
layers. The core object, which resides in the Business Domain Layer, is extended by 
role objects, which reşide in the Business Section Layers. A role is a client-specific 
view of an object playing that role. One object may play several roles, and different 
objects can play the same role. 

The Application Layers 

These layers provide the software support for the different workplace contexts. The 
separation of the Application Layers from the Business Section Layers is motivated 
by the need to configure application systems corresponding to different workplaces. 

3. The Unified Software Development Process 

A softvvare development process is the set of activities needed to transform a user's 
requirements into a softvvare system. However, the real distinguishing aspects of the 
Unified Process are captured in the three key words - use-case driven, architecîure-
centric, and iterative and incremental (Jacobson, Booch and Rumbaugh, 1999). in 
this section we will describe these three key words. Then, we will give a brief 
overview of the lifecycle of the Unified Process. 

The Unified Process is Use-Case Driven 

A use-case is a piece of functionality in the system that gives a user a result of value. 
Use cases capture functional requirements. Ali the use-cases together make up the 
use-case model, which describes the complete functionality of the system. However, 
use cases are not just a tool for specifying the requirements of a system. They also 
derive its design, implementation, and test; that is they derive the development 
process. Based on the use-case model, developers create a series of design and 
implementation models that realize the use cases. The testers test the implementation 
to ensure that the components of the implementation model correctly implement the 
use cases. 

The Unified Process is Architecture-Centric 

Every softvvare product has both a function and form. The form in softvvare is the 
architecture. The use cases define the function, and the architecture defines how 
functionality is related and integrated. While it is true that use cases drive the 
development process, they are not selected in isolation. They are developed in cycle 
with the system architecture. That is, the use cases drive system architecture and the 
system architecture influences the selection of the use cases. The role of softvvare 



112 Abdelaziz Khamis, Ashraf Abdelmonem 

architecture is similar in nature to the role of architecture plays in building 
construction. The builder needs to consider not only the function of the building but 
also its form. 

The Unified Process is iterative and İncremental 

in an iterative and incremental lifecycle, development proceeds as a series of 
iterations that evolve into the final system. Each of those iterations consists of the 
following process components: requirements, analysis, design, implementation, and 
test. The developers do not assume that ali requirements are known at the beginning 
of the lifecycle; indeed change is anticipated throughout ali phases. 

3.1 The Lifecycle of the Unified Process 

The lifecycle of the Unified Process repeats through four main incremental phases: 

• Inception - top-level abstract use-cases are developed. 
• Elaboration - the software product's use cases are more fully developed 

and an architectural view of the system is produced. 
• Construction - the software product is built. 
• Transition - the softvvare product is moved from testing to development. 

Each phase is composed of one or more iterations. Each iteration consists of five 
core workflows: requirements, analysis, design, implementation, and test. The 
number of iterations needed depends on the size and complexity of the softvvare 
system to develop. 

4. Intelligent Tutoring Systems (ITS) 

Intelligent tutoring systems allow the emulation of human teacher in the sense that 
an ITS can know what to teach (domain content), how to teach it (instructional 
strategies), and learn certain relevant information about the student being taught. 
This requires the representation of a domain expert's knovvledge (called the Expert 
Model), an instructor's knowledge (called instructional Model), and the particular 
student being taught (called the Student Model). Through the interaction of these 
models, ITSs are able to make judgments about what the student knows and how 
well the student is progressing. The instructional Model can then automatically 
tailor instruction to the student's needs (Murray, 2001). 

The most common type of ITSs teaches procedure skills, the goal is for students to 
learn how to perform a particular task. These tutors are referred to as model-tracing 
tutors because they contain an expert model that is used to trace the student's 
responses to ensure that these responses are part of an acceptable solution path. 
Examples of such tutors exist in (Corbett and Anderson, 1992; Levvis, Milson and 
Anderson, 1987). An architectural view of model-tracing tutors may be produced as 
the one given in Figüre 1. 



The Unified Software Development Process And Framework Development 113 

U S E R ^ -

I 
N 
t 
E 
R 
F 
A 
C 
E 

Instruction Model 

Help 

Expert Model 

Model 
Tracing 

Knowledge 
Tracing 

Expert 
System 

A 
1 
\ 

\ 

Student 
Model 

J Domain 
I Knowledge 

Figüre 1. An Architectural View of Model-Tracing Tutors 

Model-tracing tutors embodied a number of key features about how computer-based 
instruction should be realized. These features include (Cognitive Tutors ..., 2001): 

Exvert Model: What forms the backbone of model-tracing tutors is an expert model, 
realized as a set of production rules, that contains ali the knowledge needed to solve 
problems within the domain being tutored. The model is capable of generating a set 
of production sequences that represent correct solutions of the problem. Correct 
(On-path) actions on the student's part are recognized if they are along one of the 
correct solution paths generated by the model. If the student is correct, the tutor does 
not comment but rather allows the student to progress with the solution. If the 
student performs a vvrong (pff-path) action, instruction is focused on getting the 
student back on path. 

