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Abstract: The COVID-19 pandemic appeared in China on November 17, 2019. As of 11 August 

2022, after the first case was seen, 587,502,315 cases were observed and 6,427,422 deaths were 

reported (Johns Hopkins University, 2022). After the recognition of COVID-19 as pandemic, a 

mobilization for vaccine development started all over the world. While the vaccine development 

studies continue, there are some drugs recommended for the treatment but not with the most 

effective results. Since drug design, development and testing procedures are time consuming, 

virtual screening studies with the help of existing drug databases take the initiative and save time at 

this point. Moreover, drug repurposing strategies promise to identify new potential agents for such 

diseases in a time-critical manner. Here, we report structure-based virtual screening method to 

reveal the docking profiles of three flavonoids, rutin, luteolin, and myricetin on one of the COVID-

19 main protease (6W63) of SARS-CoV-2.  
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1. Introduction 

The current coronavirus disease 2019 (COVID-19) pandemic is of global emergency, with 

its fast expansion and high fatality rate. The number of persons infected with COVID-19 is rapidly 

increasing globally. Pneumonia, severe symptoms of acute respiratory distress syndrome (ARDS), 

and multiple organ failure can all occur in COVID-19 patients (N. Chen et al., 2020; C. Huang et 

al., 2020; D. Wang et al., 2020; N. Zhu et al., 2020). Coronaviruses are enclosed, positive single-

stranded big RNA viruses that may infect humans as well as a variety of other animals. Tyrell and 

Bynoe, who cultivated the viruses from patients with common colds, first described coronaviruses 

in 1966(Tyrrell & Bynoe, 1966) . They named coronaviruses (Latin: corona = crown) because of 

their shape as spherical virions with a core shell and surface projections resembling a solar corona. 

Coronaviruses are divided into four subfamilies: alpha, beta, gamma, delta, and omicron. While 

alpha and beta coronaviruses are thought to have originated in mammals, particularly bats, gamma 

and delta viruses are thought to have originated in pigs and birds. Beta-coronaviruses, one of seven 

coronavirus subtypes that may infect humans, can cause serious sickness and death, whereas alpha-

coronaviruses induce asymptomatic or slightly symptomatic infections.SARS-CoV-2 belongs to the 

B lineage of the beta-coronaviruses and is closely related to the SARS-CoV virus (Karim & Karim, 

2021; Tyrrell & Bynoe, 1966; Zhou et al., 2020) (Shu & McCauley, 2017). The nucleocapsid 

protein (N), spike protein (S), small membrane protein (SM), and membrane glycoprotein (M) are 

the four primary structural genes, with an extra membrane glycoprotein (HE) found in the 

HCoVOC43 and HKU1 beta coronaviruses. SARSCoV2 is 96 percent similar to a bat coronavirus 

at the complete genome level (Chan et al., 2020; Rottier, 1995). 

Drug repurposing is a technique of identifying new indications for existing medications that 

is regarded to be a cost-effective and efficient method. It is estimated that 75% of currently 

available drugs could be repurposed to treat a variety of diseases(F. Huang et al., 2020). The value 

of medication reuse has been proven in previous investigations. Applying computer-aided drug 

design approaches to swiftly find viable options is extremely efficient, especially after the full 3D 

structures of critical viral proteins have been determined. Using the crystal structure of the SARS-

CoV-2 primary protease enzyme (M
pro

) in association with its natural inhibitor(Fig. 1)was recently 

published (F. Huang et al., 2020). 

Rutin (3, 3′, 4′, 5, 7-pentahydrohyflavone-3-rhamnoglucoside) (RTN) is a pigment found in 

a variety of fruits and vegetables. Rutin may be found in buckwheat, Japanese pagoda trees, and 

Eucalyptus. Rutin is a multifunctional phenolic natural substance that is essential in diets and of 

significant interest owing to its multiple stated health benefits (Pawan K. Agrawal, Agrawal, & 

Blunden, 2021). 

Luteolin 3′,4′,5,7-tetrahydroxyflavone (LTN), is a flavonoid found in a variety of plants 

such as fruits, vegetables, and medicinal herbs. Plants high in luteolin have been used in Chinese 

traditional medicine to treat hypertension, inflammatory disorders, and cancer. LTN operates 

biochemically as either an antioxidant or a pro-oxidant, and has many biological effects such as 

anti-inflammation, anti-allergy, and anticancer (Lin, Shi, Wang, & Shen, 2008). 

