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ABSTRACT: This paper is concerned with the continuous contact problem of two transversely isotropic 
layers resting on a circular support. The external load is applied to the layers by a rigid cylindrical block. 
It is assumed that the contact between all surfaces is frictionless and body forces are not taken into 
account. The problem is formulated in terms of singular integral equations obtained from the continuous 
contact position. Equations are solved numerically by using the Gauss-Chebyshev integration method. 
Furthermore, numerical results as pressure distributions under the rigid cylindrical block are given for 
different material combinations. 
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Rijit Çembersel Destek Üzerinde Duran İki Katmanlı Enine-İzotrop Slabın Eksenel Simetrik Temas 
Problemi 

 
ÖZET: Bu  makale, çembersel destek üzerinde duran iki adet enine-izotrop katmanın sürekli temas 
problemini ele almaktadır. Dış yük, katmanlara bir rijit silindirik blok vasıtasıyla tatbik edilmiştir. Tüm 
yüzeylerin arasındaki temasın sürtünmesiz olduğu kabul edilmiş ve kütle kuvvetleri hesaba 
katılmamıştır. Problem, sürekli temas konumundan elde edilen tekil integral denklemler cinsinden 
formüle edilmiştir. Denklemler Gauss-Chebyshev integrasyon yöntemi ile nümerik olarak çözülmüştür. 
Bunun dışında, rijit silindirik blok altındaki basınç dağılımlarına ait sayısal sonuçlar birçok farklı 
malzeme kombinasyonları için verilmiştir. 
 
Anahtar Kelimeler: Temas problemi, Enine-izotrop malzeme, Rijit silindirik blok, Çembersel destek, Tekil integral 
denklemi. 

 
1. INTRODUCTION 

 
In recent years, there is an increasing 

interest on anisotropic materials due to high 
strength over density ratio and tailor fit strength 
properties. Also, the elastic properties of the 
materials become different due to certain 
technological processes such as rolling and the 
condition of anisotropy must be considered. 
Metallic substances, such as zinc and magnesium 
are characterised as being transversely isotropic 
and have five elastic constants. Many fiber-

reinforced composite materials are also 
characterised as transversely isotropic media. 

Adams and Zeid, 1984 have 
investigated an elastic punch moving across the 
surface of a semi-infinite solid. Bakırtaş, 1980 
studied a rigid punch problem in a non-
homogeneous elastic half-space. The axially 
symmetric double contact problem for 
frictionless elastic layer studied by Civelek and 
Erdoğan, 1974. Civelek, 1972 introduced the axi-
symmetric contact problem for an elastic layer 
on a frictionless half-space. Uyaner et al., 2000 
have investigated plastic zones in a transversely 
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isotropic cylinder containing a ring shaped 
crack. Fabrikant and Sankar, 1986 introduced 
concentrated force underneath a punch bonded 
to a transversely isotropic half-space. The non-
symmetrical plane elasticity problem of an 
elastic layer supported by two elastic quarter 
plane solved by Aksoğan et al., 1997. The 
frictionless contact problem between an infinite 
layer bonded to a rigid support and a rigid 
stamp considered by Kahya et al., 2001 . Punch 
problem for an elastic layer overlying an elastic 
foundation analyzed by Dhaliwal, 1970. 
Frictionless contact problem for an elastic layer 
under axisymmetric loading were studied by 
Geçit and Erdoğan, 1978. Ratwani and Erdoğan, 
1973 have investigated on the plane contact 
problem for a frictionless elastic layer. Geçit, 
1986 introduced the axisymmetric double contact 
problem for a frictionless elastic layer indented 
by an elastic layer. Avci et al., 2006a studied an 
axisymmetric smooth contact for an elastic 
isotropic infinite hollow cylinder compressed by 
an outer rigid ring with circular profile. Uyaner 
et al., 2002 considered a problem in an elastic-
perfectly plastic dissimilar layered medium. 
They assumed that a transversely isotropic layer 
is sandwiched between two isotropic semi-
infinite half spaces, and contains a penny-shaped 
crack located in its mid-plane. A contact problem 
for a transversely isotropic cylinder radially 
compressed by a rigid toroidal indenter was 
considered by Avci et al., 2006b. 