Student Model: The assessment by the tutor of the student's current knowledge state 
constitutes the so-called student model. As the student interacts with the system, 
getting some of the answers right and others wrong, this student model is updated. 
The system contains a list of skills that make up the tutorial domain. Skills 
correspond to a sequence of production rules that result in a student action. Each 
skill is considered to be in either a learned or unlearned state, with a probability 
assigned to it that it is currently in the learned state. 

Student's interface: The student's interface must vary across the different tutored 
domains. The interface that the student interacts with in the geometry tutor is very 
much like a typical computer drawing program, whereas the interface used by 
programming tutors is a structured text editör. However, no matter the specifıcs of 
an interface, for each student action within the interface (clicking a button, typing in 
a text field, selecting a menu option, ete), that action can be checked against the 
expert model. This process of checking student actions using the expert model is 
referred to as model tracing. 



114 Abdelaziz Khamis, Ashraf Abdelmonem 

Error Feedback and Help: The tutors possess two types of instruction. If the 
student makes a recognizable error (a bug), a message can be given explaining why 
it is an error. This is generated from a buggy production that embodies the error. If 
the student asks for help, a help message is presented to guide the student to the 
correct solution. This message is generated from the information along a correct 
path. 

5. Rational Rose 

Rational rose is a graphical software engineering tool that supports object-oriented 
analysis, design, and implementation. it supports the Unified Softvvare Development 
Process and the Unified Modeling Language (UML) (Boggs and Boggs, 1999; 
Quatrani, 2000). Rational Rose may be used to create the following diagrams: 

• Use-Case diagrams. 
• Class diagrams. 
• Collaboration diagrams. 
• Sequence diagrams. 
• Component diagrams. 
• State-Chart diagrams. 
• Deployment diagrams. 

6. Case Study: An ITS Framework 

The purpose of the case study is to provide a working example of framework 
development using Rational tools. The chosen domain was Intelligent Tutoring 
Systems (ITS), which is a domain vvhose concepts are well knovvn to most people. 

6.1. Inception Phase 

6.1.1 Capture the Reauirements 

The end result of this workflow is a tentative use-case model. To build such a model 
we first develop a business model in two steps: 

1. Prepare a business use-case model that identifies the actors to the business 
and the business use cases that actors use. The business use-case model for 
ITS framevvork is shown in figüre 2. 



The Unified Software Development Process And Framework Development 115 

LEARNING STUDENT REGISTER 

Figüre 2. Business Us e-Case Model 

2. Develop a business object model consisting of workers, business entities, 
and work units that together realizes the business use cases. Figüre 3, 
shows the business object model for ITS framework. 

COURSE PROGRESS_REPOR STUDENT DATABASE 

A 

TEACHER REGISTRAR 

STUDENT 

Figüre 3. Business Object Model 

Using the business model as input, we can create a tentative use-case model in two 
steps: First, we identify an actor for every worker and business actor. Second, we 
create a use case for each role of an identified actor. Figüre 4, shows a tentative use-
case model for ITS framework. 



116 Abdelaziz Khamis, Ashraf Abdelmonem 

Registrar 
Registeration 

Student 
Session 

Figüre 4. A Tentative Use Case Model 

During the inception phase, the flow of events for the most important use cases is 
documented as state-chart diagrams. A state-chart diagram for the Leaming use-case 
is shown in Figüre 5. it shows how the leaming use case moves över several states 
in series of state transitions. 

problem 
solving 

f Problem 
i soîved 

JL 
Solution 
displayed 

Figüre 5. The State-Chart Diagram for the Leaming Use-Case 



The Unified Software Development Process And Framevvork Development 117 

6.1.2. Analysis 

The result of the analysis workflow is an initial analysis model. To build this model, 
we identify analysis packages by allocating a number of related use cases to a 
specific package and then realize the corresponding functionality within that 
package by identifying the control, entity, and boundary classes. Figüre 6, shows an 
initial analysis model for ITS applications. The realization of the Session package is 
shown in figüre 7. 

