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ABSTRACT

We show that convex hull of extreme points of a closed strongly convex subset of a compact flat
Riemannian manifold is equal to the subset itself.
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1. Introduction

Let A be a subset of a Riemannian manifold M . It is interesting to find relations between global (geometric or
topological) properties of A and its boundary points. In special case when A is considered to be a convex subset,
the boundary points set can be replaced by a usually smaller subset containing extreme points. A point is called
extreme if it is not included in the interior of a geodesic segment with endpoints in A. One of the important
results in this direction is the Krein-Milman theorem which states that if M = En and A is a compact and convex
subset, then A is equal to the convex hull of its extreme points [8]. Thus, one only needs the extreme points of
A to recover its shape. The Krein-Milman theorem has been generalized to convex noncompact submanifolds
of En in [3]. After that, the author of [9] studied similar problems, when M is a complete simply connected
Riemannian manifold without conjugate points. As far as we know, there is no explicit result about relations
between A and its extreme points when M is not simply connected.
In the present article, we consider the problem under the condition that M is a compact flat Riemannian
manifold (nonsimply connected) and A is a closed strongly convex subset of M . We replaced the convexity
condition of A by strong convexity. Because, when M is compact, the convex hull of a closed subset is equal to
M itself, and the problem is trivial. As a consequence of our main result, we also consider a noncompact case
where M is equal to the product of a compact flat Riemannian manifold and the Euclidean space, and A is a
subset with the geodesic decomposition property.

2. Preliminaries

Let M be a complete Riemannian manifold. A subset C of M is called (strongly) convex, if for each pair
of points a, b in C, all points of each (minimal) geodesic segment joining a to b is contained in C. It is clear
that each convex subset is strongly convex, but the converse is not true. For instance, S2+ is a strongly convex
subset of S2 which is not a convex subset. If B ⊂ M , then the (strong) convex hull of B, which we denote by
(Cs(B)) C(B), is by definition, the smallest (strongly) convex set containing B, that is the intersection of all
(strongly) convex subsets containing B. A point e in a (strongly) convex subset C is called an extreme point
if it does not lie in the interior of any geodesic joining two points of C. That is for each geodesic segment
γ : [0, 1] → M , with γ(0), γ(1) in C, e /∈ γ(0, 1). The union of all extreme points of C is called the extreme subset
of C which we denote by E(C). Note that E(C) is the same for convex and strongly convex sets.
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In what follows, the domain of all geodesic segments are considered to be [0, 1].

Definition 2.1. Let B be a subset of a Riemannian manifold M . Put G0(B) = B and

G1(B) = {α(t) : α is a geodesic joining two points of B}

Gm+1(B) = G1(Gm(B))

If e ∈ Gm+1(B) then a sequence of geodesic segments α1, α2, ..., αm+1 is called an spanning geodesic sequence
for e from the set B, if αi is a geodesic with end points in Gi(B) and e = αm+1(t) for some t ∈ [0, 1].
In this case we write:

α1 → α2 → ... → αm+1 → e.

The sequence is called a spanning minimal geodesic sequence for e from B, if all geodesic segments αi are
minimal.

Remark 2.1. It is easy to show that C(B) (Cs(B)) is the collection of all points e ∈ M with the property that there
is a spanning (minimal) geodesic sequence for e from B.

If M is a compact Riemannian manifold and A is a closed subset of M , then C(A) = M . Thus, convex hull of
closed sets in compact Riemannian manifolds are not interesting and we consider strong convex hulls in this
case.

3. Results

Definition 3.1. Let M be a complete Riemannian manifold, B ⊂ M and b ∈ B. A convex component of B
containing b is a convex subset C of B which contains b and is maximal. That is, if C ⊂ D and D is a convex
subset of B, then D = C. The strongly convex component is defined similarly.

Remark 3.1. If A ⊂ Rn and b ∈ Rn, then the cone on A with the vertex b is defined by

cone(A, b) = {ta+ (1− t)b : t ∈ [0, 1], a ∈ A}.

It is clear that if A is convex then cone(A, b) is convex. Note that convexity and strong convexity are the same
in Rn.

