
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE

K.E. Kısa et al. ,Vol. 5, No. 4

96

Analysis of HTTP Security Headers in Turkey

Koray Emre KISA, Emin İslam TATLI‡

Security Architecture, Türk Telekom, Ümraniye, İstanbul

‡
Corresponding Author; Address: Çakmak Mah., Balkan Cad. No:49, Ümraniye-İstanbul, Tel: +90 212 460 1 500, e-mail:

emre.kisa@turktelekom.com.tr; dr.emin.tatli@turktelekom.com.tr

Abstract- Web applications are targeted during cyber-attacks in order to get unauthorized access or manipulate sensitive data.

Developers are expected to leverage secure coding best practices to protect their web applications. Over the last few years,

browser vendors have integrated certain security header controls to support web application security. If these headers are

enabled by developers, browsers check values of these header parameters and prevent certain attacks automatically. In this

research, we analysed the existence of the common security headers within 8279 different URLs of 361 popular Turkish web

portals from 18 different categories. The analysis results have shown that security headers are not utilized by most web

developers and even critical web portals do not implement required security headers. This paper explains our contribution by

providing the details of the HTTP Security headers, the attack types they can prevent, the analysis tool we have implemented

and the analysis results.

Keywords- HTTP Security Headers, Web Security, Cyber Security Analysis, Large-scale Analysis.

1. Introduction

Application security is one of the most critical
non-functional requirements for enterprises and

organizations on the web. Several security controls
including authentication, authorization, input

validation, output encoding, etc. are expected to be
implemented securely to protect web applications.
Otherwise, even script-kiddies can use freely

available hacking tools (e.g. sqlmap) and get
unauthorized access to sensitive data easily. As an

example, in February of 2015 the official website
of Martin Schulz, the president of European
Parliament, was hacked by unknown individuals

who leaked the content of several internal
databases using SQL Injection vulnerability [1].

It is therefore vital that web developers are
trained for secure coding patterns and principles
and utilize this knowledge during design and

coding. In parallel, security experts try to integrate
security solutions into development frameworks in

order to support developers and simplify

integration of security controls. In the recent years,

browser vendors including Microsoft (IE), Firefox
(Mozilla) and Google (Chrome) have followed this
approach as well and integrated several security

controls as HTTP response headers into their
browsers. In order to activate these security

controls, developers are required to append
relevant security headers into HTTP responses. At
this point, the following question raises: “Are web

developers aware of these security headers and do
they utilize them?”

In our research, we wanted to enlighten the
answer of this question. Therefore, we performed
an automated usage analysis of HTTP security

headers of most popular web portals in Turkey and
evaluated the statisticsal results to increase

awareness of web developers and security experts.
This paper extends our previous study [11] where
we analysed only the main web pages of 361 web

portals.

The paper is organized as follows: Section II

explains the most common application security

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

97

risks and the same-origin-policy concept. The
HTTP security headers are designed to prevent
these common security risks. Section III gives a

detailed explanation of all HTTP security headers.
Our analysis results and the implemented tool are

explained in Section IV. Section V concludes the
paper and explains the future work.

2. Application Security Risks

Today there exist several types of attacks that
target web applications. Organizations like
OWASP (Open Web Application Security Project)

Community and SANS Institute present the most
critical application security risks as Top-10 [2] and

Top-25 [3] lists respectively.

OWASP community aims to increase
awareness on web application security. They

created freely-available articles, methodologies,
documentation, tools and technologies in the field

of web application security. Its most popular
project is OWASP Top 10 list which was first
published in 2003 and is updated every three years.

The goal of this project is to identify the most
critical and common web application security

risks. Figure 1 shows the current version (2013) of
the Top 10 list.

The HTTP security headers that we explain in

the following section in detail aim to prevent
certain cyber-attacks that are included in the

OWASP Top 10 risks list.

Fig. 1. OWASP Top 10 (2013).

Same-Origin policy concept is also vital to
understand security mechanisms within browsers.

This concept guarantees that a web browser
permits scripts contained in one web page to
access data in another web page, but only if both

pages have the same origin. An origin is defined as
a combination of URI scheme, hostname, and port

number. This policy prevents a malicious script on
one page from obtaining access to sensitive data on

another web page through that page's Document
Object Model (DOM). This concept is the core of
web application security that extensively depend

on HTTP Cookies to maintain authenticated user
sessions. Web browsers that comply with Same-

Origin policy must be able to strictly prevent
sharing of data between pages on client-sides to
prevent loss of data confidentiality and integrity.

