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ABSTRACT: Tourism is one of the most important component in the economic 

development strategy of many developing countries such as Turkey. The annual data 

set of Turkey (1986 - 2013), including the six factors affecting the tourist arrivals, is 

examined. The aim of this study is modelling the tourist arrivals to Turkey in cases of 

both multicollinearity and outlier existence in the data set by using a robust Principal 

Component Regression method: RPCR, two robust Partial Least Squares Regression 

methods: RSIMPLS and Partial Robust M-Regression (PRM). Hence, the best model 

giving the best predictions of tourist arrivals is selected and the most important factors 

are determined. 

 

Keywords: multicollinearity, outliers, robust principal component regression, robust 

partial least squares regression, tourist arrivals 
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ÖZ: Turizm, Türkiye gibi gelişmekte olan ülkelerin ekonomik kalkınma stratejilerinde 

anahtar bileşendir. Türkiye’nin 1986 - 2013 dönemi için, gelen yabancı turist sayısını 

etkileyen altı faktörün dâhil olduğu veri kümesi incelenir. Bu çalışmanın amacı, veri 

kümesinde hem çoklu bağlantı hem de uç değer olduğunda Türkiye’ye gelen yabancı 

turist sayısını bir sağlam Temel Bileşenler Regresyon yöntemi: RPCR, iki sağlam 

Kısmi En Küçük Kareler Regresyon yöntemleri: RSIMPLS ve Kısmi Sağlam M-

Regresyon (PRM) kullanarak modellemektir. Böylece, yabancı turist sayısının en iyi 

kestirimlerini veren en iyi model seçilir ve en önemli faktörler belirlenir. 

 

Anahtar Kelimeler: çoklu bağlantı, aykırı değerler, sağlam temel bileşenler 

regresyonu, sağlam kısmi en küçük kareler regresyonu, gelen turist sayısı 

 

 

1. Introduction 
In existence of multicollinearity in the data set, Multiple Linear regression (MLR) 

analysis gives unreliable estimates for regression parameters and the variance of these 

parameters could be too large that leads to use biased methods: Principal Component 

Regression (PCR) and Partial Least Squares Regression (PLSR). Since they firstly 

reduce the dimensionality of the design matrix, they are the most popular regression 

techniques yielding better solutions. Straightforward Implementation of a Statistically 

Inspired Modification of the Partial Least Squares Method (SIMPLS) algorithm is the 

most popular PLSR algorithm as it is fast, efficient and the results of it are easily 
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interpreted. Since PCR is a combination of Principal Component Analysis (PCA) on 

the x-variables with Least Squares (LS) regression, in the case of outliers existence 

both steps of it are unreliable. Moreover, also the results of SIMPLS are affected by 

outliers in the data set as it is based on the empirical cross-covariance matrix between 

the y-variables and the x-variables and on linear LS regression. Hence, in Hubert and 

Verboven (2003) and Hubert and Vanden Branden (2003), two robust versions of 

these methods: RPCR and RSIMPLS have been suggested respectively. Another 

robust PLSR method ‘Partial Robust M-Regression (PRM)’ is conceptually different: 

instead of robust Partial Least Squares (PLS), Serneels et al. (2005) proposed a partial 

robust regression estimator. 

 

World Travel & Tourism Council (WTTC) state clearly that both of travel and tourism 

are the top industries in the world on almost any economic measure, including gross 

output, value added, capital investment, employment and tax contributions (Aslan et 

al., 2008). Turkey and many developing countries utilize tourism as a key component 

in their economic development strategy. Turkey is a developing country which is both 

a candidate country for European Union membership and one of the attractive touristic 

places in the south of Europe. Since it contributes to Gross Domestic Product, tourism 

is one of the prominent industries in the Turkish economy. Since particularly from 

1980’s Turkey’s active outer tourism started to show important development, tourism 

which contributes to the country’s economy results in a very huge source of income. 

In 1982, forming of mass tourism investment is started. The bill on incentives for 

tourism introduced in 1982 (Tourism Intensive Law No. 2634) contributed to the 

development of the sector and the tourism actors included in tourism activities. 

 

This law caused rapidly increment in tourism investments and increase the foreign 

number of tourists coming to Turkey and as a result the income of tourism increased 

within the share of Gross National Product. It seems that the number of foreign visitors 

has accelerated rapidly in last decade. In 2004, Turkey attracted 17.5 million foreign 

tourists, exceeding 41 million visitors in 2014. 

