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   Abstract 

 

The main objective of this work is to establish new upper bounds for different kinds of convex 

functions by using fractal-fractional integral operators with power law kernel. Furthermore, to 

enhance the paper, some new inequalities are obtained for product of different kinds of convex 

functions. The analysis used in the proofs is fairly elementary and based on the use of the well 

known Hölder inequality. 

 
 

 

 

1. Introduction* 

 

Fractional analysis has been a field of rapid 

development with the definition of new integral and 

derivative operators in recent years, but has also closed a 

huge gap in terms of better identification and modeling of 

real-life problems. While the new fractional derivatives 

and integral operators continue to be examined in terms of 

singularity, local availability and convolution properties, 

another focus of researchers working in this field is to 

define more general operators that have applications in 

areas such as modeling, applied mathematics and 

mathematical biology. 

The most frequently used derivatives of the fractional 

derivative in the literature are Riemann Liouville and 

Caputo fractional derivatives [1-3]. But as it is known, 

fundamental fractional derivative definitions like this 

include power kernel function in singular structure. 

Theoretically, this type of kernel functions that arise 
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spontaneously creates difficulties in mathematical 

modeling for two reasons. The first of these is the 

computational difficulty due to singularity and the 

necessity of intensive numerical computations, which can 

often be overcome by the development of highly complex 

computer algorithms. The second difficulty is the 

inadequacy of kernel functions in the form of power 

functions in modeling phenomena that exhibit exponential 

behavior in nature.  

In order to eliminate the weaknesses of fundamental 

derivatives, Caputo and Fabrizio replaced the kernel 

function of the Caputo fractional derivative with the 

exponential function in 2015, Atangana and Baleanu in 

2016, replaced the exponential kernel function in the 

Caputo-Fabrizio fractional derivative with the Mittag-

Leffler function, and obtained a more general definition 

[4,5]. 

These new operators, created by changing the kernel 

function, have been successfully used in heat transfer 

systems, problems such as groundwater flow in closed 

aquifers, wave motion on shallow water, electrical circuits, 

electromagnetic waves in dielectric medium. 
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In 2017, Atangana defined a new fractional operator 

for modeling physical events that exhibit fractal behavior 

in the real world [6]. This new fractional derivative and 

integral operator, called fractal-fractional, have been 

created considering the nonlocality as well as the fractal 

effect. Since then, many authors have applied this 

fractional operator in different fields based on it. 

In recent years, this issue has begun to be handled 

with the theory of inequalities, and classical integer order 

integral inequalities have been generalized with fractional 

integral operators. Many articles, papers and postgraduate 

thesis studies have been made on the fractional calculus [7-

21].  

The fact that the inequalities obtained by the proofs 

can be found more general with the help of the new 

fractional integrals defined in recent years has prompted us 

to study this subject.  

 

2. Materials and Methods 
 

In this section, we will give a brief discussion of 

some important definitions and properties releated to 

convex functions and fractal-fractional calculus that useful 

for this paper. 

Definition 1: [22] The function Ψ:[𝑢,𝑣]→ℝ is said to be 

convex, if we have 

        1 2 1 21 1z z z z                       (1) 

for all  1 2, ,z z u v  and   0,1  . 

m -convexity was defined by Toader as follows: 

Definition 2: [23] The function Ψ:[0,𝑣]→ℝ, 0v  is said 

to be m -convex, where  0,1m , if we have 

        1 2 1 21 1z m z z m z                  (2) 

for all  1 2, 0,z z v  and   0,1  . 

Clearly, when we take 1m  in this definition, then f

reduces to the ordinary convex on  0,v . 

s -convexity introduced by Breckner as a generalization of 

convex functions. 

Definition 3: [22] The function Ψ:[0,∞)→ℝ is said to be 

s -convex in the second sense, where  0,1s , if we have 

        1 2 1 21 1
ssz z z z                  (3) 

for all  1 2, 0,z z    and   0,1  . 

Obviously, s-convexity means just convexity when 1s   

Recently a new concept of differential and integral 

operators called fractal-fractional differential and integral 

operators were introduced by Atangana, as the convolution 

of the generalized Mittag-Lefler law, exponential law and 

power-law with fractal derivative [6]. These operators 

consist of two orders, firstly the fractional-order   then 

the fractal dimension  . The purpose of the new operators 

is to attract nonlocal problems in nature that also display 

fractal behavior.  

The following definitions are discussed in detail in 

[6]. 