Myricetin (MYR) is a flavonoid found in a variety of natural plants. MYR has been shown 

to have a variety of biological roles, and it is a natural substance with considerable research and 

development potential. The molecule has a wide variety of actions, including anti-oxidant, anti-

cancer, anti-diabetic, and anti-inflammatory effects (Song et al., 2021). 
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Here, we report the docking profiles of three selected flavonoids on 6W63 M
Pro

 of SARS-

CoV-2. To the best of our knowledge there are no docking studies of these flavonoids into 6W63 

specifically.  

 

Figure 1. Structure of natural ligand (X77) of SARS-CoV-2 M
Pro

 (PDB ID: 6W63). 

 

 Figure 2. Chemical structure of rutin.   Figure 3. Chemical structure of luteolin. 

 

Figure 4. Chemical structure of myricetin. 
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2. Materials and methods 

2.1.  Preparation of protein structure 

The protein data bank (PDB) (https://www.rcsb.org/) was used to get the 3D crystal 

structure of SARS-CoV-2 (PDB ID: 6W63). Discovery Studio (DS) Visualizer 3.5 was used to 

visualize and prepare the protein. Water molecules in the protein structure were eliminated from the 

system prior to docking in order to embed the candidate ligands into the pocket where the nearby 

receptor sites are located. 

2.2. Ligand selection and ligand file preparation 

The ligand's Standard Database Format (.sdf) file was acquired from the PubChem Database 

(Kim et al., 2016) at https://pubchem.ncbi.nlm.nih.gov/ and converted to a PDB file type using the 

PyRx (version 0.8) software's Open Babel (O’Boyle et al., 2011) plugin. 

2.3. Energy minimization and model validation 

The PyRx virtual screening program was employed to prepare the ligands and minimize 

their energy and finally dock the ligands to selected protein and its selected residues. The goal of 

employing Universal Force Field (UFF) was to reduce the amount of energy associated with 

ligands. Following that, the considered ligand was optimized first and then converted to a mol2 

format using PyRx. 

2.4. Prediction of the active or binding site 

Discovery Studio Visualizer 2020 was used to visualize the ligands (BIOVIA). The photos 

were also created with Discovery Studio Visualizer 2020 (BIOVIA). After the removal of water 

molecules from the protein, related residues were determined where natural ligand (X77) of the 

6W63 M
Pro

 is in interaction, particularly with hydrogen bonds. Then these residues were used for 

our docking purposes with the flavonoids under investigation in our work. 

2.5. Molecular docking and interaction analysis 

Molecular interactions of three flavonoids were analyzed by the Auto Dock wizard with the 

help of PyRx software. Auto Dock wizard panel was used to create macromolecules. Grid 

parameters were created via the Auto Grid engine in PyRx. The active site of the protein containing 

amino acids interacting with this ligand was predicted using this grid box. Embedding of the 

compounds were performed by following the PyRx’s wizard's step. 

2.6. Structure Visualization through DS 

Discovery Studio Visualizer (BIOVIA, 2020) was used to visualize the docking results in 

2D, and 3D space by using BIOVIA Discovery Studio Client 2020 software. Protein and ligand 

structures were created as pdbqt file to properly open in the docking preparation interface in the 

software. 
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3. Results  

Based on our docking work, docking scores of all three compounds were found between 

8.4 and 7.8 kcal/mol. Binding scores of these ligands are 8.4, 7.9, and 7.8 kcal/mol for rutin, 

luteolin, and myricetin, respectively and the findings were presented in Table 1. The interactions in 

both 3D and 2D of the ligands studied in this work with 6W63 were illustrated between Figs. 5-10. 