Figure 2 shows some examples of access
restrictions based on different URLs.

Fig. 2. Same-Origin Policy restrictions

3. HTTP Security Headers

The HTTP Security Headers are mostly

defined by IETF under different standards. IETF
(Internet Engineering Task Force) is an open
standards organization that voluntarily develops

and promotes Internet Standards. All participants
are volunteers, though their work is usually funded

by their employers or sponsors such as Google,
Mozilla and Microsoft.

The HTTP Security Headers whose details are

explained below are as follows; CSP (Content
Security Policy), X-XSS-Protection, X-Frame-

Options, HSTS (HTTP Strict Transport Security),
X-Content-Type-Options, X-Download-Options, X-
Permitted-Cross-Domain-Policies, X-Public-Key-

Pins, Cookie Flags (httpOnly, Secure).

3.1.Content Security Policy Header (CSP)

Content Security Policy specification defines a
mechanism by which web developers can control
resources that a particular page can fetch or

execute, as well as a number of security-relevant
policy decisions. The policy language specified in

the IETF specification consists of an extensible set
of directives, each of which controls a specific
resource type or policy decision.

This header has three different versions. The
first version was released in November 2012 [4].

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

98

Web browser versions supporting the first CSP
version are as follows;

 Content-Security-Policy: Chrome v25+,
Firefox 23+, Opera 19+, Safari 7+, Microsoft

Edge 12 build 10240+.

 X-Content-Security-Policy: Internet Explorer
10+, Firefox 4+

 X-Webkit-CSP: Chrome v14-v25, Safari 6+

CSP Version 1

CSP version 1 supports the following
directives;

Default-src: This directive specifies the default
source for other directives, unless they have
explicitly a defined source.

Script-src: This directive restricts which scripts
the protected resource can execute. This

directive should be used with care because
most web sites rely on third party scripts such
as Google Analytics and Social Media

Integrations to function properly. Unless
explicitly defined, scripts from these sources

will fail to execute, causing website
malfunction.

The directive also has two sub-directives

‘unsafe-inline’ and ‘unsafe-eval’.

If 'unsafe-inline' sub-directive is not explicitly

defined in script sources:

 Whenever the user agent is expected to
execute an inline script (either from

a script element or from an inline event
handler), instead the user agent will not

execute script.

 Whenever the user agent is expected to
execute script contained in

a javascript URI, instead the user
agent will not execute the script.

If 'unsafe-eval' sub-directive is not explicitly
defined in script sources:

 Instead of evaluating their arguments,

both operator eval and function
eval will throw a security exception.

 When called as a constructor, the
function Function will throw a security
exception.

 When called with a first argument that
is non-callable (e.g., not a function),

the setTimeout function will return zero
without creating a timer.

 When called with a first argument that

is non-callable (e.g., not a function), the
setInterval function will return zero

without creating a timer.

Object-src: This directive restricts from where
the protected resource can load plugins.

Style-src: This directive restricts which styles a
user applies to protected resource.

If ‘unsafe-inline’ sub-directive is not explicitly
defined in style sources:

 Whenever the user agent would apply

style from a style element, instead the
user agent will ignore the style.

 Whenever the user agent would apply
style from a style attribute, instead the
user agent will ignore the style.

Img-src: This directive restricts from where the
protected resource can load images.

Media-src: This directive restricts from where
the protected resource can load video and
audio.

Frame-src: This directive restricts from where
the protected resource can embed frames.

Font-src: This directive restricts from where
the protected resource can load fonts.

Connect-src: This directive restricts which

URIs the protected resource can load using
script interfaces.

 Processing the open() method of an
XMLHttpRequest object.

 Processing the WebSocket constructor

 Processing the EventSource constructor

Sandbox: This directive specifies an HTML

sandbox policy that the user agent applies to
the protected resource.

http://www.w3.org/TR/html5/timers.html#dom-windowtimers-settimeout
http://www.w3.org/TR/html5/timers.html#dom-windowtimers-setinterval

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

99

Report URI: This directive specifies a URI to
which the user agent sends reports about policy
violation.