Registration 
Management 

Session 
Management 

Figüre 6. An initial Analysis Model 

Sttfdent_DataBase 

Sessionjnterface Curriculum 

Trainer 

Figüre 7. The Session Management Package Realization 

After we have an outline of the analysis classes needed to realize the most important 
use-cases, we describe how their corresponding analysis objects interact using 
collaboration diagrams. The collaboration diagram for the Training use-case is 
shown in figüre 8. Collaboration diagram contains the participating actor instances, 
analysis objects, and their links. 



118 Abdelaziz Khamis, Ashraf Abdelmonem 

2: Start Session 
> 

1: Identify Seşsidm 
J 3 : Start Training 

5: Select Problem 
> 

: Student 
6: Display Problem 

: Problem Interface : Trâinfcr : Curriculum 

^Se lec t Unlearned Lesson 
9: Update Student DataBase 

: Student_DataBase 

Figüre 8. A Collaboration Diagram for the Training Use-Case 

6.2 Elaboration Phase 

6.2.1. Cayture the Reauirements 

in this workflow, we identify additional use cases; beyond those identified in the 
inception phase. Then, we describe those use cases using state-chart diagrams. 
Examples of additional use cases include: problem selection, problem solving, 
example selection, example solving, test generation, adding student, and deleting 
student. 

6.2.2. Analysis 

in this workflow, we identify additional analysis packages; beyond those identified 
in the inception phase. Then, we realize the corresponding functionality vvithin those 
packages by identifying the control, entity, and boundary classes. Examples of 
additional packages include: student-database management, and curriculum 
management. 

6.2.3. Design 

Design is in focus during the end of elaboration and the beginning of construction 
phases. it contributes to a sound and stable architecture and creates a blueprint for 
the implementation model. Figüre 9 shows a layered architecture for ITS 
applications. The given architecture contains three categories of layers namely, the 
ITS Application Layers, the ITS Section Layers, and the ITS Domain Layer. 

The ITS Application Layers provide the software support for the different workplace 
contexts. The ITS Section Layers consist frameworks with specifıc classes for each 



The Unified Software Development Process And Framevvork Development 119 

business in ITS namely, training, teaching, testing. Finally, The ITS Domain Layer 
contains the core concepts for the business of ITS as a whole. 

i 1 I 
i « l a y e r » 

Home 
Computer 

| 

« l a y e r » 
LAN | 

1 ! 
1 

l « l a y e r » 
i Internet. 

ITS Application Layers 

1 I 

« faye r» 
Trafning 

] 
« l a y e r » 
Teaching 

ITS Section Layers 

i 
« l a y e r » 
Testing 

« Layer» ITS Dmmmin 

ITS Domain Layer 

Figüre 9. Design Model Layers 

Based on the packages in the analysis model, we identify corresponding subsystems 
to be included in the design model. Figüre 10 shows some design subsystems that 
are based on existing analysis packages. 

Analysis Model 
«analysis package») 

Sesstonjvtanagement 

«Analysis Package» 

Regîstration_Management 

X 

Design Model 
«Design subsysîem» 

Sessîon_Management 

«Design subsystem» 

Registrâtion_Management 

Figüre 10. Some Design Subsystems Based On Existing Analysis Packages 



120 Abdelaziz Khamis, Ashraf Abdelmonem 

Now, we identify the design classes that trace to the analysis classes in the analysis 
model. Figüre 10 illustrates the design classes that trace to Session interface and 
Session analysis classes. 

Analysis Model 

Sessionjnterface Session 

Figüre 10. Design classes in the design model tracing to analysis classes in the 
analysis model 

At the end of the elaboration phase, we create the design classes, identify the 
operations, and describe those operations using the syntax of a programming 
language. Figüre 11 shows the operations and attributes for some classes. 

sfcıtianl 

^«abstf-act» getroleO 
^«abs t rac t» addrole() 
"^«abstract» removeroteö 
^«abs t rac î» remowa?HroIesÖ 
^«abs t rac t» hasrole() 

stedentcore 
•roles: ashmâp<C.String)studentrole*> 
•cod: CStriRf 

^«v i r t t ı a l » getroleO 
•^«vir tual» addrofs.0 
^ « v i r t u a ! » femovefole() 
^ « v i r t u a l » üemoveallroiesö 
•^«vif î ı ıai» hasröteC) 
^setcodeO 
*getcodeÖ 

skıdentrole 

* « V i r t u a l » §etrole() 
^ « v i r t u a l » addrole() 
^ « v i r t u a l » femoverole() 
" ^ « v i r t u a l » removealIrolesO 
" ^ « v i r t u a l » foâsrole() 
*setcode() 
*getcade:£) 
^isj8aTft.@d_rule() 
* increase„rule_probability() 
* decrease_ru le_p robab ility () 
^İS_jSj£H5f_füîle() 
^is_rich_£ule() 
^ « v i r t u a ! » İ8st() 

Figüre 11. The Student, StudentScore, and StudentRole classes 



The Unified Software Development Process And Framevvork Development 121 

6.3. Construction Phase 

6.3.1. Implementation 

The result of the implementation is an implementation model that describes how 
elements in the design model, such as design classes, are implemented in terms 
of components such as source code files, executables, and so on. Figüre 12 
illustrates the most important components in our implementation model. 