 

There are many and various modelling and forecasting techniques for tourist arrivals. 

There isn’t only one special model that exactly performs better than the other models 

in every situation. One of the forecasting method in tourism is predicting foreign 

tourist arrivals to particular countries. Different methods have been used in 

determining the determinants of demand for international tourism. It is clear that 

multiple regressions were used mostly in tourism demand researches. Approximately 

in 84% of tourism demand studies seemed to have used MLR (Zhang, et al., 2009). 

 

The aim of this study is to model the tourist arrivals (number of foreign tourists) to 

Turkey by using three popular biased robust RPCR, RSIMPLS and PRM methods in 

existence of both multicollinearity and outlier in the data set. Therefore, the best model 

giving the best predictions of tourist arrivals is selected and the most important factors 

affecting the tourist arrivals to Turkey are determined for the examined period. 

 

2. Robust Biased Estimation Methods: Rpcr, Rsimpls, Prm 
PCR and PLSR methods assume that the p-dimensional independent x-variables and 

a set of q-dimensional dependent y-variables are associated by using a bilinear model. 

n is the number of observations and for i=1,…,n this bilinear model is shown as in (1) 

and (2). Here it
~

 are scores with the dimension of k<<p, Pp,k is the x-loadings matrix 
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and Ak,q is the slope matrix for the regression model of yi on it

~
. fi and gi are error 

terms. This bilinear model could be written in terms of the original independent 

variables as in (3). PCR and PLSR construct the scores it
~

 in a different way. PCR and 

PLSR differentiate mainly in the construction of the scores it
~

. PCR method computes 

the scores by extracting the most related information in the x-variables by using a 

variance criterion (as a result of PCA on the independent variables). However, the 

PLSR scores are computed by maximizing a covariance criterion between the x- and 

y-variables (Hubert and Verboven, 2003; Hubert and Vanden Branden, 2003; Engelen 

et al., 2004). 

   

i p,k i i
x x P t g                                                                                                      (1)  

i q,k i iy y A t f                                                                                                   (2) 

i 0 q,p i i
y B x e                                                                                                    (3) 

 

Hubert and Verboven (2003) and Hubert and Vanden Branden (2003) have suggested 

two robust types of these methods: RPCR and RSIMPLS, respectively. Another robust 

PLSR method called PRM is proposed by Serneels et al. (2005). In PRM method, 

weights ranging between zero and one are computed iteratively in order to reduce the 

influence of outliers both in the y and x spaces. PRM is very efficient in terms of 

computational cost and statistical properties (Serneels et al., 2005; Liebmann et al., 

2010; Polat and Turkan, 2016). 

 

 

2.1. Robust Principal Component Regression: RPCR  

Before starting the PCR analysis, the data is centered as xxx~ ii   and 
i i

y y y 

. Afterwards, a PCA on the x-variables is performed in order to remove the effect of 

multicollinearity. The first k dominant eigenvectors of the covariance matrix 

p,nn,px X
~

X
~

1n

1
S 


  is contained in PCA loading matrix   k1p,k p,,pP

~
  and the 

scores satisfy ip,ki x~P
~

t
~

 . In the second step of PCR, the response variables iy~  are 

regressed onto it
~

 as iii
~t

~
Ay~   using MLR. Then, the parameter estimates and 

fitted values are obtained as   q,nn,k
1
k,kq,k Y

~
TTTÂ 


 and yt

~
Âŷ ik,qi  , 

respectively. The unknown regression parameters in model (3) are then estimated as 

q,kk,pq,p ÂP
~

B̂   and xB̂yˆ
p,q0   (Hubert and Verboven, 2003). 

 

Both steps of PCR is robustified and a robust PCR method is proposed by Hubert and 

Verboven (2003). In the first step, the highly robust Minimum Covariance 

Determinant (MCD) estimator is used as a robust estimator of the covariance matrix 

of the xi in case of the data has a low-dimension (p<n/2), however, in case high-

dimensional data the ROBPCA method chosen. ROBPCA, which combines 

projection pursuit ideas with MCD covariance estimation in lower dimensions, is a 

robust PCA method. In MCD estimator, the subsets of size h out of the whole data set 
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(of size n) is examined. Later the MCD estimator searches to find h subset for whom 

classical covariance matrix has minimal determinant. The robustness of the estimator 

is determined by the number ‘h’ that must be at least (n+p+1)/2. The MCD location 