Recall 1. Let M be a Riemannian manifold and M̃ be its universal covering space with the covering map π : M̃ → M .
If a ∈ M then there is a neighbourhood V for a and disjoint neighbourhoods Vb for each b ∈ π−1(a) such that π : Vb → V
is an isometry. V is called an admissable neighbourhood of a. If α : [0, 1] → M is a curve with initial point a (α(0) = a),
then there is a unique curve α̃ : [0, 1] → M̃ with initial point b (α̃(0) = b) such that π ◦ α̃ = α. α̃ is called the lift of α to
the point b and it is a geodesic if α is a geodesic.

Theorem 3.1. Let M be a complete flat Riemannian manifold and π : Rn → M be a covering map. If A is a closed
strongly convex subset of M , a ∈ A and b ∈ π−1(a), then there is a closed and convex subset Ã of Rn such that Ã with
the following properties is maximal.
b ∈ Ã, π(Ã) = A and π(E(Ã)) = E(A).

Proof. Denote by Ã the convex component of π−1(A) containing b. We show that π(Ã) = A. Clearly, π(Ã) ⊂ A.
Let c ∈ A and let γ be the minimal geodesic in A joining a to c (γ(0) = a, γ(1) = c). Suppose that γ̃ is the lift of
γ to the point b. Then, γ̃([0, 1]) is a subset of π−1(A). Since b ∈ Ã ∩ γ̃([0, 1]), then from the definition of convex
component, cone(Ã, γ̃(1)) = Ã. Thus, γ̃(1) ∈ Ã, and c = π(γ̃(1)) ∈ π(Ã). Therefore, A ⊂ π(Ã).
Now, we show that π(E(Ã)) = E(A).
Let c ∈ E(A) and c̃ ∈ Ã with π(c̃) = c. We show c̃ ∈ E(Ã). If not, then there is a geodesic α in M̃ such that
α(0), α(1) ∈ Ã and for some t ∈ (0, 1), α(t) = c̃. Then, π ◦ α is a geodesic in M with end points in A which
contains c in the interior. Thus, c /∈ E(A) which is a contradiction. Thus, E(A) ⊂ π(E(Ã)).
Now, suppose that d ∈ π(E(Ã)). We have d = π(d̃) for some d̃ ∈ E(Ã). If d /∈ E(A), then there is a minimal
geodesic β in M such that β(0), β(1) ∈ A and for some t ∈ (0, 1), d = β(t). Since A is strongly convex, then
β([0, 1]) ⊂ A. Consider an admissable strongly convex neigbourhoods V of d and Ṽ of d̃ such that π|Ṽ : Ṽ → V
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be isometry. For sufficiently small positive number ϵ we have β([t− ϵ, t+ ϵ]) ⊂ V . Put β̃ = (π|Ṽ )
−1 ◦ β|[t−ϵ,t+ϵ].

We have β̃(t) = d̃. We show that the endpoints of β̃ belong to Ã. Then we get d̃ /∈ E(Ã) which is a contradiction
and we get that d ∈ E(A), so π(E(Ã)) ⊂ E(A).
Consider the endpoints of β̃, b1 = β̃(t+ ϵ) and b2 = β̃(t− ϵ). We have Ã ∪ β̃([t− ϵ, t+ ϵ]) ⊂ π−1(A) and d̃ ∈
Ã ∩ β̃([t− ϵ, t+ ϵ]). Thus, from the fact that Ã is a convex component of π−1(A), we have cone(Ã, b1) = Ã. So,
b1 ∈ Ã. In similar way, b2 ∈ Ã.

Remark 3.2. A geodesic loop in a Riemannian manifold M is a curve α : [0, 1] → M such that α(0) = α(1) and α
is geodesic on interior points of its domain (in (0, 1)). Note that a closed geodesic is a geodesic loop.

Remark 3.3. We will use the flat torus Tn, n ≥ 2, in the proof of following theorem. The n-dimensional torus Tn

is the product of n circles. Tn can also be described as a quotient of Rn under integer shifts in any coordinate.
That is, we consider the action of Zn on Rn defined by

Zn ×Rn → Rn, (a, x) = a+ x,

then Tn is the quotient Rn/Zn.