Definition 4: [6] Suppose that  t  is continuous 

function and fractal differentiable on an open interval 

 ,u v with order   then,   order fractal-fractional 

derivative of function  t , power-law kernel is given by: 

 
 

  , 1

1

t
FFP

u t
u

d
D t s t s ds

dt

 




   

        (4) 

where 0 , 1    and 

     
lim
t s

d s t s

ds t s  

  



. 

Definition 5: [6] Suppose that  t  is continuous 

function and fractal differentiable on an open interval 

 ,u v with order   then,   order fractal-fractional 

derivative of function  t , exponential decay kernel is 

given by: 

 
 

 

   

,

1

                       exp
1

FFE

u t

t

u

M
D t

d
s t s ds

dt

 











 
 

 
     



   (5) 

where 0 , 1    and    0 1 1M M  . 

Definition 6: [6] Suppose that  t  is continuous 

function and fractal differentiable on an open interval 

 ,u v with order   then,   order fractal-fractional 

derivative of function  t ,  the generalized Mittag-

Leffler kernel is given by: 

 
 

 

   

,

1

                     
1

FFM

u t

t

a

AB
D t

d
s E t s ds

dt

 













 
 

 
     



  (6) 

where 0 , 1   and  
 

1AB


 


  


 . 

The fractal-fractional integral operators associated with the 

derivatives in Eq. (4), (5), (6) are defined as follows, 

respectively. 

Definition 7: [6] If  t  is continuous in a closed interval 

 ,u v then the fractal integral of  with order  is defined 

as: 

   1 .
t

F

u t
u

J t s s ds                         (7) 

Definition 8: [6] Assuming that  t is a continuous 

function on  ,u v , then  order fractal-fractional integral 

of the function  t  with power-law kernel is given by: 
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 
 

   
1, 1

, .
t

FFP

u t
u

J t t s s s ds
  



    
       (8) 

Definition 9: [6] Assuming that  t is a continuous 

function on  ,u v , then  order fractal-fractional integral 

of the function  t  with an exponential decaying kernel 

is given by: 

 
 

 

   

 

, 1

,

11
                     

t
FFE

u t
u

J t s s ds
M

t t

M

  







 







  

 



.       (9) 

Definition 10: [6] Assuming that  t is a continuous 

function on  ,u v , then    order fractal-fractional integral 

of the function  t  with generalized Mittag-Leffler 

kernel is given by: 

 
 

   

   

 

1, 1

,

11
                       .

t
FFM

u t
u

J t s t s s ds
AB

t t

AB

  







 







   

 



     (10) 

Remark: If the 1   , then the fractal-fractional 

integral operators in Eq. (8), (9) and (10) reduce to 

Riemann-Liouville, Caputo-Fabrizio and Atangana-

Baleanu fractional integral operators respectively. 

Furthermore, if all fractional and fractal orders are equal to 

1, the fractal-fractional integral operators reduce to the 

classical integral. 

The purpose of this paper is to prove some fractional 

integral inequalities which provides the upper bounds via 

fractal-fractional integrals with power-law type kernel. To 

obtain the results, we use the different kinds of convex 

functions and some other features of the functions. 

 

3. Main Results 

 

Theorem 1: Suppose that Ψ:[0,∞)→ℝ be a continuous 

function where 0 u t    and  1 ,L u t . If 
q

 is an 

m -convex function,  0,1m , then we have the following 

inequality for   order fractal-fractional integral operators 

of the function  t  with the power-law kernel: 

 

 
 

   

    

,

,

1

1 1 1 1

  

   
1 1

FFP

u t

p p p

J t
t u

t u

t u p

 



 







   






 
  
    

                            (11) 

 

    

     

1

1 1

1 1 1 2

q q
q t

u q m
m

q q



 

  
      

  

    
 
 
 

                 

where 
1 1 1p q    and 0 , 1   .  

Proof: By using definition and changing variables can be 

written as 

 

 
 

     

,

,

1 11

0
         1 1 .

FFP

u tJ t
t u

u t u t d

 









     







     

   (12) 

By applying Hölder inequality, we have 

 

 
 

  
  

     

,

,

1
1 1

0

1
1

1

0

 1

   1 .

FFP

u t

p p

qq q

J t
t u

u t d

u t d

 











  

   










  

   





      (13) 

By using m -convexity of 
q

 , we obtain 

 

 
 

  
  

     

,

,

1
1 1

0

1

1
1

0

 1

   1 .

FFP

u t

p p

q q
q q

J t
t u

u t d

t
u m d

m

 











  

   










  

   
            





  (14) 

By calculating the above integrals and simplifying, the 

desired inequality is obtained. 