estimate shown by hx  and the MCD scatter estimator shown by its covarince matrix 

h̂ . A tolerance ellipse, capturing the covariance structure of the majority of the data 

points, is yielded by a robust PCA method. The highly robust MCD estimator of 

location and scatter ( MCD̂  and MCD̂ ) applied to the data and the points x of whose 

robust distance        MCD
1

MCDMCDMCDMCD
ˆxˆˆxˆ,ˆ,xDxD 


 

 equals to 

2
975.0,2  are plotted for the purpose of yielding a robust tolerance ellipse. In order 

to increase finite sample efficiency substantially, the raw MCD estimate can be 

reweighted. So that each data point belonging to the robust tolerance ellipse takes a 

weight of one and in other case a weight of zero. Therefore, the classical mean and 

covariance matrix of the data points having weight one gives reweighted MCD 

estimator. At last, robust loadings are obtained by the first k eigenvectors of the MCD 

estimator that ranked in descending order of the eigenvalues (Hubert and Verboven, 

2003; Engelen et al., 2004). 

 

In the second step of RPCR method, if there is only one y-variable the reweighted 

Least Trimmed Squares (LTS) regression is chosen for regressing iy  on it , otherwise 

the MCD regression is applied. Here, the regression model with intercept written as 

in (4) with    


Cov . In case of one response variable (q=1), this model simplifies 

as in (5) with    scale of the errors. The parameters in (5) could be estimated by 

using the LTS estimator. The raw LTS estimator minimizes the sum of the h smallest 

squared residuals as shown in (6). Here, 
2 2 2

1:n 2:n n:n
r r r    denote the ranked 

squared residuals. A starting estimate of the error dispersion is shown in (7). Here hc  

is a consistency factor for normally distributed errors. Hence, the LS estimator 

performed on the observations whose absolute standardized residual is not too large 

corresponding to the reweighted LTS estimator. That means, if 

  5.2ˆ/ˆ,ˆr 0LTS0i   it is set 0w i   and otherwise, 1w i  . Then, final estimates 

of  
0

ˆ ˆ,   are computed as the vector minimizing  




n

1i

2
0iii tyw . 

 

i 0 i i
y A t                                                                                                        (4) 

i 0 i
y t                                                                                                          (5) 

    
0

h
2

0 0LTS
, i 1 i:n

ˆ ˆ, arg min r ,
  

                                                                     (6) 

  
h

2

0 h 0 LTS i:n
i 1

1
ˆ ˆˆ c r ,

h 

                                                                               (7) 
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In case of q>1, the MCD regression estimator is used. First of all, the reweighted MCD 

estimator is calculated on the  ii y,t  jointly, hence, (k+q)-dimensional location 

estimate  yt
ˆ,ˆˆ   and a scatter estimate qk,qk

ˆ
  are obtained as shown in (8). 

Secondly, similar to the MLR estimates, which are based on the emprical covariance 

matrix of the joint  ii y,t  variables, robust parameter estimates are estimated as 

shown in (9). A reweighting step is done for increasing the efficiency of this robust 

regression estimator’s efficiency. To apply this reweighting scheme, each data point 

receives a zero weight if it is initial residual distance is unsually large as shown in 

(10), with (11) and (12). All other observations have a weight 
i

w 1 . Later, the 

reweighted MCD regression parameters related to the MLR estimates based on 

observations having weight one. Updating the reweighted estimates for A and 0̂  in 

(9), (11) and (12), the final residual distances are obtained. A different notation for 

the final estimates and residual distances is not used. The fitted values are obtained as 

in (13) and regression parameters derived as in (14). Finally,   ˆˆ  is set (Hubert 

and Verboven, 2003) 

 

t ty

MCD

yt y

ˆ ˆ
ˆ

ˆ ˆ

 
 

 

 
 
 

                                                                                                (8) 

1

k,q t ty
ˆ ˆ ˆA      

0 y t
ˆˆ ˆ ˆA        

y t
ˆ ˆˆ ˆ ˆA A
                                                  (9) 

i
w 0  if 

2

i q,0.975
RD                                                                                       (10) 

i i i 0
ˆ ˆr y A t                                                                                                      (11) 

  1

i i i i
ˆ ˆRD D r ,0, r r



 
                                                                                 (12) 

 

i q ,k i 0

q,k k ,p i x 0

ˆ ˆŷ A t

ˆ ˆˆA P x

  

    
                                                                                 (13) 

p,q p,k k ,q
ˆB̂ P A         

0 0 p,q x
ˆ ˆˆ ˆB                                                                      (14) 

 

 

2.2. Robust Partial Least Squares Regression: RSIMPLS 

SIMPLS algorithm assuming that the x and y variables are related through a bilinear 

model as given in (1) and (2). After mean centering the data as   n

1ii xxX
~


  and 

  n

1ii yyY
~


 , firstly, SIMPLS will obtain k latent variables (LVs) 

  n1k,n t
~

,,t
~

T
~

  and after the response variables will be regressed on these k LVs. 