CSP Version 2

CSP version 2 is mostly compliant with the
previous version. Version 2 adds support for a

number of new directives and capabilities which
are explained below Error! Reference source not

found..

a. Base-URI: This directive restricts the URLs

that can be used to specify the HTML document’s
base URL. The base URL is used throughout the

HTML document for relative URL addresses.
b. Child-src: This directive defines the valid

sources for web workers and nested browsing

contexts loaded using elements such as <frame>
and <iframe>. This directive is preferred over the

frame-src directive explained above which is
deprecated in version two.

c. Form-action: This directives specifies valid

endpoints for <form> submissions.
d. Frame-ancestors: This directive specifies

valid parents that may embed a page using the
<frame> and <iframe> elements.

e. Plugin-types: This directive specifies the valid

plugins that the user agent may invoke.
The most important contribution of CSP version 2

is that individual inline scripts and stylesheets can
be whitelisted via nonces.

CSP Version 3

CSP version 3 is currently under development.
Some of the noteworthy upcoming draft changes
are as follows;

 Frame-src directive which was
deprecated in version is undepreciated.

Worker-src directive has been added.
 Unsecure http URL’s now match their

secure https variants.

 Manifest-src has been added.
 Report-uri directive has been

deprecated in favor of report-to
directive.

3.2.X-XSS-Protection Header

This header enables XSS protection mechanism of
the user agent [6]. The possible values of this
header are given in Table 1.

Table 1. X-XSS-Protection Header Values

Value Description

0 Filter disabled.

1

Filter enabled. If a cross-site scripting

attack is detected, in order to stop the

attack, the browser will sanitize the page.

1; mode=block

Filter enabled. Rather than sanitizing the

page, when a XSS attack is detected, the

browser will prevent rendering of the

page.

1;

report=http://[MY

DOMAIN]/MY_U

RI

Filter enabled. The browser will sanitize

the page and report the violation. This is

a Chromium function utilizing CSP

violation reports to send details to a URI

of your choice.

3.3.X-Frame-Options Header
X-Frame-Options response header improves
protection of web applications against clickjacking

attacks. It declares a policy communicated from a
host to a client browser on whether the browser

must not display the transmitted content in frames
of other web pages [7]. The possible values of this
header are given in Table 2.

Table 2. X-Frame-Options Header Values

Value Description

deny No rendering within a frame.

sameorigin No rendering if origin mismatch.

allow-from:

DOMAIN

Allows rendering if framed by frame

loaded from DOMAIN.

3.4.HTTP Strict Transport Security Header

HTTP Strict Transport Security (HSTS) is a web

security policy mechanism which helps to protect
websites against protocol downgrade attacks and

cookie hijacking. It allows web servers to declare
that web browsers (or other complying user
agents) should only interact with it using secure

HTTPS connections, and never via the insecure
HTTP protocol. HSTS is an IETF standard track

protocol and specified in RFC 6797 [8]. A server
implements a HSTS policy by supplying a header
(Strict-Transport-Security) over a HTTPS

connection because HSTS headers over HTTP are

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

100

ignored. The possible values of this header are
given in Table 3.

Table 3. HSTS Header Values

Value Description

max-

age=SECONDS

The time, in seconds, that the

browser should remember that this site

is only to be accessed using HTTPS.

includeSubDom

ains

If this optional parameter is

specified, this rule applies to all of the

site's subdomains as well.

preload

With this option enabled, URL of

your website will be hardcoded into

browser code such that it will only

communicate over secure HTTPS

channel.

If “preload” option explained above is set, the

following requirements must be satisfied;
 Have a valid CA approved certificate,
 Redirect all HTTP traffic to HTTPS,

 Serve all your subdomains over
HTTPS,

 Serve an HSTS header on the base

domain for HTTPS requests

 The max-age must be at least eighteen

weeks (10886400 seconds).

 The includeSubDomains directive must

be specified.

 The preload directive must be specified.

 If you are serving an additional redirect
from your HTTPS site, that redirect

must still have the HSTS header (rather
than the page it redirects to).

After meeting these requirements, you can submit

your website URL to
https://hstspreload.appspot.com/. Approved URLs

will be hardcoded into next release of supported
web browsers so that the browser will use secure
channels only.

Table 4. HSTS Browser Support

IE Edge Firefox Chrome Safari O pera Android

11 13 46 50 9.1 37 50

3.5.X-Content-Type-Options Header
It provides protection from MIME content-sniffing
attacks against Chrome and Internet Explorer.