Theorem 2. Suppose that      : , 0, 0,u v     be a 

continuous function and  1 ,L u v . If 
q

 is an s -

convex function with  0,1s , then we have the 

following inequality for   order fractal-fractional integral 

operators of the function  t  with the power-law kernel: 

 

 
 

   

    
 

 

,

,

1

1 1 1 1

2 11 1

FFP

u t

q
p p p

J t
t u

ut u

qt u p

 



 







   






     
        

          (15) 
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 

 

      

  

1

1 1 1

2 1 2 1

q q q
u t q s

q s q



 

       
  
      
 

   

where 
1 1 1p q   , 1q  and 0 , 1   . 

Proof: By means of Eq. (12) and Hölder integral 

inequality, we can write that 

 

 
 

  
  

     

,

,

1
1 1

0

1
1

1

0

 1

    1 .

FFP

u t

p p

qq q

J t
t u

u t d

u t d

 











  

   










  

   





         (16) 

Taking into account the s -convexity of  
q

 , we have 

 

 
 

  
  

         

,

,

1
1 1

0

1
1

1

0

 1

   1 .

FFP

u t

p p

q q qs qs

J t
t u

u t d

u t d

 











  

   










  

    





    (17) 

By computing the above integrals and simplifying, the 

statement is obtained. 

Corollary 1: If we take 1m   in Eq. (11) and 1s  in Eq. 

(16), then we get the following inequality for   order 

fractal-fractional integral operators of the function  t  

with the power-law kernel: 

 

 
 

   

    

      

     

,

,

1

1 1 1 1

1

 
1 1

1 1
  

1 1 1 2

FFP

u t

p p p

q q q

J t
t u

t u

t u p

u q t

q q

 



 









 

   






 
  
    

     
 
    
 

         (18) 

where 
1 1 1p q   , 1q  and 0 , 1   . 

Theorem 3. Suppose that Ψ,Φ:[0,∞)→ℝ be functions 

with 0 u t     and  1,  ,  ,L u t   . If 
q

  is 

1m -convex and 
q

  is 2m -convex function on  ,u t  for 

some fixed  1 2, 0,1m m  , then we have the following 

inequality for   order fractal-fractional integral operators 

of the function  t  with the power-law kernel: 

 

 
 

   

    

,

,

1

1 1 1 1

1 1

FFP

u t

p p p

J t
t u

t u

t u p

 



 







   






 
  
    

      (19) 

   

 

   

     

        

2 1

2 1

1 2

1

1 2

3 1

    

1
      

2 1 3 1

      

2
      

1 1 2 1 3 1

q

q q

q

q

u u

q

t t
m u m u

m m

q q

t t

m m

m m

q q q



 

  

  


 


    
         
     


   

   
     

   


 

      

       

where 
1 1 1p q   , 1q  and 0 , 1   . 

Proof: From the Eq. (12) and Hölder integral inequality, 

we get 
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By using m -convexity of 
q

  and 
q

 , we obtain 
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By a simple computation, we get the desired result. 

Theorem 4. Suppose that      , : , 0, 0,u v      be 

functions and  1,  ,  ,L u v   . If 
q

  is 1s -convex 

and 
q

  is 2s -convex function on  ,u v  for some fixed 

 1 2, 0,1s s  , then we have the following inequality for   

order fractal-fractional integral operators of the function 

 t  with the power-law kernel: 
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  (22) 

where 
1 1 1p q   , 1q  and 0 , 1   . 

Proof: By means of  Eq. (12) and Hölder integral 

inequality, we can get 
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Taking into account the s -convexity of  
q

  and 
q

 , 

we have 
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,
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By calculating the above integrals and simplifying, the 

desired inequality is obtained. 

Corollary 2: If we take 1 2 1m m   in Eq. (19) and 

1 2 1s s   in Eq. (22) then we get the following inequality 

for   order fractal-fractional integral operators of the 

function  t  with the power-law kernel: 
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   (25) 

 

4. Conclusions 

 

In this paper, new upper bounds for different kinds of 

convex functions are given. To prove the main findings, 

fractal-fractional integral operators with power law kernel, 
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the properties of the functions and Hölder's inequality are 

used. The method adopted for generating fractional 

inequalities is new and simple. Using the appropriate 

fractional integral operators, methods can be followed to 

develop further results for other classes of functions. In 

addition, the results are useful for fractional calculus and 

can be an inspiration for researchers working on this 

subject. 
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