After the determination of the residues (His41, Cys44, Met49, Glu166, Gln 192) of M
Pro

 where 

hydrogen bonds, pi-sulfur bonds, pi-pi bonds are mainly in interaction with the natural ligand, we 

then evaluated our docking results for our flavonoids and found residues for the M
Pro

 inhibition by 

the flavonoids studied. Our results suggested that top three modes of rutin interacts via H-bonds 

towards Glu166, Gln192, pi-sulfur bonds towards Cys44, Met49, and pi-pi bond for His41, whereas 

fourth mode (rutin 3) is in interaction with additional residues (hydrogen bonded: Asn142, Phe140, 

Ser144, His163, Glu166, pi-sulfur: Met165) compared to the first three modes. However, luteolin 

showed hydrogen bonded interactions between Leu141, Glu 166, Met165, Phe140. Moreover, 

myricetin was observed to exhibit only hydrogen bonded with the surrounding residues (Phe140, 

His163, Glu166). 

 

Table 1. Docking scores of three flavonoids. 

Ligand
a 

Binding affinity (kcal/mol)
b 

Mode RMSD*/UB RMSD/LB   

Rutin 

8.4 0 0.000 0.000   

8.1 1 4.999 1.937   

8.0 2 6.355 2.576   

8.0 3 8.842 4.266   

Luteolin  7.9 0 0.000 0.000   

Myricetin 7.8 0 0.000 0.000   
a
Flavonoids by virtual screening study we used in this work. 

b
 Binding affinities were given in 

kcal/mol.*RMSD: Root mean square definition. 

 

 

Table 2. Interactions of the selected flavonoids with their surrounding residues. 

Ligand (Mode) Interactions* 

Rutin (0) Glu166, Gln192, Cys:44
a 
, Met:49

a
, His:41

b
 

Rutin (1) Glu166, Gln192, Cys:44
a 
, Met:49

a
, His:41

b
 

Rutin (2) Glu166, Gln192, Cys:44
a 
, Met:49

a
, His:41

b
 

Rutin (3) Asn142, Phe140, Ser144, His163, Glu166,  Met165
a
 

Luteolin (0) Leu141, Glu166, Met165
a 

Myricetin (0) Phe140, His163, Glu166 

        *Bold: conventional hydrogen bond, 
a
pi-sulfur bond , 

b
pi-pi stacked bond. 
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Figure 5. Rutin (mode 0). 

 

Figure 6. Rutin (mode 1). 

 

Figure 7. Rutin (mode 2). 
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Figure 8. Rutin (mode 3). 

 

Figure 9. Luteolin (mode 0). 

 

Figure 10. Myricetin (mode 0). 
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Table 3. ADME/Tox evaluation and molecular descriptors for rutin (*:for human). 

Absorption Unit Value Distribution Unit Value Toxicity Unit Value 

Water solubility log mol/L 2.89 VDss* log L/kg 1.66 AMES toxicity (Yes/No) No 

Caco2 permeability log Papp 

(µcm/s) 
0.95 

Fraction 

unbound* 
Fu 0.19 Max. tolerated dose* log 

mg/kg/day 
0.45 

Intestinal absorption* (% Absorbed) 23.45 
BBB 

permeability 
log BB 1.90 hERG I inhibitor (Yes/No) No 

Skin Permeability (log Kp) 2.23 
CNS 

permeability 
log PS 5.18 hERG II inhibitor (Yes/No) Yes 

P-glycoprotein 

substrate 
(Yes/No) Yes Metabolism Unit Value 

Oral Rat Acute 

Toxicity (LD50) 
mol/kg 2.49 

P-glycoprotein I 

inhibitor 
(Yes/No) No 

CYP2D6 

substrate 
(Yes/No) No 

Oral Rat Chronic 

Toxicity (LOAEL) 
log mg/kg 3.67 

P-glycoprotein II 

inhibitor 
(Yes/No) No CYP3A4 

substrate 
(Yes/No) No Hepatotoxicity (Yes/No) No 

Excretion Unit Value 
CYP1A2 

inhibitor 
(Yes/No) No Skin Sensitization (Yes/No) No 

Total Clearance log ml/min/kg 0.37 
CYP2C19 

inhibitor 
(Yes/No) No T.Pyriformis toxicity log µg/L 0.28 

Renal OCT2 substrate (Yes/No) No 

CYP2C9 

inhibitor 
(Yes/No) No 

Minnow toxicity log mM 7.67 CYP2D6 

inhibitor 
(Yes/No) No 

CYP3A4 

inhibitor 
(Yes/No) No 

Descriptors Unit Value Descriptors Unit Value Lipophilicity Unit Value 

Total molecular weight g/mol 610.52 Irritant (Yes/No) No log Po/w
 
(iLOGP)