Some browsers try to guess the type of file even
though it has a declared content type. This

behaviour could be abused by hackers to upload
malicious files. Setting the header to nosniff
disables the content sniffing feature.

3.6.X-Download-Options Header
This security header is specific to Internet Explorer

8+. This header should be used as a defence-in-
depth measure. When you deal with user created
content, an attacker exploiting a vulnerability on

your website might be able to run scripts on users’
browser. By setting this header to noopen,

browsers are forced to download a file rather than
executing its content.

3.7.X-Permitted-Cross-Domain-Policies

Header
This header is used to limit which resources Adobe

Flash and PDF documents can access on your
domain. If you don’t want to share any content
with others, you should have no crossdomain.xml

file on your server and send the X-Permitted-
Cross-Domain-Policies “none” header with each

response.
3.8.X-Public-Key-Pins

Certificate pinning is the process of associating a

host with their expected certificate or public key.
The HTTPS web server serves a list of public key

hashes. Web browser connecting to that server
expect server to use one or more of those public
keys in its certificate chain. Successful

implementation of this security measure greatly
reduces the risk of a man-in-the-attack Error!

Reference source not found.

Table 5. X-Public-Key-Pins Header Values

Value Description

pin-

sha256="<sha256>"

The quoted string is the Base64

encoded Subject Public Key

Information (SPKI) fingerprint. It is

possible to specify multiple pins for

different public keys. Some browsers

might allow other hashing algorithms

than SHA-256 in future.

max-

age=SECONDS

The time, in seconds, that the browser

should remember that this site is only

to be accessed using one of the pinned

keys.

includeSubDomains If this optional parameter is specified,

https://hstspreload.appspot.com/

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

101

this rule applies to all of the site's

subdomains as well.

report-uri="<URL>"

If this optional parameter is specified,

pin validation failures are reported to

the given URL.

3.9.Cookie Flags

Although this header is not a security header itself,
it is worth mentioning set-cookie security flags.
Web applications extensively depend on cookies to

maintain authenticated user sessions. If one can
successfully steal a user’s cookie, they can act on

their behalf. Since cookies play such an important
role in session management, specific controls have
been implemented by web browsers to secure it.

Table 6. Cookie Values and Descriptions

Value Description

Set-cookie

$RANDOM

Used to create a cookie on user’s web

browser with given random value.

Set-cookie

$RANDOM;

HttpOnly

If HttpOnly flag is set, scripts on a web

page is forbidden to access the cookie

by the web browser.

Set-cookie

$RANDOM;

HttpOnly; Secure;

If Secure flag is set, web browser will

only send the cookie information over

secure HTTPS channel denying any

other attempt.

As of 29th of March, Google Chrome has started to

support a new cookie flag named SameSite to
prevent CSRF.

Value Description

Set-Cookie:

CookieName=CookieValue;

SameSite=Strict;

As the name suggests, this is

the option in which the Same-

Site rule is applied strictly.

When the SameSite attribute is

set as Strict, the cookie will not

be sent along with requests

initiated by third party

websites.

Set-Cookie:

CookieName=CookieValue;

SameSite=Lax;

When SameSite attribute is set

to Lax, the cookie will be sent

along with the GET request

initiated by third party website.

So it must cause a top level

navigation and a url change on

the address bar to be able to

submit the Cookie.

4. The Analysis of Security Headers in Turkey

We aimed to evaluate usage statistics of the
aforementioned security headers in Turkey and

performed an automated analysis. We picked up

Alexa Top 500 Turkey websites and eliminated
global web portals (e.g. google.com). In the final
list, 361 web portals remained for the analysis.

This list includes many commercial, governmental
and news websites. We also categorized their

URLs and results similar to Alexa’s
categorizations such as Shopping, Internet, Press
etc. To extend our previous work [11], we also

identified any links on the given home page by
extracting subdomains of the given target URL.

Extracted URL list included 8279 different URL’s
for the relevant 361 home pages. 8279 URL was
pointing to 1274 different subdomains in total. We

merged the results of subdomains under each main
domain.

For our analysis, we developed a tool in
python namely SecurityHeaderChecker which can
be accessed freely on Github [10]. This tool is

given a set of URLs as input file. It then visits each
URL and checks existence of the relevant security

headers and cookie flags. It is important to note
that the tool neither attempts to login to the given
URLs nor finds the subdomains itself.

