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Abstract: The phase comparision method of E.F. Bertaut has been applied  to the spin problem  of two 
dimensional   orthorhombic lattice with symmetry centers.The propagation vectors and the stability conditions 
have been obtained in the form of inequalities between the exchange constants. The eigenvalues have also 
been  obtained in the non-parametric representation form and one establishes that it is impossible to express 
them in the parametric representation form. 
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Simetri Merkezli İki Boyutlu Ortorombik Bir Örgüde 
Spin Şekillenimleri 

 
 

Özet: E. F. Bertaut’ un Faz  Mukayese  Metodu  iki boyutdaki simetri merkezli ortorombik örgüdeki  spin 
proplemine uygulanmıştır.Yayılma vektörleri ve kararlılık koşulları değişim katsayıları arasındaki eşitsizlikler 
biçiminde ifade edilmiştir. Ayrıca özdeğerler de parametrik olmayan temsiller şeklinde elde edilerek bunların 
parametrik temsil şeklinde ifade etmenin mümkün olmadığı görülmüştür. 
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Introduction 
 
The so called microscopic method (Matrix method) and macroscopic theory (Group theoretical 

method) developed by E.F. Bertaut [1] for studying spin configurations in ordered structures have  
applications of the mean field theory. According to the microscopic theory of Bertaut  the magnetic 
ordering yields the following equation in the momentum space: 

 
 ζ(k)T(k) = λT(k)  (1) 
 

where T(k) is a vector of n components Ti(k) (i =1,...,n) and the matrix  ζ(k) is the Fourier transform 
of  the isotropic spin-spin interactions. (In the presence of the anisotropy, this formalism can also be 
easily extended by making use of tensors.) Tj(k)  in the above equation is given by 

  
 T k R Rj j j

j

i( ) ( ) exp( . )= ∑ jσ π
R

k2 . (2) 
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Structures  providing the minimum of the eigenvalue correspond to the stable configurations. 

In the case of  the existence of a k-vector different from zero, it is quite tedious to apply the 
microscopic method. But such a case could be solved more easily by the phase-comparison method  
of Bertaut [2] which does not need   an explicit knowledge of  eigenvalues and only uses the fact that 
the linear equations  under consideration  and belonging to a same  eigenvalue can be made either 
identical or conjugate. In this method one obtains the eigenvectors in a first stage. From their 
knowledge one gets the eigenvalues. 

The above mentioned method will be used for the study of the spin configurations in the two-
dimensional orthorhombic lattice which is decorated by spins as seen Figure 1.The reference spins 
are located at the points: x,y(1); x, y (2); x , y (3); x ,y(4). One assumes that  the spins are axial 
vectors and have the same magnitudes. One  assume also that the spins interact with each other by 
means of exchange interactions only. Let us define J(i,j) as the exchange interaction constant 
between the spin i and the spin j, located at r(i) and r(j) respectively. Just  the first nearest 
neighbours interactions between the sublattices  will only be taken into account and assume that 
there is no anisotropy at all between and within the sublattices. 

 

Figure 1. Two-dimensional Orthorhombic Lattice and Its  Sublattices. 
 
 
Theory 
  
The essential point of the method is that the  generalized Fourier transform of the exchange 

integral must be maximum [3]. The Fourier transform of the exchange integral is defined as follows: 
  
 ζij i j

j

= ∑JR R
R

exp[2πik ⋅ −( )R Ri j ] .  (3) 
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where JRi Rj is the exchange constant between spins at Ri and Rj .This constant is positive 

for parallel spins (Ferromagnetism) and  negative for antiparallel spins (Antiferromagnetism).  
Following  Bertaut's matrix formalism, the above expression is evaluated by fixing Ri and by 
summing on all spins of the atoms Rj of lattice j  which have the same JRi Rj values. Therefore from 
eq (3) one has following coefficient of the interaction matrix in the case of isotropic exchange for the 
orthorhombic two dimensional lattice. The spin at x,y(1)  has the following two near neighbours on 
lattice 2:x, y (2)  and  x,1-y(2').  The coefficient    ζ12  of  the matrix, according to eq (3) is  

 ζ12  = 2 J1 cos 4πky  . (4) 
  
The spin at xy(1) has the following four nearest neighbours on lattice 3:x , y (3);(1-x), y (3'); 

(1-x), (1-y)(3'')  and x , (1-y)(3''). The elements of the interaction matrix,  according to eq (3) is  
 
 ζ13 = 2 J3 cos 2π( 2hx + 2ky )+ 2 J3 cos 2π( 2hx - 2ky ) . (5) 
 
Finally the spin at x,y(1) has the following two nearest neighbours 4: x , y (4) and (1-x), y (4'). 
 