 
Number 1.58 

clogP Number 1.26 Shape index Number 0.42 log Po/w (xLOGP3) Number 0.33 

clogS Number 2.40 
Molecular 

flexibility 
Number 

0.39 
log Po/w (WLOGP) 

Number 
1.69 

H-acceptors Count 16 Molecular 

complexity 
Number 0.97 log Po/w (MLOGP) 

Number 
3.89 

H-donors Count 10 Rotatable 

bonds 
Number 

6 
log Po/w (SILICOS-IT) 

Number 
2.11 

Total surface area Å
2
 397.70 

Aromatic 

rings 
Number 

2 
Consensus log Po/w 

Number 
1.29 

Polar surface area Å
2
 265.52 

Globularity 

SVD 
Number 

0.42 
Druglikeliness Unit Value 

Druglikeliness Number 1.93 Globularity 

volume 
Number 

0.67 Lipinski rule of five 

violation 
(Yes/No) Yes 

Mutagenic (Yes/No) No vdW surface Number 478.42    

Tumorigenic (Yes/No) No vdW volume Number 547.57    
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 Table 4. ADME/Tox evaluation and molecular descriptors for luteolin (*:for human). 

Absorption Unit Value Distribution Unit Value Toxicity Unit Value 

Water solubility log mol/L 3.09 VDss* log L/kg 1.15 AMES toxicity (Yes/No) No 

Caco2 permeability log Papp (µcm/s) 0.09 Fraction 

unbound* 
Fu 0.17 Max. tolerated dose* log 

mg/kg/day 
0.50 

Intestinal absorption* (% Absorbed) 81.12 
BBB 

permeability 
log BB 0.91 hERG I inhibitor (Yes/No) No 

Skin Permeability (log Kp) 2.73 CNS 

permeability 

log PS 2.25 hERG II inhibitor (Yes/No) No 

P-glycoprotein 

substrate 
(Yes/No) Yes Metabolism Unit Value 

Oral Rat Acute 

Toxicity (LD50) 
mol/kg 2.45 

P-glycoprotein I 

inhibitor 
(Yes/No) No CYP2D6 

substrate 
(Yes/No) No Oral Rat Chronic 

Toxicity (LOAEL) 
log mg/kg 2.41 

P-glycoprotein II 

inhibitor 
(Yes/No) No CYP3A4 

substrate 
(Yes/No) No Hepatotoxicity (Yes/No) No 

Excretion Unit Value 
CYP1A2 

inhibitor 
(Yes/No) Yes Skin Sensitization (Yes/No) No 

Total Clearance log ml/min/kg 0.49 CYP2C19 

inhibitor 
(Yes/No) No T.Pyriformis toxicity log µg/L 0.32 

Renal OCT2 substrate (Yes/No) No 

CYP2C9 

inhibitor 
(Yes/No) Yes 

Minnow toxicity log mM 3.17 CYP2D6 

inhibitor 
(Yes/No) No 

CYP3A4 

inhibitor 

(Yes/No) No 

Descriptors Unit Value Descriptors Unit Value Lipophilicity Unit Value 

Total molecular 

weight 
g/mol 286.24 Irritant (Yes/No) No log Po/w

 
(iLOGP)

 
Number 1.86 

clogP Number 1.99 Shape index Number 0.52 log Po/w (xLOGP3) Number 2.53 

clogS Number 2.56 Molecular 

flexibility 
Number 0.26 log Po/w (WLOGP) Number 2.28 

H-acceptors Count 6 Molecular 

complexity 
Number 0.82 log Po/w (MLOGP) 

Number 
0.03 

H-donors Count 4 Rotatable bonds Number 1 log Po/w (SILICOS-IT) Number 2.03 

Total surface area Å
2
 197.38 Aromatic rings Number 2 Consensus log Po/w Number 1.73 

Polar surface area Å
2
 107.22 Globularity SVD Number 2.96 Druglikeliness Unit Value 

Druglikeliness Number 0.28 
Globularity 

volume 
Number 

0.75 Lipinski rule of five 

violation 
(Yes/No) No 

Mutagenic (Yes/No) No vdW surface Number 253.69    

Tumorigenic (Yes/No) No vdW volume Number 245.50    
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Table 5. ADME/Tox evaluation and molecular descriptors for myricetin (*:for human). 