Table 7. Security Headers Usage Statistics in

Turkey

Header

Used in # of

subdomains /

Total # of

subdomains

Percentage

No security related headers

found
465 / 1274 36%

HTTP Only Cookies 446 / 1274
*
 35%

Secure Cookies 73 / 287
**

 25%

Strict-Transport-Security 61 / 287

 21%

X-Frame-Options 153 / 1274 12%

X-Content-Type-Options 86 / 1274 7%

X-XSS-Protection 69 / 361 19%

Content Security Policy 21 / 361 6%

*
 1274 of 8279 domains used cookies on their home pages.

**
 287 of 8279 domains used both HTTPS and Cookies on their main pages.

 287 of 8279 websites used HTTPS on their main pages

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

102

Header

Used in # of

subdomains /

Total # of

subdomains

Percentage

X-Download-Options 8 / 361 2%

Public-Key-Pins 0 / 287 0%

Table 7 shows the results of our analysis. Our

previous analysis showed us that if we only
consider main home pages, more than half of the

analysed websites do not use any of these security
headers. However, the new results show that if we
examine also subdomains the usage ratio drops to

36%. So we can say that developers are tend to use
security headers on subdomains rather than home

pages. Secure and httpOnly security flags are used
the most. Developers seem to think that cookie
flags will keep them secured. Our previous

research showed that HttpOnly flag usage was
calculated to be 60% on homepageonly analysis.
However, here we can say that developers are tend

to use this flag on their home pages rather than on
the subdomains because the ratio of the flag usage

dropped to 35% since we included the subdomains
into calculation.
 We found that 21% of all HTTPS websites

implemented the Strict-Transport-Security header,
however only 12 subdomains has made it into the

preload list.
 Humans are the weakest link in the security
chain and clickjacking attacks targeting humans

can be prevented by using X-Frame-Options
header. However, we see that only 12%

implemented it. We believe that weakest links
should have been better protected.
 About the X-XSS-Protection header, unless it

was explicitly disabled this feature is expected to
be enabled by default. We believe this may explain

the low ratio of 19% only. We see that 90% of the
time X-XSS-Protection was used, it was used in
block mode. However, one of the websites used

the header to explicitly disable the protection filter
by setting it to 0!

 Even though only 6% of subdomains have
implemented Content Security Policy it is a great
improvement over the %2, which was the ratio of

homepageonly analysis. Hopefully, this paper will
increase awareness to implement a Content

Security Policy on web pages.

Even worse is that no website ever integrated
Public Key Pins header.
 To further improve our research we included

categories of these websites into our work. This
allowed us to see which sectors make use of these

security headers the most, giving us the idea about
that sector’s security maturity level.
 We developed a rating system to be able to

compare sector maturities. If a website subdomain
has any of the security headers explained above, it

gets +10 point for each header and then the sum is
divided by number of unique subdomains found in
that URL. For example; let’s say

www.google.com.tr has three different headers; X-
XSS-Protection, X-Frame-Options and HttpOnly

cookies. 3 different header equals to +30 points for
google.com.tr. If it has 4 different subdomains
like; account.google.com.tr, cdn.google.com.tr,

www.google.com.tr and test.google.com.tr than
the final result will be 30 / 4 = 7.5 points.

Below are the results for each category sorted by
points in a descending order.

Table 8. Points Based on Categories

Category
Websites

Count

Subdomains

Count

Total

Pts.

Avg.

Pts.

Forums 6 9 60,0 6,67

Finance 14 43 216,7 5,04

Real Estate 3 7 26,7 3,81

Games & Bets 18 49 183,5 3,74

Internet 69 242 897,6 3,71

Commerce 29 76 253,3 3,33

Retail 4 11 36,7 3,33

Logistics 4 11 31,7 2,88

Videos, Movies 37 89 245,6 2,76

Sources 13 47 128,2 2,73

Telecommunica

tion
9 37 77,7 2,10

Aviation 2 10 15,6 1,56

Job Search 5 15 21,3 1,42

Government 22 141 165,6 1,17

Service 3 12 12,2 1,02

Press 108 346 274,5 0,79

Fun & Life 12 122 51,1 0,42

Others 3 3 0,0 0,00

Internet sector seems to carry the flag with 897.6
points however it’s average is equal to 3.71 points

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

103

only. It means that Internet sector got so many
points because it has 242 subdomains total.
 Another great example to show that sheer

numbers will not help you is that; 346 subdomains
in comparison is in Press sector, however its

security is inefficient. Having an average of 0.67
points only shows that most of the websites in
Press sector has no security header ever. Since

many of websites is in press sector in Alexa
Turkey Top list, we can conclude that press sector

puts end users into more risk than any other.
 Forums got the leadership because they have
little subdomains other than their homepages. This

reduces the attack surface and in turn results in
higher points.