In this study, the plane elastostatic 
problem of transversely isotropic layers resting 
on a circular support under effect of pressure 
load by means of a rigid cylindrical block is 
considered. The general equation of stresses and 
displacements are obtained by using the general 
equation of elasticity and Hankel transform 
among integral transform techniques. The 
continuous contact problem is considered. A set 
of linear algebraic equation is obtained by 
applying the expression of stresses and 
displacements to secondary conditions of the 
continuous contact problem. When the set of 
linear algebraic equation is solved, the unknown 
constant coefficients using the equation of 
stresses and displacements are obtained. The 
singular integral equations are numerically 
solved by using the Gauss-Chebyshev 
integration method. The diagrams of pressure 
distributions under the rigid cylindrical block 
are plotted. 

 
2. BASIC FORMULATION 
 
Consider two infinite transversely isotropic 
layers of thickness h, shown in Fig. 1. The 
external uniform compression load P is applied 
to the transversely isotropic layers through a 
frictionless semi-infinite cylinder of diameter 2a. 
The body forces are neglected. It is assumed that 
the contact between the layers is frictionless and 
the interface transmits only compressive stresses.

 
 
 
 

Figure 1. Geometry of the problem 
 

Referring to Fig. 1, the equilibrium and 
the compatibility equations are expressed in 
cylindrical coordinates as 

 

P=p0πa2 

P/2πb P/2πb b b 
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For transversely isotropic bodies the 

stress components can be written as (Lekhnitskii, 
1981) 
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The stress components may be 
expressed in terms of displacements u(r,z) and 
w(r,z) as,  
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where cij (i,j=1..4) are elastic constants. 
Substituting equations (4a), (4b), (4c), and (4d) 
into the equations (1a) and (1b) the following 
two partial differential equations are obtained. 
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In order to solve these differential equations 
Hankel transform pairs can be used as 
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For a transversely isotropic layer, it is 
necessary to select the displacements functions 
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where iiii DCBA ,,,  (i=1,2) are unknown 
functions which are determined from the 
boundary conditions and 1m , 2m , 3m , 4m , d, f as 
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where )(0 rJ ξ  and )(1 rJ ξ are Bessel functions 

of first kind. Stresses and strains can be written 
after substituting ),( zru  and ),( zrw  into the 
equations (4a), (4b), (4c), and (4d) as 
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3. SOLUTION OF THE PROBLEM 
 
Assuming that the contacts between all surfaces 
are frictionless, the boundary conditions may be 
expressed as 
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In equations (14a,…,14h) the continuity 
conditions for the displacements are expressed 
in terms of derivatives for dimensional 
consistency in the equations of the problem. 
From equilibrium condition, 
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By substituting (13d) into (14a), 
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Finally, by substituting (13c) into (14g), 
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By using derivatives of equation (10) one can 
obtain 
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Boundary conditions in (14a,g) may be used 

to eliminate seven of the eight unknowns. The 
mixed boundary conditions in (14h,j) may be 
used to obtain a system of dual integral 
equations for the eighth unknown function. It is 
convenient to reduce the mixed boundary 
condition to an integral equation. The integral 
equation will be singular. In order to avoid a 
strong singularity in the resulting equation, it is 
necessary to introduce a new function as 
derivative of the displacement ),(2 zrw , rather 
than the displacement. The new unknown 
function will be defined as follows 
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Write the help of (22), boundary conditions 

(14i,j) and (22) are equivalent to 
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bounded and G(r) satisfies Hölder 
condition. Substituting (22) into (23) 
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by using (25), following equation 
can be obtained 
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obtained in terms of )(ξB  and n after solving 
equations (15,…,21,28). By using boundary 
condition (14h) under single valuedness 
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After some manipulations (29) can be 
written as 
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Where )(xK  and )(xE  are elliptic integrals 

of first and second kind respectively. 
For the convenience of solving integral 

equation, the definition of the functions is 
extended to 0<r  range. Thus, Equation (32) has 
to be solved analytically under the condition that  
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4. NUMERICAL SOLUTION 