K components (the columns of k,nT
~

), which have maximum covariance with a certain 

linear combination of the y-variables, are constructed as a linear combination of the 

x-variables. In order to obtain k components, firstly, it is needed to calculate weight 

vectors. The first normalized PLSR weight vectors r1 and q1 are obtained as the first 
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left and right singular eigenvectors of  1n/Y
~

X
~

SS q,nn,pxyyx  . The first 

coordinate of the score it
~

 is computed as 1i1i rx~t
~

  for each observation. If we need 

that 0tt

n

1i

ibia 


 and ab (that means orthogonality of components), other PLSR 

weight vectors are computed by deflating the Sxy matrix. Firstly, computing the x-

loading  jxjjxj rSr/rSp   with Sx then this deflation is made. Later p1,…,pa is 

orthonormalised as 1,…,a and the deflation of Sxy is made as 

 1a
xyaa

1a
xy

a
xy SSS    with xy

1
xy SS  . Then, it

~
’s are defined as aiia rx~t

~
  or 

similarly as matrix form k,pp,nk,n RX
~

T
~

  with  k1k,p r,,rR  . Lastly, regressing 

the response variables yi on these k-dimensional scores it
~

 by using MLR, the formal 

regression model is obtained as in (15). Here,   0fE i   and   fifCov  . MLR 

yields estimates as in (16), (17) and (18). By inserting  xxRt
~

ip,ki   in (2), the 

parameters’ estimators of the original model are obtained as in (19) (Hubert and 

Vanden Branden, 2003; Engelen et al., 2004; Polat and Turkan, 2016). 

 

i 0 q,k i i
y A t f                                                                                                  (15) 

   
11

k,q t ty k,p x p,k k,p xy
Â S S R S R R S


                                                               (16) 

0 q,k
ˆˆ y A t                                                                                                         (17) 

f y q,k t k,q q,n n,q q,k k,n n,k k,q
ˆ ˆ ˆ ˆS S A S A Y Y A T T A                                                              (18) 

p,q p,k k ,q
ˆB̂ R A  and 

0 q,p
ˆ ˆy B x                                                                      (19) 

 

A robust RSIMPLS method starts by applying ROBPCA on the x- and y-variables 

with the aim of replacing Sxy and Sx, which are used in computing it
~

, by robust 

counterparts and then continues similar to the SIMPLS algorithm. Similar to RPCR 

instead of MLR a robust regression method (ROBPCA regression) is performed in the 

second stage (Hubert and Vanden Branden, 2003; Engelen et al., 2004). To obtain 

robust scores, firstly, ROBPCA is applied on  q,np,nm,n Y,XZ  . ROBPCA is robust 

covariance estimator for high-dimensional data sets (m>n). The outlyingness of every 

observation is calculated and later the empirical covariance matrix of the h 

observations with smallest outlyingness is considered by ROBPCA using projection 

pursuit ideas. The data are then projected onto the subspace 0K  spanned by the 

mk 0   dominant eigenvectors of this covariance matrix. Later the MCD method is 

applied to estimate the center and scatter of the data in this low dimensional subspace. 

Finally, these estimates are back transformed to the original space and a robust 

estimate of the center z̂  of m,nZ  and of its scatter z̂  are computed. This scatter 

matrix can be decomposed as   zzz
z PLPˆ  with robust Z-eigenvectors z

k,m 0
P  and 

Z-eigenvalues  
00 k,kLdiag . Diagonal matrix 

zL  containing the 0k  largest 

eigenvalues of z̂  in decreasing order. Then Z-scores 
zT  can be computed by 
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  z
zn

z Pˆ1ZT  . After the application of ROBPCA on m,nZ , this yields robust 

estimates   yxz
ˆ,ˆˆ  and z̂ . z̂  can be decomposed as in (20). The cross-

covariance matrix xy  is estimated by xy̂ and the PLS weight vectors ar  are 

computed as in the SIMPLS algorithm, but now starting with xy̂  instead of xyS . 