 Even though Finance could not make it to the
top of the chart, it has a good average score despite
of having many subdomains. It means that Finance

sector is more secure compared to others.
 Especially, Government, Telecommunication

and Aviation sectors are worth mentioning because
with all the investment power they have, we had
expected them to be scored much better.

 Additionally, most commonly used security
headers in each sector are given in the following

table in detail:

Table 9. Sector by Sector Headers Count

Category Found Header

Count of

Found

Header

Internet Set-Cookie : HTTPOnly 465

No Security 404

X-Frame-Options 272

X-Content-Type-Options 249

X-XSS-Protection : 1 161

Set-Cookie : Secure 145

Strict-Transport-Security 142

Set-Cookie : None 136

X-Download-Options 119

Content-Security-Policy 22

X-XSS-Protection : 0 9

Internet Total

2.124

Videos & Movies Set-Cookie : HTTPOnly 1.885

Set-Cookie : None 151

No Security 51

X-Frame-Options 5

X-Content-Type-Options 4

X-XSS-Protection : 1 1

Set-Cookie : Secure 1

Videos & Movies

Total
2.098

Press No Security 1.229

Set-Cookie : None 392

Set-Cookie : HTTPOnly 320

X-Frame-Options 20

Set-Cookie : Secure 15

X-Content-Type-Options 2

Press Total

1.978

Commerce Set-Cookie : HTTPOnly 181

Set-Cookie : Secure 91

X-Frame-Options 85

No Security 77

Set-Cookie : None 20

X-XSS-Protection : 1 8

X-Content-Type-Options 6

Commerce Total

468

Government Set-Cookie : HTTPOnly 115

X-Frame-Options 44

No Security 41

Set-Cookie : None 30

X-Content-Type-Options 28

Set-Cookie : Secure 11

X-XSS-Protection : 1 9

Strict-Transport-Security 9

Government

Total
287

Finance Set-Cookie : None 70

Set-Cookie : HTTPOnly 47

Set-Cookie : Secure 32

X-Frame-Options 25

X-Content-Type-Options 6

No Security 4

Finance Total

184

Fun & Life Set-Cookie : None 99

No Security 45

Set-Cookie : HTTPOnly 13

Set-Cookie : Secure 2

X-XSS-Protection : 1 1

Fun & Life Total

160

Games Set-Cookie : HTTPOnly 82

X-Frame-Options 22

No Security 20

Set-Cookie : None 8

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

104

X-XSS-Protection : 1 4

Set-Cookie : Secure 4

X-Content-Type-Options 3

Content-Security-Policy 3

Strict-Transport-Security 2

Games Total

148

Sources Set-Cookie : HTTPOnly 48

Strict-Transport-Security 26

Set-Cookie : Secure 23

No Security 13

Set-Cookie : None 8

X-XSS-Protection : 1 6

X-Frame-Options 5

X-Content-Type-Options 5

Sources Total

134

Telecommunicati

ons
Set-Cookie : HTTPOnly 35

Set-Cookie : Secure 28

No Security 20

Set-Cookie : None 18

X-Frame-Options 4

Content-Security-Policy 1

X-Download-Options 1

X-Content-Type-Options 1

X-XSS-Protection : 1 1

Strict-Transport-Security 1

Telecommunicati

ons Total
110

Real Estate X-XSS-Protection : 1 43

Set-Cookie : None 41

Set-Cookie : HTTPOnly 4

No Security 1

Real Estate Total

89

Job Search No Security 18

Set-Cookie : HTTPOnly 9

Set-Cookie : None 3

X-Frame-Options 1

Job Search Total

31

Aviation No Security 7

Set-Cookie : HTTPOnly 4

X-XSS-Protection : 1 3

Set-Cookie : None 3

X-Frame-Options 1

X-Content-Type-Options 1

Strict-Transport-Security 1

Aviation Total

20

Service Set-Cookie : HTTPOnly 9

No Security 3

X-XSS-Protection : 1 3

Set-Cookie : None 3

Set-Cookie : Secure 2

Service Total

20

Logistics Set-Cookie : HTTPOnly 7

Strict-Transport-Security 3

Set-Cookie : None 3

No Security 2

X-Frame-Options 1

Logistics Total

16

Retail No Security 5

Set-Cookie : HTTPOnly 4

Set-Cookie : None 3

Set-Cookie : Secure 1

X-Frame-Options 1

Strict-Transport-Security 1

Retail Total

15

Forum Set-Cookie : HTTPOnly 8

No Security 2

X-Frame-Options 1

X-XSS-Protection : 0 1

X-Content-Type-Options 1

Forum Total

13

Others No Security 3

Others Total

3

 It can be concluded from the table that most