 
Examining the kernel in Equation (32), when 
ρ=r  it is obvious that the first part of the 

kernel, ),(1 ρrk  has a simple logarithmic 
singularity in the form of r−ρlog . The second 
part of the kernel, ),(2 ρrk  is bounded in the 
closed interval ara ≤≤− ),( ρ . The unknown 
function G(ρ) is infinite but integrable at 1±=ρ , 
therefore the solution is of the form 
(Muskhelishvilli, 1953). 
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A standard numerical technique can be used 

to find out the unknown function G(ρ). For 
convenience in the numerical schema, 
normalization is carried out by the following 
dimensionless variables.  
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by using single-valuedness condition in 
Equation (39) (Erdogan and Gupta, 1972). 
Substituting Equation (41) into (38) we obtain 
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Equations (41) and (42) can be evaluated by 
using the Gauss-Chebyshev integration formula. 
Thus from Equations (42) and (43) we obtain 
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The collocation points are 
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5. NUMERICAL RESULTS AND 
CONCLUSION 

 
Table 1. Values of elastic constants (in GPa) 

(Behrens,1971; Huntington, 1958) 
Material c11 c12 c13 c33 c44 
Gr-Epoxy 8.28 2.767 0.285 86.8 4.147 
Magnesium 59.7 26.2 21.7 61.7 16.4 
Barium-
titanate 

168.0 78.0 71.0 189.0 5.46 

E-Glass 14.99 6.567 5.244 42.27 4.745 
Steel 282.69 121.15 121.15 282.69 80.76 

 
The isotropic material selected is steel 

with the elastic modulus of 210 GPa and the 
Poisson’s ratio 0.3. For the transversely isotropic 
materials considered in this paper. the numerical 
values of elastic constants are used for different 
materials and tabulated in Table 1. 

Some of the calculated results obtained from 
the solution of the continuous contact problem 
described in the previous section for various 
dimensionless quantities such as a/b, h1/h2 are 
shown in Figs. 2..4. It is assumed that both of 
transversely isotropic layers occur the same 
materials, the contact along the interface is 
frictionless. 
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Figure 2. Pressure distribution for a/b=0.4, 0.5, 0.6 and h1/h2=0.2 in a graphite-epoxy 

 
Fig. 2 shows the variation of the normalized 

pressure value, p(r)/p0 between radius of rigid 
cylindrical block with r/a for h1/h2=0.2 and 
different a/b for graphite-epoxy. As seen in Fig. 
2, the normalized pressure under rigid stamp 
decreases with increasing r/a. The pressure 

values is maximum for r/a=0.245486. Normalized 
pressure decreases between r/a=0.245486 and 
r/a=1. For a fixed value of h1/h2=0.2, the contact 
area, a/b increases with normalized pressure, 
p(r)/p0.
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Figure 3. Pressure distribution for h1/h2=0.5, 1, 2 and a/b=0.5 in a graphite-epoxy 

 
Further results for the normalized pressure 

distribution is shown in Fig. 3, for a fixed value 
of a/b=0.5. The figure shows p(r)/p0 for three 
selected values of layers thickness ratio, 
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h1/h2=0.5, 1, 2 in a graphite-epoxy. It appears 
that, for a fixed value of a/b and increasing layers 
thickness ratio, p(r)/p0 increasing with 

decreasing r/a. However increasing of p(r)/p0 is 
negligible. 

 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0 0,2 0,4 0,6 0,8 1

r/a

p(
r)

/p
0

Magnezyum
Grafit Epoksi
E Camı
Baryum Titanat
Çelik

 
Figure 4. Pressure distribution for a/b=0.4 and h1/h2=0.3 in different materials 

 
Fig.4 shows the normalized pressure, p(r)/p0, 

between radius of rigid stamp, r/a for h1/h2=0.3 
and a/b=0.4 in different materials. For steel E=210 
GPa and ν=0.3 are given. As it can be seen in the 
figure that the normalized pressure has a sharp 
peak at r/a=0.245486. Normalized pressure 
values are bigger in E-glass layer while it is 
smaller in other materials. There is a small 
difference between pressure distribution for 
magnesium and barium titanate layers. 
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