The x-loadings are defined as   jx

1

jxjj rˆrˆrp 


. Then the deflation of the scatter 

matrix a
xy̂  is performed as in SIMPLS. In each step the robust scores are calculated 

as in (21), where the ix


 are the robustly centered observations (Hubert and Vanden 

Branden, 2003). 

 

x xy

z

yx y

ˆ ˆ
ˆ

ˆ ˆ

 
 

 

 
 
 

                                                                                                 (20) 

 ia i a i x a
ˆt x r x r


                                                                                          (21) 

 

After the robust scores are derived, a robust linear regression is performed. The 

regression model, based on robust scores, is written as in (22). In order to estimate 

parameters in this model a robust regression method called ROBPCA regression is 

used (Hubert and Vanden Branden, 2003). 

 

i 0 q,k i i
y A t f                                                                                                  (22) 

 

)k(ir  is the residual for the ith observation based on the initial estimates which were 

computed with k components and f̂  is the initial estimate of the covariance matrix 

of the errors. The robust distance of the residuals is given as in (23). The weights  kic  

are computed as in (24). Here I shows the indicator function. Observations with weight 

 kic  equal to one are used to compute the final regression estimates (similar to MLR 

method). The robust residual distances  kiRD  are recalculated as in (23) and at the 

same time the weights  kic  are updated. Finally, robust parameter estimators of the 

original model (3) are obtained as in (25). 

 

      
1/2

1

i k i k i kf
ˆRD r r
                                                                                          (23) 

    2 2

q,0.975i k i k
c I RD                                                                                       (24) 

0 0 q,p x
ˆ ˆˆ ˆB       

p,q p,k k ,q
ˆB̂ R A                                                                       (25) 
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2.3. Partial Robust M-Regression (PRM) 

The latent regression model is then given by (26). Here T is a score matrix of size 

n k , having as rows the vectors it , with 1 i n   (Serneels et al., 2005): 

 

i i iy t                                                                                                              (26) 

 

Here, the vector 1k   can be estimated by regressing the response variable on the LVs 

( it ) by means of a robust M-estimator. The new model dimension is lower than as  

k < p and it is a regression on the score vectors ( it ) that must be determined. 

Generally, leverage points and vertical outliers could be effective while estimating the 

regression coefficients, PRM gives robust parameter estimations. In PRM, a weight 
x
iw  is used to reduce the effect of leverage points, while a weight 

r
iw  is used for 

reducing the effect of vertical outliers.
r

iw  are calculated from the residuals 

i i ir y t    and 
x

iw  are obtained from the scores it  (not from independent 

variables). In order to protect estimates against both vertical outliers and leverage 

points, weights need to be taken as in (27) and the obtained estimator called as the 

“PRM estimator” (Serneels et al., 2005). 

 
r x

i i i
w w w                                                                                                             (27) 

 

In order to compute the score matrix T, the following scheme is used. Loading vectors 

,
h

a  for 1, , kh  are computed in a sequential manner as in (28), under the 

constraint in (29).  W
Cov y, u , in (29), with u another vector of length n, shows a 

weighted covariance as in (30) (Serneels et al., 2005). 

 

 k W a
a

a arg max Cov y, X                                                                                 (28) 

a 1  and  W jCov Xa,Xa 0 for 1 j k                                                       (29) 

 
n

W i i i

i 1

1
Cov y, u w y u

n 

                                                                                   (30) 

 

Since Ap×k is the matrix of loading vectors, the score matrix is obtained as T XA . 

The final estimate for   can be obtained as ˆ ˆA    after the computation of ̂  

(Serneels et al., 2005). 

 

The weights in the above definitions are unknown and they are not fixed. First 

approximation of the estimator ̂  is computed by using an appropriate initial value 

for the weights. Then, the weights are recomputed using the preliminary parameter 

estimates and a second approximation of ̂  is obtained by again applying weighted 

PLS. After that the weights iw  are recomputed and the iteration process continues. 

Hence, the Iterative Reweighted Partial Least Squares (IRPLS) algorithm can be used 
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to compute ̂ . These continuous weights are iteratively executed for each 

observation, in order to minimise the negative influence of outliers in the regression 

model (Serneels et al., 2005). 