common security control is HTTP Only cookies.

Hopefully, in future other security headers will be
utilized more as well.

5. Conclusion

Browsers integrate several security headers to
improve web application security. Developers are
expected to enable these security headers during

design and coding. We developed a tool that can
visit web pages and check existence of the security

headers. By using this tool, we performed an
analysis of 361 most popular web portals in
Turkey including any subdomains linked on their

home pages. The analysis methodology and the
performed analysis with the detailed results are the
main contributions of our research.

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
K.E. Kısa et al. ,Vol. 5, No. 4

105

The analysis results have shown that
developers are not aware of the security headers
since they are not integrated at all. Comparing

different sectors we can conclude that although
Finance web portals utilize more security headers

than others, overall security maturity in Turkish
web landscape is still way lower than expected.
Lack of controls mentioned in this article shows us

only the tip of the iceberg. But looking at it, we
gain insights on Turkish application security

maturity level in general. We suggest enterprises,
the government and all other web site owners here
to invest in secure software development lifecycle

programs to satisfy these and any further security
requirement. For the interested researchers, we

suggest OWASP SAMM (Security Assurance
Maturity Model) which is an open framework to
help organizations formulate and implement a

strategy for software security that is tailored to the
specific risks facing the organization.

Acknowledgements

A preliminary version of this work was

presented at the ISCTurkey 2016 Conference [11].
Also, we would like to thank Özkan Boztaş for his

precious support, reviewing the paper.

References

[1] “Website of European Parliament President Hacked”,

http://news.softpedia.com/news/Website-of-European-

Parliament-President-Hacked-472575.shtml, Latest

Access Time for the website is 29.09.2016

[2] OWASP Top 10 Project,

https://www.owasp.org/index.php/Category:OWASP_To

p_Ten_Project, Latest Access Time for the website is

29.09.2016

[3] SANS Top 25 Security Errors,

https://www.sans.org/top25-software-errors/, Latest

Access Time for the website is 29.09.2016

[4] W3C, “Content Security Policy 1.0”,

https://www.w3.org/TR/2012/CR-CSP-20121115/, Latest

Access Time for the website is 29.09.2016

[5] Mozilla Foundation, “CSP Policy Directives”

“https://developer.mozilla.org/en-

US/docs/Web/Security/CSP/CSP_policy_directives”,

Latest Access Time for the website is 29.09.2016

[6] OWASP, “OWASP Security headers project X-XSS-

Protection header”,

https://www.owasp.org/index.php/OWASP_Secure_Head

ers_Project#X-XSS-Protection, Latest Access Time for

the website is 29.09.2016

[7] OWASP Security headers project, X-Frame-Options

header,

https://www.owasp.org/index.php/OWASP_Secure_Head

ers_Project#X-Frame-Options, Latest Access Time for

the website is 29.09.2016

[8] IETF, RFC 6797 HTTP Strict Transport Security

(HSTS), https://tools.ietf.org/html/rfc6797, Latest Access

Time for the website is 29.09.2016

[9] “OWASP Security Headers Project Public Key Pinning”,

https://www.owasp.org/index.php/Certificate_and_Public

_Key_Pinning, Latest Access Time for the website is

29.09.2016

 [10] Our implemented SecurityHeaderChecker tool,

https://github.com/ttemrekisa/securityheaderchecker,

Latest Access Time for the website is 29.09.2016

[11] K.E. Kısa, E.İ. Tatlı, “Analysis of HTTP Security

Headers in Turkey”, Procedings of 9th International

Conference on Information Security and Cryptology

(ISCTurkey 2016), pp.39-46, Ankara, Turkey, October

25-26, 2016.