Absorption Unit Value Distribution Unit Value Toxicity Unit Value 

Water solubility log mol/L 3.07 VDss* log L/kg 0.12 AMES toxicity (Yes/No) No 

Caco2 permeability log Papp (µcm/s) 0.32 Fraction 

unbound* 
Fu 0.05 Max. tolerated dose* log 

mg/kg/day 
1.08 

Intestinal absorption* (% Absorbed) 66.13 
BBB 

permeability 
log BB 1.70 hERG I inhibitor (Yes/No) No 

Skin Permeability (log Kp) 2.73 CNS 

permeability 

log PS 3.76 hERG II inhibitor (Yes/No) No 

P-glycoprotein 

substrate 
(Yes/No) Yes Metabolism Unit Value 

Oral Rat Acute 

Toxicity (LD50) 
mol/kg 2.30 

P-glycoprotein I 

inhibitor 
(Yes/No) No CYP2D6 

substrate 
(Yes/No) No Oral Rat Chronic 

Toxicity (LOAEL) 
log mg/kg 3.86 

P-glycoprotein II 

inhibitor 
(Yes/No) No 

CYP3A4 

substrate 
(Yes/No) No Hepatotoxicity (Yes/No) No 

Excretion Unit Value 
CYP1A2 

inhibitor 
(Yes/No) Yes Skin Sensitization (Yes/No) No 

Total Clearance log ml/min/kg 0.61 CYP2C19 

inhibitor 
(Yes/No) No T.Pyriformis toxicity log µg/L 0.28 

Renal OCT2 

substrate 
(Yes/No) No 

CYP2C9 

inhibitor 
(Yes/No) No 

Minnow toxicity log mM 1.25 CYP2D6 

inhibitor 
(Yes/No) No 

CYP3A4 

inhibitor 

(Yes/No) No 

Descriptors Unit Value Descriptors Unit Value Lipophilicity Unit Value 

Total molecular 

weight 
g/mol 318.24 Irritant (Yes/No) No log Po/w

 
(iLOGP)

 
Number 1.08 

clogP Number 1.14 Shape index Number 0.48 log Po/w (xLOGP3) Number 1.18 

clogS Number 2.19 
Molecular 

flexibility 
Number 

0.30 
log Po/w (WLOGP) 

Number 
1.69 

H-acceptors Count 8 
Molecular 

complexity 
Number 0.85 log Po/w (MLOGP) 

Number 
1.08 

H-donors Count 6 
Rotatable 

bonds 
Number 

1 
log Po/w (SILICOS-IT) 

Number 
1.06 

Total surface area Å
2
 208.29 Aromatic rings Number 2 Consensus log Po/w Number 0.79 

Polar surface area Å
2
 147.68 

Globularity 

SVD 
Number 

0.30 
Druglikeliness Unit Value 

Druglikeliness Number 0.08 
Globularity 

volume 
Number 

0.74 Lipinski rule of five 

violation 
(Yes/No) Yes 

Mutagenic (Yes/No) High vdW surface Number 267.96    

Tumorigenic (Yes/No) No vdW volume Number 260.99    
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4. Discussion 

Drug and vaccine studies for coronavirus, which is a great threat to humanity, continue to be 

carried out meticulously in most countries. While drug or vaccine development should be carried 

out both quickly and effectively, deaths and rapidly increasing cases slow down this process. 

Instead of Structure of COVID-19 main protease bound to potent broad-spectrum non-covalent 

inhibitor X77, according to our docking results rutin, luteolin and myricetin docking may be used to 

produce potential possible replacement/modified drugs against the virus. Our findings on three 

selected flavonoids and their potential to inhibit SARS-CoV-2 M
Pro

 are in line with previous 

flavonoids docking works that successfully demonstrate the effective use of flavonoids that could 

inhibit M
Pro

 (Abdul-Hammed et al., 2021; P K Agrawal, Agrawal, & Blunden, 2021; Alhadrami et 

al., 2021; Ali & Kunugi, 2021; Allam, Assaf, Hassan, Shimizu, & Elshaier, 2020; Babaeekhou, 