 
2.3.1. PRM Algorithm 

Since PRM can be calculated with a change in an algorithm proposed by Cummins 

and Andrews (1995) called as Iterative Reweighted Partial Least Squares (IRPLS) 

regression, the implementation of it is easy. PRM is entirely robust and also practical 

for high-dimensional data sets. It is significant to use robust initial values and relevant 

weights. The weights also have to depend on the scores for PRM, thus correcting for 

leverage points if presenting in the predictor space (Serneels et al., 2005; Liebmann 

et al., 2010). 

 

The weights 
r

i
w  have been computed as in (31) with ̂  an estimate of residual scale 

and the function in (32) (Serneels et al, 2005). 

r i

i

r
w f , c

ˆ




 
 
 

                                                                                                       (31) 

 
2

1
f z, c

z
1

c




 
 
 

                                                                                              (32) 

 

In (32) c is a tuning constant, used as c = 4. f is “Fair” weight function. Other weight 

functions could be used and Serneels et al. (2005) stated that it is not claimed any 

optimality properties for c=4. However, many numerical experiments revealed that 

the fair function used with c = 4 is a good compromise between robustness and 

statistical efficiency. If the tuning constant c increases to infinity, then the weight 

function becomes more and more flat, as a result, the PRM-estimator look likes more 

and more PLS (Serneels et al., 2005). 

 

By using standardized residuals, the weights in (33) are calculated. A simple and 

robust choice for ̂  s the Median Absolute Deviation: 

 1 n i j
i

j

ˆ MAD r , , r median r median r    . The weights 
x

iw  measuring the 

leverage of each score vector it  are computed as in (33) (Serneels et al, 2005). 

 

 

 
1

1

i Lx

i

i i L

t med T
w f , c

median t med T






 
 
 
 

                                                               (33) 

 

Here .  used for the Euclidean norm and  
1L

med T  shows the L1-median 

computed from the collection of score vectors  1 nt , , t ; it is a robust estimator of 
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the center of k-dimensional score vectors. This 
1

L -median is a multivariate version 

of the sample median, also known as a spatial median and it could be computed very 

quickly. Coordinate-wise or component-wise median also could be used for 

estimating the multivariate median (Serneels et al, 2005). 

 

The PRM steps could be given briefly as in the following (Serneels et al, 2005): 

 

1. Robust starting values for the weights 
r x

i i iw w w  are computed. The formula in 

(31) is used with 
i i j j

r y median y   for the residual weights and formula in (33) is 

used with the score vectors replaced by , 1  
i

x for i n  for the leverage weights. 

2. PLSR analysis is performed by using SIMPLS algorithm on the (re)weighted data 

matrices X  and y  computed by multiplying each row of X and y with 
i

w . This 

PLS analysis results then in an update of ̂  and of the score matrix T. By dividing 

each row of T by 
i

w , score matrix T is updated.  

3. The residuals i i i
ˆr y t    are recomputed and the weights 

r x

i i i
w w w  are 

updated using (31) and (33).  

4. Go back to step (2) until ̂  converges. Whenever the relative difference in norm 

between two consecutive approximations of ̂ s is smaller than a specified threshold, 

e.g. 
2

10


, then convergence is achieved.  

5. The final estimate ̂  is directly obtained from the last weighted PLS step. 

 

Many numerical computations revealed that this iterative procedure is stable and 

converges quite quickly. If software for computing standard PLS is available, then it 

is easy and quick to program the above algorithm (Serneels et al, 2005). 

 

3. Application and Results 
Tourism is one of the most quickly growing sectors in the world. Global tourism flows 

and tourism receipts show a stable increase in recent years. Hence, as an effective tool, 

significance of tourism on economic growth and development of a country increases. 

For most of the countries, tourism constitutes a prominent source of additional 

income, foreign exchange, employment and tax revenue. Turkey is one of the popular 

destinations in the world and today, tourism has become an important sector in the 

Turkish economy.  

 

The tourism demand literature shows that there are several measurements for 

international tourism demand such as: the number of the tourist arrivals, the number 

of nights spent by tourist or the receipts from tourism. The number of tourist arrivals 

is still the most popular measurement in tourism demand studies. The main reason for 

this choice is the availability of tourist arrivals data. In this study, tourism demand is 

measured in terms of number of tourist arrivals to Turkey. Therefore, in order to 

develop the sector in a most planned and controlled manner it is important to 

determine the factors which have impact on Turkey’s tourist arrivals. In this paper, it 
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is aimed to investigate some of these effective factors based on robust biased methods 

since the data set contains both multicollinearity and outliers.  