 ζ14= 2 J2 cos 4πhx  (6) 
  
where J1 , J2 and J3 are the exchange constants defined above. When the propagation vector 

is different from zero, one has  the following interaction matrix with generally complex elements  ζij  
Let us suppose that our points ( x, y ) are symmetry centers so that the complex part in eq (3)  
vanishes and  the interaction matrix takes the following form:  
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At this point, it is useful to replace the Tj(k)  in eq  (2 ) by new vectors  Q(k) defined by  

 

 Qj(k) = Tj(k)exp -ik.rj0  . (8) 

 
 Defining a phase factor  Qj of the form 

 

 Qj = exp -iΨj  (9) 

 
 

 91



SPIN CONFIGURATION IN A 2D- ORTHORHOMBIC  LATTICE WITH SYMMETRY CENTERS 
 

 

with Ψj  being the phase angle of the spin j, one has the following relations   

 

   S(rj0) = Qj(k) + Qj(-k) (10) 

          S(rj0) = Sj(u cosΨj + v sinΨj) (11) 

 
Now let us find the eigenvalues of the  matrix in eqn (7) using the phase comparison. For the 

sake of brevity  denoted  ζ12  by B, ζ13 by C and ζ14 by  D .  
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 -λ + B Q2 Q1-1 + C Q3 Q4-1 + D Q4 Q1-1  = 0  (13) 
 
 -λ + B Q1 Q2-1 + C Q4 Q2-1 + D Q3 Q2-1  = 0  (14) 
 
 -λ + B Q4 Q3-1 + C Q1 Q3-1 + D Q2 Q3-1  = 0   (15) 
 
   -λ + B Q3 Q4-1 + C Q2 Q4-1 + D Q1 Q4-1  = 0   . (16) 
 
From the  equivalence of eqs (13) and (15) , one has 
 
 Q2 Q1-1 = Q3 Q4-1 ;  Q3 Q4-1= Q2 Q4-1 ;  Q4 Q1-1=Q1 Q4-1 (17) 
 
From the third relation in eq (17) one observes that  Q4 Q1-1 and Q1 Q4-1  are reals. From 

the remaining  two equations  it follows  
 Ψ4 -Ψ3 = Ψ1 -Ψ2  + 2πm   (18) 
      Ψ1 -Ψ3 = Ψ4 -Ψ2  + 2πn    .  
     Solving for  Ψ3  and Ψ4  yields  the following equations: 
 
 Ψ3  = Ψ2  - π(m + n)   (19) 
 Ψ4  = Ψ1 + π(m + n)   . 
 
Depending on  the parities of m and n there are  two kinds of solution. Calling them a) and b) 

respectively. 
 a) m and n  are of   same parities 
     In this case one has  
 
 Q3 = Q2     and     Q4 = Q1  (20) 
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b) m and n  are of  different parities 
 
     In this case   
 
 Q'3 = - Q'2     and     Q'4 = - Q'1  (21) 

 
are  obtained. Substituting  these Q values into the eq (13), one has the relation 
 
 λ - D = (B + C) Q2 Q-11  . (22) 
 
 and using the condition that λ - D is real,  one comes to the conclusion that 
 
 Q2 = ±Q1 (23) 
 
  Substituting  Q2  values in eq  (23)  into the eq (22)  the following  eigenvalues are obtained 

in the form of non-parametric  representation 
 
 λ+ =  B + C + D (24) 
 λ- = - B - C  + D 
 
for  Q2 = Q1 and Q2 = - Q1 respectively. There is no parametric representation of  the 

eigenvalues since  the term B + C in eq (22)  is real. This means that the phase angle Ψ is equal to 
zero or integer multiples of π. One obtains the following eigenvalues for the primed values(that is for 
different parities of m and n) after having done  some similar  calculations : 

  
  λ'+  =   B - C + D (25) 
  λ'-  = - B + C – D 
 
The eigenvector matrix (Q) of the system, taking Q1  = Q  and Q'1 =  Q', becomes 
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The primed values are for  different parities of m and n. The non - primed values are for the 

same parities of m and n.   There are two columns  for a given parity resulting from the equations  
Q1 = ±  Q2 and Q'1 = ±   Q'2 respectively.  