A\ 
r
L~1 « D L L » j 
U Z Interface i 

J^d. J 

« M a i n Program» 
ITS_Framework 

V 
„ I—. <<DLL>> 
""""" Sfcrcteıat 

« D L L » 
Teacher 

Figüre 12. An implementation Model 

7. Conclusion 

Although a large number of successful framevvorks have been developed during the 
last several years, designing a high-quality framevvork is stili a difficult and complex 
task. Therefore, as demand for framevvorks increases, there is a need to use the right 
softvvare development process and the right CASE tools that help in managing their 
development. Our objective in this paper was to explore the role of the Unified 
Softvvare Development Process and Rational Rose in managing the complexity of 
framevvork development. 

The main claims of this paper are: 

• The framevvork development time may be reduced considerably by using 
Rational Rose. We usually spend hours trying to, modify our system's 



122 Abdelaziz Khamis, Ashraf Abdelmonem 

design to account for last-minute requirements changes, generate our 
system's code, and track down memory-related errors in our code. 
Modeling, code generation, unit testing, and configuration management 
handle these problems, so it saves a lot of programmer's time and thinking. 

• Nothing is ever right the first time. For this reason, iteration plays such a 
prominent role in the Unified Software development Process. The key 
point to iteration is dealing with feedback. Feedback from users helps shape 
the evolution of the requirements. Feedback from developers validates the 
architectural structure and evolves the object model into a realizable form. 

• The Rational Rose CASE tool may be used to automate some aspects of the 
Unified Software development Process. Thus, using Rational Rose will lead 
to cost-effective realization of application frameworks. 

• The Rational Rose CASE tool provides comprehensive support to the 
software development process. Quality assurance is an integral part of this 
process through templates for guidelines and many checkpoints to check 
the quality of artifacts to be delivered in each phase. 

REFERENCES 

BOGGS, W., BOGGS, M. (1999). Mastering UML with Rational Rose, Financial 
Times Management, London. 

Cognitive Tutors: Lessons Learned, (2001). J. ANDERSON (et al.) 
http://sands.psy.cmu.edu/ACT/papers/Lessons Learned.html. 

CORBETT A., ANDERSON, J. (1992). "LISP Intelligent Tutoring System: 
Research in Skill Acquisition", in Computer-Assisted Instruction and Intelligent 
Tutoring Systems: Shared Goals and Complementary Approaches", Edited by J. 
LARKIN and R. CHABAY, Publishers: Lawrence Erlbaum Associates. 

FAYAD, M., SCHMIDT, D., JOHNSON, R. (1999). Application Frameworks, in 
Building Application Frameworks, John Wiley & Sons. 

FAYAD, M., SCHMIDT, D., JOHNSON, R. (1999). Building Application 
Frameworks, John Wiley & Sons. 

FAYAD, M., SCHMIDT, D. (1997). "Object-Oriented Application Framevvorks", 
Comm. of the ACM, Vol. 40, No. 10. 

Framework Development for Large Systems. (1997). D. BÂUMER (et al.). Comm. 
of the ACM, Vol. 40, No. 10. 

JACOBSON, I., BOOCH, G., RUMBAUGH, J. (1999). The Unified Software 
Development Process, Addison-Wesley. 

JACOBSON, I., GRISS, M., JONSSON, P. (1997). Software Reuse: Architecture, 
Process and Organization for Business Success, Addison Wesley. 

LEWIS, M., MILSON, R., ANDERSON, J. (1987). "The teacher's Apprentice: 
Designing an Intelligent Authoring System for High School Mathematics", in 
Artificial Intelligence and Instruction: Applications and Methods, Edited by G. 
KEARSLEY, Addison-Wesley Publishing Company. 

MURRAY, T. "Authoring Knowledge Based Tutors", http://www.ac.unmass.edu/-
tmurrav/papers/JLSEon/ JLS96.html. 

QUATRANI, T. (2000). Visual Modeling with Rational Rose 2000 and UML, 
Addison-Wesley. 

http://sands.psy.cmu.edu/ACT/papers/Lessons
http://www.ac
http://unmass.edu/-