 

The purpose of this study is to model the tourist arrivals (number of foreign tourists) 

to Turkey for the period of 1986-2013 by using three popular biased robust RPCR, 

RSIMPLS and PRM methods in existence of both multicollinearity and outliers in the 

data set. The model giving the best predictions of tourist arrivals is selected and the 

most effective variables on the tourist arrivals to Turkey are found. Considering the 

studies of Alpu et al. (2010), Samkar et al. (2011) and Ispir et al. (2015) six 

independent variables are determined and a trend variable is also added to analysis. 

The variables in the models are given in below: 

 

Y: Number of Foreign Tourists,  

T: Trend 

X1: Number of Incoming Airplanes, 

X2: Number of Rooms in Tourism Facilities,  

X3: Number of Rest Areas, 

X4: Number of Licensed Operation Yachts, 

X5: Total Bed Amount of Tourism Facilities,  

X6: Number of Tourism Agencies,  

 

Firstly, classical MLR model is applied and found to be significant with a probability 

of 95% (F=396.95; p=0.000). According the MLR analysis, 99.3% of variation occurs 

in the variable of number of foreign tourists is explained by these six independent 

variables. Even though the MLR model fits the data well, multicollinearity may 

severely prohibit quality of the prediction. Table 1 shows that all independent 

variables with the exception of X1 and X3 are not significant as an indicator of 

multicollinearity problem. Firstly, it is investigated whether there is multicollinearity 

or not in the dataset. For this purpose, the condition number is calculated as 

max/min=7.240/0.006=1206.6. The condition number greater than 30 means that 

there is multicollinearity. The other multicollinearity measure is Variance Inflation 

Factor (VIF) that is one of the most common techniques in statistics for detecting 

multicollinearity. In practice, if any of the VIF values is equal or larger than 10, there 

is a near collinearity. In this case, the regression coefficients are not reliable. As the 

results of MLR the VIF values for T, X1, X2, X5 and X6 are found as 234.950, 15.450, 

5314.895, 5129.155 and 68.604. Hence, there is a near-collinearity problem for this 

dataset.  

 

 

 

 

 

 

 

 

 

 

 



 

 

 

42 Esra POLAT 

 

Table 1. The estimated regression coefficients for the MLR model. 

Model Coefficients 
Standart Error 

of Coefficients 
T P 

Constant 96832 1471796 0.66 0.518 

T -237803 351877 -0.68 0.507 

X1 58.32 15.11 3.86 0.001 

X2 150.7 142.1 1.06 0.302 

X3 -9193 1052 -8.74 0.000 

X4 3217 1849 1.74 0.097 

X5 -5.19 64.54 -0.08 0.937 

X6 -342.9 748.8 -0.46 0.652 

 
Secondly, whether outliers exist or not is examined using normal Q-Q plot of the MLR 

residuals given in Figure 1. As seen from Figure 1, there is an outlier in the data. 

 

 

 
Figure 1. Normal Q-Q plot of MLR residuals 

 

Table 1 shows that the significant variable X3 (Number of Rest Areas) has a negative 

effect on “Number of Foreign Tourists” variable which conflicts with both theoretical 

and logical expectations. Since the presence of both multicollinearity and outlier, the 

MLR results could not be reliable. In order to overcome both multicollinearity and 

outlier, biased robust RPCR and RSIMPLS, PRM methods (the robust counterparts of 

classical biased PCR and PLSR methods) are applied on the data set by using the 

functions given in MATLAB Toolboxes of ‘LIBRA Toolbox’ (Verboven and Hubert, 

2005) and ‘TOMCAT Toolbox’ (Daszykowski et al., 2007). 
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The performance of the methods are evaluated by using the Root Mean Square Error 

(RMSE), 

 
n

2

i i

i 1

ˆy y

RMSE
n








 with upper % 20 trimming (TRMSE (0.8)), 

which is considered to be safer in the presence of outliers. Since we attend to assess 

the robust model’s performance in fitting the data but not the outliers, a robust RMSE 

measure is necessary. The exclusion of a certain percentage of unusually large 

(absolute) residuals leads to an acceptable robust performance criterion. As mentioned 

in Daszykowski et al. (2007), the obtained values of RMSE are trimmed according to 

the assumed fraction of data contamination.  