Theorem 3.2. If A is a closed strongly convex subset of a compact and complete flat Riemannian manifold M and there
is no geodesic loop in A, then Cs(E(A)) = A.

Proof. If dimM = n, then by theorem of Bieberbach, Tn is a covering space for M [4]. Consider the following
maps: π1 : Rn → Tn, the universal covering map, π2 : Tn → M a covering map and π = π2 ◦ π1 : Rn → M .
Without loss of generality consider a point a ∈ A and b ∈ π−1(a) such that b ∈ In (where I is [0,1]). By Theorem
3.1, there exists a closed and convex subset A1 of Rn such that b ∈ A1 and π(A1) = A, and A1 is maximal with
the mentioned properties. Put π1(A1) = A2. Clearly, π2(A2) = A. Since there is no geodesic loop in A, then there
is no geodesic loop in A2 (if γ is a geodesic loop contained in A2 then π2 ◦ γ is a geodesic loop in A).
Consider Tn as quotient of Rn under the action of Zn. We show that A1 ⊂ In. If not, then there is a point a1 ∈ A1

and a nonidentity element δ ∈ Zn such that δ(a1) ∈ A1. Consider the line segment

γ(t) = (1− t)a1 + tδ(a1).

Since A1 is convex, then for all t ∈ [0, 1], γ(t) ∈ A1. Now, put α = π1 ◦ γ. Then for all t ∈ [0, 1], α(t) ∈ A2. Since
δ(γ(0)) = γ(1), then

α(0) = π1 ◦ γ(0) = π1 ◦ γ(1) = α(1).

This means that α is a geodesic loop in Tn contained in A2, which is a contradiction. Thus, A1 ⊂ In. Therefore,
A1 is compact and by Krein-Milman theorem, C(E(A1)) = A1. By Theorem 3.1, π(E(A1)) = E(A).
To complete the proof of the theorem, we prove the following claim:

(*) Claim: For each minimal geodesic segment γ : [0, 1] → M contained in A, there is a geodesic γ̃ in A1

such that π(γ̃) = γ.

Proof of the claim. Let e in A1 such that π(e) = γ(0) and let γ̃ be the lift of γ to the point e. If γ̃(1) ∈ A1

then we have done, if not then the convex cone cone(A1, γ̃(1)) is a convex set containing A1 which is in
contrast with the maximality of A1. By Definition 2.1, Remark 2.1 and Claim (*), it is easy to show that
π(C(E(A1)) = C(π(E(A1))). Now, from C(E(A1)) = A1 and π(E(A1)) = E(A) we get that C(E(A)) = A.

4. A remark on strongly convex subsets of product flat manifolds

Definition 4.1. Let M1 and M2 be Riemannian manifolds and A be an strongly convex subset of M1 ×M2. We
say that A has geodesic decomposition property, if the following assertion is true:
Let (a, b) ∈ A, a ∈ M1, b ∈ M2 and

Aa− = {y : (a, y) ∈ A}, A−b = {x : (x, b) ∈ A}.

If β = (β1, β2) : [0, 1] → M1 ×M2, is a geodesic contained in A and β(t0) = (a, b) for some 0 < t0 < 1, then there
is a positive number ϵ such that (β1(t), b) ∈ A−b, t0 − ϵ ≤ t ≤ t0 + ϵ and (a, β2(t)) ∈ Aa−, t0 − ϵ ≤ t ≤ t0 + ϵ.
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Example 4.1. If A1 and A2 are strongly convex in M1 and M2, then A = A1 ×A2 has geodesic decomposition
property.

Corollary 4.1. Let M1 and M2 be complete flat Riemannian manifolds such that for each strongly convex subset Ai

of Mi, Cs(E(Ai)) = Ai, i = 1, 2. If A is a closed and strongly convex subset of M1 ×M2 with geodesic decomposition
property, then Cs(E(A)) = A.