  From the phase relations  (21) and (23)  using the  definition given by eq (9), one obtains 
the following  reference spins where u has been chosen along the x-axis and v along the y-axis: 
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  σ1 = u cosΨ1 + v sinΨ1 (27) 
 σ2 = u cosΨ1 - v sinΨ1 
 σ3 = u cosΨ1  - v sinΨ1 
 σ4 = u cosΨ1  + v sinΨ1   
 
In order to investigate the stability conditions it is sufficient to choose just one of the four 

eigenvalues obtained above, say λ+ . Using the  abbreviations H = h x and K = k y, one could write 
 
 λ+ = 2J1cos 4πK + 2J2 cos 4πH + 2J3 ( cos 4 π( H + K ) + cos 4π ( H - K  )) . (28) 
     
In order to find the possible K-propagation vectors from eq (28), one has to equate  its 

derivatives  with respect to H and K to zero, 

 + =
∂λ
∂H

0  (29) 

 + =
∂λ
∂K

0  

The doubly periodic function λ+ ( H, K )   must have at least one minimum, one maximum and 
two saddle points. (In the case  of three dimensions, say λ+ ( H, K, L )  there should be at least one 
minimum, one maximum and six saddle points) 

In order to obtain the stability conditions  and the propagation vectors of the modes, one writes 
simply that λ+ must be maximum (- λ+ = H, exchange energy) i.e. the quadratic form, the coefficients 
of which are second derivatives of - λ+ , must be definite positive. One can obtain the inequalities 
between the exchange constants as stability condition for all of the modes. The results are 
summarized in Table 1. 
 
Table 1. Wave Vectors and Stability Conditions of  Modes 
 
Wave 
vectors 

            Stability    Conditions 

 

    [0  0] 

    [1/4  0] 

    [0  1/4] 

    [1/4  1/4] 

    [1  1/4] 

    [1/4  1] 

 

 

    J1 + 2J3   〉 0 ; J2 + 2J3  〉 0 ; ( J1 + 2J3  )( J2 + 2J3 ) 〉 0 

 J1 - 2J3   〉 0 ; J2 + 2J3 〈 0 ; ( J1 -2J3  )( J2 + 2J3 )  〈 0 

   J1 + 2J3  〈 0 ; J2  - 2J3  〉 0 ; ( J1+ 2J3  )( J2_- 2J3 )  〈  0 

   J1  - 2J3  〈 0 ; J2  - 2J3  〈 0 ;  ( J1   - 2J3  )( J2  - 2J3 ) 〉 0 

  J1   - 2J3  〉 0 ; J2  - 2J3  〉 0 ; ( J1  -2J3  )( J2 -2J3 )  〉 0            

   J1  - 2J3  〉 0 ; J2  + 2J3 〈 0 ;  ( J1  -2J3  )( J2 + 2J3 )  〈 0 
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Results 
 
In this work, the eigenvalues and the corresponding eigenvectors of the interaction matrix 

have been determined  by the phase comparison method. Results are completely in agreement with 
our previous  results [4]. All of the eigenvalues have been obtained in the non-parametric  
representation form because of the fact that, the term B + C in eq (22) is real and it is impossible to  
split it into a real and an imaginary part. 

The relations between the exchange constants have been determined in the form of 
inequalities. .The importance of obtaining  inequalities between the exchange constants as  stability 
conditions  is that  it imposes further  boundary conditions  on the exchange constants' space and 
indicates the breakdown of a spin configuration for  some critical ratio of exchange constants, since 
from experiments one may only determine Curie or Néel  temperatures as linear combinations of  
exchange constants.  

Finally among the various propagation vectors, the obtained one  corresponds to the 
ferromagnetic configuration. 
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