 

Firstly, the optimal number of components (showed by kopt) could be selected for 

robust RPCR and robust PLSR methods (RSIMPLS and PRM) by taking the value for 

which TRMSE value is sufficiently small. 

 

 
 



 

 

 

44 Esra POLAT 

 

 
Figure 2. The plots of TRMSE (0.80) values of tourist arrival data set for 

RPCR, RSIMPLS, PRM 

 
Since the model having sufficiently small TRMSE (0.80) value is always preferred, 

as seen from Figure 2 both of the RPCR and RSIMPLS models with two components 

(kopt=2) and PRM model with three components (kopt=3) is chosen. 

 

Table 2. TRMSE values of three models for the tourist arrival dataset 

 RPCR (kopt=2) RSIMPLS (kopt=2) PRM (kopt=3) 

TRMSE (0.8) 8.5582e+05 8.9937e+05 1.1348e+06 

 
As seen from Table 2, RPCR is the model giving the best prediction of number of 

foreign tourists, hence, the estimated coefficients for RPCR given as shown in below.  

 

The final model of RPCR is presented in terms of original variables: 

 

Number of Foreign Tourists = -2.0969e+07 + 0.0037 trend + 40.1142 airplanes + 

17.4722 rooms + 0.0407 restareas – 0.0175 yachts + 40.0919 bedamount + 1.0286 

agencies 

 

For the best model selected (RPCR) it is possible to detect outliers by using regression 

diagnostic plot and score diagnostic plot as shown in Figure 3. The first plot allows 

us to distinguish three types of outliers; good leverage points, bad leverage points and 

vertical outliers. The second one detects three types of outliers; good PCA leverage 

points, bad PCA leverage points and orthogonal outliers. The orthogonal outliers do 

not influence the computation of the regression parameters, but they might influence 

the loadings.  

 



 
 
 
 
 
 
The Comparison of Robust Partial Least Squares Regression Methods 

(RSIMPLS, PRM) with Robust Principal Component Regression for Predicting 

Tourist Arrivals to Turkey 

45 

 

   

 
Figure 3. (a) Regression diagnostic plot (b) score diagnostic plot for RPCR 

(kopt=2) 

 

Figure 3 gives the order numbers of the observations, which are outliers and detected 

by RPCR (kopt=2). It is seen that observations 1 and 2 are both vertical and orthogonal 

outliers, observations 3 and 4 are only vertical outliers, observations 27 and 28 are 

both good leverage and bad PCA leverage points.  

 

4.Conclusion 
The sector of tourism creates employment opportunities, decreasing unemployment 

and has an important role on providing the country with foreign currency income. 

Since it is a source of income and a supply of foreign currency input, it’s eliminating 

instability between regions, farming, transportation, services and other tourisms 
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concerning direct and indirect commercial activities gaining motion, tourism is very 

important for a country’s economy. 

 

In this study, robust biased RPCR, RSIMPLS and PRM methods are applied to a real 

tourist arrival dataset of Turkey with both multicollinearity and outlier. They have 

been compared in order to determine which of them gives the best predictions of 

tourist arrivals. For the tourist arrival data set, RPCR model is chosen as the best 

model according to a robust RMSE performance criterion, TRMSE(0.8). The results 

obtained from RPCR robust biased estimation method showed that the most important 

independent variables affecting the number of foreign tourists are “Number of 

Incoming Airplanes” and “Total Bed Amount of Tourism Facilities”. The least 

important variables affecting the number of foreign tourists are “Number of Licensed 

Operation Yachts” and “Number of Rest Areas”. Hence, any increment in “Number 

of Incoming Airplanes” and “Total Bed Amount of Tourism Facilities” cause an 

important increment in number of foreign tourists. In this study, also it is observed 

that the addition or omission of the trend variable does not affect the results. Whether 

the trend variable present or not in the model, the parameters of independent variables 

remained same.   

In conclusion, it could be declared that for the chosen best model RPCR, the directions 

of relationships between these six independent variables and the number of foreign 

tourists are consistent with the results obtained by Alpu et al. (2010), Samkar et al. 

(2011) and Ispir et al. (2015). Studies and meet the theoretical expectations. Moreover, 

in this study, different from other studies in literature about forecasting number of 

foreign tourists, three biased robust estimation methods RPCR, RSIMPLS and PRM 

are applied for the first time in the case of both multicollinearity and outlier existence.  
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