Proof. For all (a, b) in A consider Aa− and A−b as Definition 4.1. Since A is closed and strongly convex, it is easy
to show that Aa− and A−b are closed and strongly convex in M2 and M1, respectively, and by assumption of
the corollary,

Cs(E(Aa−)) = Aa−, Cs(E(A−b)) = A−b. (1)

We show that
E(A) = {(a, b) ∈ A : b ∈ E(Aa−) and a ∈ E(A−b)}.

Let (a, b) ∈ E(A). If b /∈ E(Aa−), then there is geodesic γ : [0, 1] → M2 such that γ(0), γ(1) ∈ Aa− and for
some t ∈ (0, 1), b = γ(t). Put γ̃(t) = (a, γ(t)). γ̃ is a geodesic in M1 ×M2 and γ̃(0), γ̃(1) ∈ A, γ̃(t) = (a, b), which
contradicts (a, b) ∈ E(A). Thus, b ∈ E(Aa−). In similar way, we can show that a ∈ E(A−b).
Conversely, let a ∈ E(A−b) and b ∈ E(Aa−). We show (a, b) ∈ E(A). If (a, b) /∈ E(A), then there is a geodesic
β = (β1, β2) in M1 ×M2 such that β(0), β(1) ∈ A and for some t0 ∈ (0, 1), β(t0) = (a, b). Consider the geodesics
γ2 = (a, β2) and γ1 = (β1, b) in M1 ×M2. Put

I1 = {t ∈ [0, 1] : γ1(t) ∈ A−b × {b}}.

Clearly, t0 ∈ I1. If for some small number ϵ > 0, [t0 − ϵ, t0 + ϵ] ⊂ I1 then β1 : [t0 − ϵ, t0 + ϵ] → M1 is a geodesic
with end points in A−b which contains the point a(= β1(t0)) as interior point. Then a /∈ E(A−b) which is
a contradiction. Then, for all small positive numbers ϵ, [t0 − ϵ, t0 + ϵ] is not a subset of I1. Thus, there is a
sequence of decreasing positive numbers ϵn such that ϵn → 0 and either γ1(t0 − ϵn) /∈ A−b × {b} for all n or
γ1(t0 + ϵn) /∈ A−b × {b} for all n.
We get from convexity of A−b that for sufficiently large n,
(1) γ1(t) /∈ A−b × {b} for all t ∈ [t0 − ϵn, t0)
or
(2) γ1(t) /∈ A−b × {b} for all t ∈ (t0, t0 + ϵn].
In a similar way, we can find a small positive number δ such that
(3) for all t ∈ [t0 − δ, t0), γ2(t) /∈ {a} ×Aa−
or
(4) for all t ∈ (t0, t0 + δ], γ2(t) /∈ {a} ×Aa−.

Put η = min{ϵn, δ}. If (1), (3) are true then for all t ∈ [t0 − η, t0), we have:

γ1(t) /∈ A−b × {b}, γ2(t) /∈ {a} ×Aa− ⇒ β1(t) /∈ A−b, β2(t) /∈ Aa−,

which contradicts the geodesic decomposibility of A. Similarly we have contradiction if (1),(4) or (2), (3) or (2),
(4) are true. Then (a, b) ∈ E(A).

Now, we show that A ⊂ Cs(E(A)). Suppose, (a, b) ∈ A. Since Cs(E(Aa−)) = Aa− and Cs(E(A−b)) = A−b, then
there are spanning geodesic sequence α1 → α2 → .... → αm → a for a from E(A−b) and β1 → β2 → ... → βk → b
for b from E(Aa−). Without loss of generality suppose k ≤ m. Now, it is easy to show that

(α1, β1) → (α2, β2) → ... → (αk, βk) → (αk+1, βk) → ... → (αm, βk)

is an spanning geodesic sequence for (a, b). Thus, (a, b) ∈ Cs(E(A)). Clearly, Cs(E(A)) ⊂ A, then Cs(E(A)) =
A.

Now, from Theorem 3.2 and Corollary 4.1, we get the following theorem.

Theorem 4.1. Let M be a compact and complete flat Riemannian manifold. If A is a closed, compact and strongly convex
subset of M ×Rn and A has geodesic decomposition property, then Cs(E(A)) = A.
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