Ghane, & Abbas-Mohammadi, 2021; Batool et al., 2020; Bhati, Kaushik, & Singh, 2021; Bhati et 

al., 2021; Bhowmik, Nandi, Prakash, & Kumar, 2021; Biagioli et al., 2021; Bolelli, Ertan-Bolelli, 

Unsalan, & Altunayar-Unsalan, 2021; Chapman & Andurkar, 2021; C. N. Chen et al., 2005; da 

Silva et al., 2020; Dallakyan & Olson, 2015; Das, Majumder, Mandal, & Basak, 2021; K. Dubey & 

Dubey, 2020; R. Dubey & Dubey, 2021; Ebada et al., 2020; Fadaka et al., 2021, 2021; Fakhar, 

Faramarzi, Pacifico, & Faramarzi, 2021; Fayed et al., 2021; Glaab, Manoharan, & Abankwa, 2021; 

Glaab et al., 2021; Gogoi et al., 2021; Gomez et al., 2021; Goris et al., 2021; Gorla, Rao, 

Kulandaivelu, Alavala, & Panda, 2021; Guler, Sal, et al., 2021; Guler, Tatar, Yildiz, Belduz, & 

Kolayli, 2021; Gurung et al., 2021; Hassan et al., 2021; Hiremath et al., 2021; Hu et al., 2020; 

Ibrahim, Abdelrahman, et al., 2021; Ibrahim, Mohamed, et al., 2021; Irfan et al., 2021; Istifli et al., 

2020; Jain et al., 2021; Jalmakhanbetova et al., 2021; Jannat et al., 2021; Jiménez-Avalos et al., 

2021; S Jo, Kim, Kim, Kim, & Shin, 2020; Seri Jo, Kim, Shin, & Kim, 2020; Johns Hopkins, 2021; 

Khursheed et al., 2021, 2021; Kumar et al., 2021; Lee et al., 2021; Li et al., 2022; Liao et al., 2021; 

Liskova et al., 2021; Ma et al., 2021, 2021; Maddah et al., 2021; Maiti & Banerjee, 2021; 

Majumder & Mandal, 2020; Mandour, Zlotos, & Salem, 2020; Mangiavacchi et al., 2021; Maroli, 

Bhasuran, Natarajan, & Kolandaivel, 2020; Mathpal et al., 2021; Mohapatra, Chopdar, Dash, 

Mohanty, & Raval, 2021; Moradkhani, Farmani, Saidijam, & Taherkhani, 2021; Mosquera-Yuqui, 

Lopez-Guerra, & Moncayo-Palacio, 2020; Neves et al., 2021; Ngwa et al., 2020; Owis et al., 2020, 

2021; Potshangbam, Nongdam, Kumar, & Rathore, 2021; Prasansuklab et al., 2021; Puttaswamy et 

al., 2020; Rahman et al., 2021; Rakshit, Muduli, Srivastav, & Mishra, 2021; Rakshit et al., 2021; 

Rameshkumar et al., 2021; Rehman, AlAjmi, & Hussain, 2021; Rizzuti et al., 2021; Rudrapal et al., 

2021; Samy et al., 2021, 2021; Sen, Bhaumik, Debnath, & Debnath, 2021; Shaldam, Yahya, 

Mohamed, Abdel-Daim, & Al Naggar, 2021; J. Singh, Malik, & Raina, 2020; A. V Singh, 2021; 

Vijayakumar, Ramesh, Joji, Prakasan, & Kannan, 2020; J. Wang et al., 2021; Xiao, Cui, Zheng, 

Wang, et al., 2021; Xiao, Cui, Zheng, Zhang, et al., 2021; Xiong et al., 2021; Z. R. Xu et al., 2020; 

Z. Xu et al., 2020; Yosri et al., 2021; Yu, Chen, Lan, Shen, & Li, 2020; Zaki, Al-Karmalawy, El-

Amier, & Ashour, 2020; Zhang, Yao, Yang, & Wu, 2021; Y. Zhu & Xie, 2020). Thus, it is crucial 

to perform much detailed and systematic investigations for the use of such compounds in drug 

design for future relevant studies for this disease. Here, we demonstrated how effective the rutin 

among other two flavonoids studied in this work could be replaced in the crystal structure of 6W63 

instead of its natural ligand. We believe that our work could contribute to virtual screening studies 

on particularly this M
Pro

 of SARS-CoV-2. 
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